# q-Weibull distribution

Parameters Probability density function Cumulative distribution function  shape (real) rate (real) shape (real)    (see article)

In statistics, the q-Weibull distribution is a probability distribution that generalizes the Weibull distribution and the Lomax distribution (Pareto Type II). It is one example of a Tsallis distribution.

## Characterization

### Probability density function

The probability density function of a q-Weibull random variable is: where q < 2, > 0 are shape parameters and λ > 0 is the scale parameter of the distribution and is the q-exponential

### Cumulative distribution function

The cumulative distribution function of a q-Weibull random variable is: where  ## Mean

The mean of the q-Weibull distribution is where is the Beta function and is the Gamma function. The expression for the mean is a continuous function of q over the range of definition for which it is finite.

## Relationship to other distributions

The q-Weibull is equivalent to the Weibull distribution when q = 1 and equivalent to the q-exponential when The q-Weibull is a generalization of the Weibull, as it extends this distribution to the cases of finite support (q < 1) and to include heavy-tailed distributions .

The q-Weibull is a generalization of the Lomax distribution (Pareto Type II), as it extends this distribution to the cases of finite support and adds the parameter. The Lomax parameters are: As the Lomax distribution is a shifted version of the Pareto distribution, the q-Weibull for is a shifted reparameterized generalization of the Pareto. When q > 1, the q-exponential is equivalent to the Pareto shifted to have support starting at zero. Specifically: ## See also

1. Picoli, S. Jr.; Mendes, R. S.; Malacarne, L. C. (2003). "q-exponential, Weibull, and q-Weibull distributions: an empirical analysis". arXiv:cond-mat/0301552 .
2. Naudts, Jan (2010). "The q-exponential family in statistical physics" (PDF). J. Phys. Conf. Ser. IOP Publishing. 201. doi:10.1088/1742-6596/201/1/012003. Retrieved 9 June 2014.
3. "On a q-Central Limit Theorem Consistent with Nonextensive Statistical Mechanics" (PDF). Milan J. Math. 76. 2008. doi:10.1007/s00032-008-0087-y. Retrieved 9 June 2014.
This article is issued from Wikipedia - version of the 4/16/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.