Evaluation and Clinical Validation of Two Field-deployable Reverse Transcription-Insulated Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome Coronavirus

Yun Young Go, Yeon-Sook Kim, Shinhye Cheon, Sangwoo Nam, Keun Bon Ku, Meehyein Kim, Nam Hyuk Cho, Hyun Park, Pei-Yu Alison Lee, Yu-Chun Lin, Yun-Long Tsai, Hwa-Tang Thomas Wang, Udeni B.R. Balasuriya

PII: S1525-1578(17)30188-5
DOI: 10.1016/j.jmoldx.2017.06.007
Reference: JMDI 624

To appear in: The Journal of Molecular Diagnostics

Received Date: 25 March 2017
Revised Date: 19 May 2017
Accepted Date: 21 June 2017

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
Evaluation and Clinical Validation of Two Field-deployable Reverse Transcription-Insulated Isothermal PCR Assays for the Detection of the Middle East Respiratory Syndrome Coronavirus

Yun Young Go1,2∗, Yeon-Sook Kim3, Shinhye Cheon3, Sangwoo Nam1,2, Keun Bon Ku1, Meehyein Kim1,2, Nam Hyuk Cho4, Hyun Park5, Pei-Yu Alison Lee6, Yu-Chun Lin6, Yun-Long Tsai6, Hwa-Tang Thomas Wang6, Udeni B. R. Balasuriya7∗

1Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon 34113, Republic of Korea
2Department of Medicinal Chemistry and Pharmacology, University of Science and Technology, Daejeon 34113, Republic of Korea
3College of Medicine, Chungnam National University, Daejeon, Republic of Korea
4Department of Microbiology and Immunology, and Department of Biomedical Science, Seoul National University College of Medicine and Bundang Hospital, Seoul 03080, Republic of Korea
5Department of Infection Biology School of Medicine, Wonkwang University, Iksan, 54538 Republic of Korea;
6GeneReach USA, Lexington, Massachusetts, USA
7Maxwell H. Gluck Equine Research Center, Department of Veterinary Science, College of Agriculture, Food and Environment and Department of Microbiology, Immunology and Molecular Genetics, College of Medicine, University of Kentucky, Lexington, Kentucky, USA

∗YYG and YSK contributed equally to this work
Address correspondence to Yun Young Go (yygo@kRICT.kr) or Udeni B. R. Balasuriya (ubalasuriya@uky.edu)

E-mail addresses:

Yun Young Go
Yeon-Sook Kim
Shinhye Cheon
Sangwoo Nam
Keun Bon Ku
Meehyein Kim
Nam Hyuk Cho
Hyun Park
Pei-Yu Alison Lee
Yu-Chun Lin
Yun-Long Tsai
Hwa-Tang Thomas Wang
Udeni B. R. Balasuriya

yygo@kRICT.kr
idalicekim@gmail.com
episodes22@cnuh.co.kr
swnam@kRICT.kr
kbku@kRICT.kr
mkim@kRICT.kr
chonh@snu.ac.kr
hyunpk@whu.ac.kr
peiyu329@genereachbiotech.com
xls-fish@genereachbiotech.com
David.tsai@genereachbiotech.com
thomaswang@genereachbiotech.com
ubalasuriya@uky.edu
Running title: RT-iiPCR assays for MERS-CoV diagnosis

Key words: Middle East Respiratory Syndrome Coronavirus, MERS-CoV, insulated isothermal PCR, RT-iiPCR, POCKIT™, point-of-need diagnosis

Abstract: 219 words, main text: 4,147 words, Tables: 5, Figure: 1

Highlights:

• Development and clinical evaluation of two new reverse transcription-insulated isothermal PCR (RT-iiPCR) assays for the detection of Middle East respiratory syndrome coronavirus (MERS-CoV).

• Both RT-iiPCR assays had a comparable analytical sensitivity to previously described real-time RT-qPCR assays targeting the same genes.

• These assays provide a highly sensitive and specific field-deployable point-of-need method for the diagnosis of MERS.

Conflict of Interest

The authors declare the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: authors PAL, YL, YT, and HTW are employed by GeneReach USA, Lexington, MA. The remaining authors declare no conflicting interests with respect to their authorship or the publication of this article.

Funding

This work was financially supported by intramural funding (KK1603-C00) from Korea
Research Institute of Chemical Technology and Korea Centers for Disease Control and Prevention (KCDC, 2015ER480800), Republic of Korea. YYG, SN, KBK, and MK acknowledge support from the KRICT and YYG, MK, and HP acknowledge support from the KCDC (Grant 2015ER480800 to HP).
Abstract

Middle East respiratory syndrome (MERS) is an emerging zoonotic viral respiratory disease that was first identified in Saudi Arabia in 2012. In 2015, the largest MERS outbreak outside of the Middle East region occurred in the Republic of Korea. The rapid nosocomial transmission of MERS-coronavirus (MERS-CoV) in Korean healthcare settings highlighted the importance and urgent need for a rapid and reliable on-site diagnostic assay to implement effective control and preventive measures. Here, we describe the evaluation and validation of two newly developed reverse transcription-insulated isothermal PCR (RT-iiPCR) methods targeting the ORF1a and upE genes of MERS-CoV. Compared to World Health Organization-recommended singleplex real-time RT-PCR (reference RT-qPCR) assays, both RT-iiPCR assays had comparable analytical sensitivity for the detection of MERS-CoV RNA in tissue culture fluid and in sputum samples spiked with infectious virus. Furthermore, clinical evaluation was performed with sputum samples collected from subjects with acute and chronic respiratory illnesses including sputum samples collected from subjects with acute and MERS-CoV infected patients. The overall agreement values between the two RT-iiPCR assays and the reference RT-qPCR assays were 98.06% (95% CI, 94.43-100%; κ = 0.96) and 99.03% (95% CI, 95.88-100%; κ = 0.99) for ORF1a and upE assays, respectively. In conclusion, the ORF1a and upE MERS-CoV RT-iiPCR assays coupled with a field-deployable system provide a platform for a highly sensitive and specific on-site tool for diagnosis of MERS-CoV infections.
Introduction

The Middle East respiratory syndrome coronavirus (MERS-CoV), first identified in Saudi Arabia in September 2012, is an emerging zoonotic pathogen that causes severe acute respiratory illness in humans (1). To date, more than 1,900 laboratory-confirmed MERS-CoV infections and 684 human deaths in 27 countries have been reported with a mortality rate of approximately 36% (World Health Organization, http://www.who.int/emergencies/mers-cov/en/, March 24, 2017). MERS-CoV is a zoonotic virus that has repeatedly moved into the human population via contact with the infected dromedary camels in the Arabian Peninsula (World Health Organization. MERS-CoV Global Summary and risk assessment. http://www.who.int/emergencies/mers-cov/mers-summary-2016.pdf. December 3 2016).

Recent phylogenetic analysis of viral isolates from humans, camels, and bats revealed that bats may have been the original primary reservoir of the virus, and they may have initially transmitted the virus to camels (2). Thus, transmission of MERS-CoV to humans is suspected to occur by direct or indirect contact with infected camels or camel-related products (e.g. raw camel milk, camel urine) (3, 4). Human-to-human transmission of MERS-CoV requires close contact and can occur among relatives in households and among patients and healthcare workers in healthcare settings (nosocomial infection) (5).

Since its emergence, most of the MERS-CoV infections have occurred in the Arabian Peninsula (Kuwait, Bahrain, Qatar, the United Arab Emirates, Oman, Yemen, and Saudi Arabia), but additional cases have been reported from countries in North Africa, Europe, North America, and Asia due to movement of infected individuals. The outbreak in the Republic of Korea in May 2015 was the largest MERS-CoV outbreak ever recorded outside of Saudi Arabia and resulted in 185 laboratory-confirmed human infections in Korea and one
in China, with 36 deaths (6). The index case was traced back to an individual with a travel history to the Middle East. The MERS outbreaks have been attributed to failures of preventive and control measures in healthcare settings (5). Therefore, early diagnosis, prompt isolation of suspected cases, and timely tracing of case contacts are key strategies to prevent further transmission.

Following the emergence of MERS-CoV, several molecular detection methods and serological assays were developed and deployed internationally through an international collaborative laboratory response (7-10). Currently, real-time reverse transcription PCR (RT-qPCR) is the primary method for laboratory diagnosis of MERS-CoV infection, and it requires at least two different genomic targets for a positive diagnosis according to the case definition announced by the World Health Organization (WHO) as of July 3, 2013 (http://www.who.int/csr/disease/coronavirus_infections/case_definition/en/index.html). The two RT-qPCR assays developed by Corman et al. (2012) shortly after the first report of the disease were designated as recommended MERS-CoV molecular diagnostics by the WHO (7, 8). Both assays proved to be highly sensitive and were successfully used for the diagnosis of the majority of the MERS-CoV cases. These assays target genomic regions upstream of the envelope gene (upE) and the viral open reading frame 1a (ORF1a). The RealStar® MERS-CoV RT-qPCR Kit (Alotona Diagnostics, Hamburg, Germany) has been developed using these WHO-recommended assays (11). However, these assays are costly, demand expensive instrumentation, and require a dedicated laboratory environment with technically skilled personnel. Consequently, simple and rapid methods are required to meet the needs of point-of-need MERS-CoV detection. For this purpose, many isothermal RNA amplification methods were developed for exponential amplification of RNA at low and constant
temperatures such as rapid one-step RNA amplification/detection (iROAD) assay (12) and reverse transcriptional loop-mediated isothermal amplification (RT-LAMP) (13, 14). The RT-LAMP assay can be performed in a simple heating block.

Recently, fluorescent probe hydrolysis-based insulated isothermal PCR (iiPCR) for amplification and detection of nucleic acid has been described (15). The iiPCR is highly sensitive and specific for the detection of both DNA and RNA and can be performed with a single heating source; thus, it does not require an expensive thermocycler (16, 17). The PCR mix in a capillary tube (R-tube™, GeneReach USA, Lexington, MA, USA) is heated at the bottom. Rayleigh-Bénard convection drives fluid cycling through temperature gradients and the three PCR steps, namely denaturation, annealing, and extension, can be completed sequentially at different zones within the capillary tube. Subsequent integration of hydrolysis probe technology and an optical detection module into the device allow automatic detection and interpretation of iiPCR results (17). Performance of iiPCR assays on a commercially available, field-deployable, and user-friendly iiPCR system, the POCKIT™ Nucleic Acid Analyzer (GeneReach USA), has been demonstrated to be comparable to that of real-time PCR, nested PCR, and/or virus isolation for the detection of various pathogens in different hosts, including dengue virus and malaria in human samples (18-32). Taking advantage of this system, in this study we developed two singleplex RT-iiPCR assays for the detection of MERS-CoV upE and ORF1a genes separately and determined the ability of the assays for viral nucleic acid detection. The analytical sensitivity, analytical specificity, and reproducibility of the two MERS-CoV-specific RT-iiPCR assays were assessed using viral tissue culture fluid (TCF) and human sputum samples spiked with known amounts of MERS-CoV. The clinical performance of these two assays were further evaluated and validated using RNA extracted from sputum samples of MERS-CoV-infected patients obtained from the
recent Korean outbreak and compared to the corresponding reference singleplex real-time RT-qPCR assays recommended by WHO.

Materials and Methods

Viruses and cells. A patient-derived MERS-CoV isolate (MERS-CoV/KOR/KNIH/002_05_2015; GenBank accession No. KR029139.1) was kindly provided by the Korea Centers for Disease Control and Prevention (Korea CDC, Osong, Republic of Korea). A working virus stock was prepared by passaging MERS-CoV in a human hepatoma cell line, Huh7 cells (Japanese Collection of Research Bioresources Cell Bank, Osaka, Japan). The infectious viral titer of the TCF supernatant, expressed as plaque forming units per ml (PFU/ml) was determined by plaque assay using Vero cells (ATCC® CCL-81™; American Type Culture Collection (ATCC®), Manassas, VA, USA) according to a standard laboratory protocol. All procedures using live MERS-CoV were performed in the biosafety level-3 facility at Center for Virus Research and Testing, Korea Research Institute of Chemical Technology, Daejeon, Republic of Korea.

Human coronaviruses, hCoV-229E (ATCC® VR-740) and hCoV-OC43 (ATCC® VR-1558) were purchased from ATCC and amplified in human fetal lung fibroblast MRC-5 cells (ATCC® CCL-171). Feline infectious peritonitis coronavirus (FIPV, ATCC® VR-990) and its host cell line Crandall feline kidney were obtained from ATCC and Korean Cell Line Bank (Seoul, Republic of Korea), respectively. Other human viral pathogens included in this study were influenza virus type A (H1N1, A/Puerto Rico/8/34 [ATCC® VR-1469]), and influenza virus type B (B/Panama/45/1990 [Korea CDC]). Influenza viruses (types A and B) were propagated by infection of Madin Darby canine kidney cells.
Ethics statement. Clinical data and specimens obtained from the MERS-CoV infected patients were used in this study following ethical approval granted by the Institutional Review Board of Chungnam National University Hospital, Daejeon, Republic of Korea. All surviving patients provided written informed consent prior to participating in the study. In fatal cases, an exemption to the patients’ consent was obtained from the institutional review board for the retrospective analysis of clinical samples. All experiments were performed according to the approved guidelines.

Clinical specimens. A total of 55 sequential sputum samples collected from twelve MERS-CoV-infected patients were obtained from the Chungnam National University Hospital. These patients were diagnosed positive for MERS-CoV infection by real-time RT-qPCR assays targeting the **ORF1a** and **upE** sequences at the Korea CDC laboratory between May and June of 2015. Sputum samples collected from patients suffering from other acute and chronic respiratory illnesses (n=48) were included in the study as negative samples. Sputum samples from nine healthy individuals were randomly selected and spiked with serially diluted MERS-CoV TCF working stocks.

Nucleic acid extraction. For analytical sensitivity analysis, TCF containing MERS-CoV (3.7 x 10^6 PFU/ml) was subjected to 10-fold serial dilutions (10^0 to 10^7) in Dulbecco’s Modified Eagle Medium (HyClone™, UT, USA) containing 10% fetal bovine serum (HyClone™). Viral RNA was extracted from serial dilutions of MERS-CoV TCF and MERS-CoV-spiked sputum samples (100 µl per sample) by using the taco™ DNA/RNA Extraction Kit (GeneReach USA, Lexington, MA, USA) on a taco™ Nucleic Acid Automatic Extraction System (GeneReach USA), according to the manufacturer’s instructions. Viral RNA was eluted in 100 µl of elution buffer. Total RNA from sputum samples collected from MERS-
CoV-infected patients and from patients suffering from other acute and chronic respiratory illnesses (controls) was extracted using TRIzol LS reagent (ThermoFisher Scientific, Waltham, MA, USA) according to the manufacturer’s instruction in a biosafety level-3 facility. The final volume of each extracted sample was 50 µl. All nucleic acid samples were placed at -80°C until further use.

In vitro transcribed RNA preparation. The analytical sensitivity of the singleplex MERS-CoV RT-iiPCR assays was determined by using *in vitro* transcribed (IVT) RNA. Briefly, the sequences of the *ORF1a* and *upE* regions of the MERS-CoV (nt 27361 - 27596 and nt 11137 - 11339, respectively; GenBank accession number NC_019843) were synthesized, cloned into the pGEM®-3Z vector (Promega, Madison, WI, USA) downstream of the T7 promoter sequence, and subsequently used as the template in *in vitro* transcription using the mMESSAGE mMACHINE® T7 Transcription Kit (Ambion/Life Technologies, Grand Island, NY, USA). Residual DNA was removed using the Ambion Turbo DNA-free kit (Applied Biosystems, Grand Island, NY, USA). Concentration of RNA was measured by a NanoDrop1000 Spectrophotometer (NanoDrop Technologies, Houston, TX, USA). Single use IVT RNA aliquots were stored at -80°C. The analytical sensitivity of the RT-iiPCR was determined using a dilution series (10^0 to 10^8 molecules/reaction) of the IVT RNA. The concentration of the IVT RNA/µl was calculated as described previously (33).

Reference MERS-CoV *ORF1a* and *upE* real time RT-qPCR tests. The singleplex *ORF1a* and *upE* real time RT-qPCR assays were carried out according to the WHO-recommended protocol (34) using the SuperScript III one step RT-PCR system with Platinum Taq polymerase (Invitrogen, Carlsbad, CA, USA). Primers and probes targeting *ORF1a* and *upE* genes were synthesized according to the previously published sequences by GenoTech Corp.
(Daejeon, Republic of Korea) (7, 8). Thermocycling program was set up as follows: an RT step at 50°C for 30 min, followed by 95°C for 2 min and 40 cycles of 15 sec at 95°C and 1 min at 55°C as described previously (35). Duplicate samples with C\textsubscript{T} values >38 were considered negative. Each run included negative controls spiked with water and positive controls with the IVT RNA containing target sequences. All clinical specimens were tested for the human \textit{Rnase P} gene by RT-qPCR to monitor nucleic acid extraction efficiency and the presence of PCR inhibitors as described elsewhere (35).

Establishment of reverse transcription-insulated isothermal PCR. The MERS-CoV-specific RT-iiPCR was designed on the basis of the probe hydrolysis-based POCKITTM method as described previously (17). The primers and probe targeted \textit{ORF1a} or \textit{upE} region of MERS-CoV (GenBank accession number NC_019843). The conserved regions were identified by aligning 253 sequences available in the GenBank database. The RT-iiPCR reaction conditions, such as concentrations of primers and probe, Taq DNA polymerase, and reverse transcriptase, were tested systematically to obtain the highest sensitivity and specificity. Following optimization of the RT-iiPCR assay conditions, the reagents including primers and probe were lyophilized (proprietary) and used in this study. Briefly, the lyophilized premix was reconstituted in 50 µl of Premix Buffer B (GeneReach USA), 5 µl of the test nucleic acid extract was added. A 50 µl volume of the premix/sample mixture was transferred into a labeled R-tubeTM, which was subsequently sealed with a cap, spun briefly in a microcentrifuge (CubeeTM, GeneReach USA), and placed into the POCKITTM Nucleic Acid Analyzer. The default program, including an RT step at 50°C for 10 min and an iiPCR step at 95°C for about 30 min was completed in less than one hour. Signal-to-noise (S/N) ratios, i.e. light signals collected after iiPCR/fluorescent signals collected before iiPCR (17), were
converted automatically to “+”, “-”, or “?” according to the default S/N thresholds by the
built-in algorithm. The results were shown on the display screen at the end of the program. A
“?” indicated that the results were ambiguous and the sample should be tested again.

Statistical analysis. Limit of detection with 95% confidence (LOD$_{95\%}$) was determined by
statistical probit analysis (a non-linear regression model) using the commercial software
SPSS V.14.0 (SPSS Inc., Chicago, IL, USA). The clinical performance of the assays was
calculated based on the analysis of the 55 sputum samples from MERS-CoV infected patients
and 48 donors not suspected of MERS-CoV infection. The singleplex ORF1a or upE RT-
qPCR assay recommended by WHO for MERS-CoV diagnosis was used as a reference test
(35). The degree of agreement between the two assays was assessed by calculating Cohen’s
Kappa (k) values. Sensitivity was calculated as (number of true positives)/(number of true
positives + number of false negatives), and specificity was calculated as (number of true
negatives)/(number of true negatives + number of false positives).

Results

Evaluation of analytical sensitivity and specificity of MERS-CoV ORF1a and upE RT-
iiPCR assays.

(i). Analytical sensitivity. The analytical sensitivities of the singleplex MERS-CoV ORF1a
and upE RT-iiPCR assays were evaluated separately by using RNA extracted from serial 10-
fold dilutions of TCF containing MERS-CoV. The detection limit for both ORF1a and upE
RT-iiPCR methods were determined to be approximately 3.7×10^{-1} PFU/ml of MERS-CoV in
TCF which is equivalent to a technical LOD$_{95\%}$ of <10 copies of synthetic RNA (Table 1). To
obtain an estimate of detection limit in a more clinically relevant setting, viral RNA extracted
from sputum samples of healthy individuals spiked with 10-fold serial dilutions of MERS-CoV were used. The limit of detection values for both assays for MERS-CoV in sputum were determined to be approximately 3.7×10^{-1} PFU/ml (Table 2) suggesting that the effect of PCR inhibition is minimal. (ii). **Analytical specificity.** The specificities of the singleplex $ORF1a$ and upE MERS-CoV RT-iiPCR assays were evaluated with viral nucleic acids extracted from infectious TCF containing human coronavirus 229E (hCoV-229E), hCoV-OC43, FIPV, and influenza virus type A and B strains. All reactions yielded negative results, indicating high analytical specificity with no false-positive test results with either assay (iii) **Reproducibility.** Reproducibility of the singleplex $ORF1a$ and upE MERS-CoV RT-iiPCR assays was assessed by testing independently (three experimental runs) three replicates of the nucleic acid extract of 10^{-5} dilution (3.7×10^{-1} PFU/ml) of infectious TCF. All nine reactions were detected positive, suggesting excellent intra- and inter-assay reproducibility of the established assays (Table 3).

Evaluation of the MERS-CoV $ORF1a$ and upE RT-iiPCR assays using clinical samples.

In order to determine clinical sensitivity and specificity of the singleplex MERS-CoV $ORF1a$ and upE RT-iiPCR assays, we analyzed 55 sputum samples consisting of sequential sample sets taken from twelve patients during the course of acute MERS illness. These samples were confirmed to be positive for MERS-CoV infection by the real-time RT-qPCR assay routinely used at the Korean CDC laboratory during the outbreak in Korea in 2015. To estimate the diagnostic performance of the singleplex RT-iiPCR methods, the assay results were compared with the reference singleplex RT-qPCR assays that was run side-by-side (i.e. the reference RT-qPCR assays were repeated with the newly extracted RNA from sputum samples) (34). The results from the initial laboratory testing together with those from the RT-iiPCR and RT-
qPCR using the clinical specimens are shown in Tables 4. The ORF1a RT-iiPCR assay was able to detect MERS-CoV RNA in 54 out of 55 (54/55) positively confirmed samples whereas the reference ORF1a RT-qPCR assay positively detected 52 out of 55 (52/55). Meanwhile, the upE RT-iiPCR positively detected all 55 samples whereas the reference upE RT-qPCR assay confirmed 52 out of 55 positive samples (Table 4). Specifically, the previously positive specimen from patient ID P085 (collection date: 2015-06-14) was tested as negative with ORF1a RT-iiPCR and reference singleplex ORF1a and upE RT-qPCR assays. The upE RT-iiPCR was the only assay that identified the P085 specimen as positive. Two positive samples from patients ID P130 (collected on 2015-06-14) and ID P148 (collected on 2015-06-21) were tested as false negatives by the reference ORF1a RT-qPCR, resulting in detection of 52 out of 55 positive samples (Table 4). Thus, by comparing the RT-iiPCR results to those from the initial laboratory testing at the time of the outbreak, the sensitivities of the singleplex MERS-CoV ORF1a and upE RT-iiPCR were 99.03% (54/55; 95% CI, 95.88-100%) and 100% (55/55; 95% CI, 97.43-100%), respectively, while those of the reference RT-qPCR were 97.09% (52/55; 95% CI, 87.43-100%) for ORF1a and 99.03% (54/55; 95% CI, 95.88-100%) for upE, respectively (Table 4).

All samples from patients suffering from other respiratory illnesses were tested as negative with the corresponding assays indicating high specificity (100%). Lastly, the overall agreement values between the RT-iiPCR and reference RT-qPCR were 98.06% (95% CI, 94.43-100%; \(\kappa = 0.96 \)) for ORF1a signature, with two positive samples giving discrepant results; and 99.03% (95% CI, 95.88-100%; \(\kappa = 0.99 \)) for upE signature, with one discrepant result from a positive sample between the RT-iiPCR and reference RT-qPCR (Table 5).
Discussion

The 2015 MERS-CoV outbreak in the Republic of Korea revealed that a rapid and reliable diagnostic assay suitable for on-site detection of virus is critical and urgently needed to effectively control the spread of infection among individuals. Unfortunately, the existing RT-qPCR assays are not suitable to be used in clinical settings since they require expensive equipment and laboratory environment staffed with skilled technicians. In this study, we describe the development and evaluation of a rapid and highly sensitive field-deployable system for detection of MERS-CoV that allows mobile detection of the virus directly from clinical materials obtained from patients suspected of infection.

A variety of isothermal amplification methods for nucleic acid detection similar to iiPCR such as LAMP and recombinase polymerase amplification have been developed for use in simple point-of-need systems (36-38). Despite its advantages, most LAMP assays still have some technical limitations, such as propensity to produce false-positive reactions and variations in visual observation of LAMP signals between different observers in particular for weak positive samples (39). Recently, several RT-LAMP assays have been described in the literature for detection of MERS-CoV (13, 14, 40) with advantages of being rapid, simple, accurate, and cost-effective suitable for on-site application. However, further validation of these assays is needed using specimens from infected patients to ensure their clinical performance.

The singleplex ORF1a and upE MERS-CoV RT-iiPCR assays described in this study are performed in commercially available, simple, and compact instruments, the POCKIT™ Nucleic Acid Analyser series, which can process four to thirty-two samples at a time within an hour. The automated interpretation by the iiPCR machine makes the method easier since it
does not require data analysis by the user. Furthermore, the ready-to-use lyophilized amplification reagents that are stable for at least two years at 4°C provide great ease of storage and transportation. Removal of contaminating PCR inhibitors and genomic DNA during nucleic acid extraction is critical to avoid false negative and positive results, respectively (41). Thus, optimal RNA extraction and template preparation is key for obtaining highest sensitivity and specificity of any molecular diagnostic assay including RT-iiPCR. Automatic or semi-automatic nucleic acid extraction methods only require basic laboratory training skills and minimize the hands-on time required for template preparation before assembling the reaction. Furthermore, the clinical samples are directly added to the lysis buffer which immediately inactivates the pathogen and thus, reduces the risk of exposure of the personnel handling the clinical material. However, it is important to use appropriate personal protective wears and follow recommended biosecurity guidelines during handling and testing of the clinical specimens. Utilization of a light-weight, field-deployable automatic nucleic acid extraction device (taco™ mini Nucleic Acid Automatic Extraction System, GeneReach USA) along with the iiPCR/POCKIT™ system greatly reduces the hands-on time from sample collection to results (Figure 1). These instruments also can be connected to a car-battery and are designed as a portable system to be used in clinics, hospitals, farms and public health labs in remote areas without electricity. Taking advantage of this platform, the two MERS-CoV singleplex RT-iiPCR methods targeting either ORF1a or upE gene were established to aid rapid on-site diagnosis of MERS-CoV infection. Multiple RT-qPCR assays targeting different sequences in the MERS-CoV genome have been recommended to be used as sequential primary and confirmatory tests to help reduce the risks of misidentifying MERS-CoV cases (35). Particularly, the upE assay has been recommended for screening
purposes while the *ORF1a* assay for confirmation (8). Both *ORF1a*- and *upE*-specific RT-iiPCR assays described in this study were shown to be analytically sensitive and no cross-reactivity was observed with other respiratory viruses, including human coronaviruses such as the hCoV-229E and hCoV-OC43 strains.

Lower respiratory tract specimens such as sputum and tracheal aspirates are the recommended sample types for accurate diagnosis since they are known to contain high viral RNA loads that persist longer compared to other sample types tested (42). Therefore, we compared the detection limit of singleplex *ORF1a* and *upE* MERS-CoV RT-iiPCR assays to the corresponding WHO-recommended reference singleplex RT-qPCR assays using RNA extracted from infectious TCF or human sputum samples spiked with serially diluted MERS-CoV and assessed the assay performance. The data showed that the singleplex *ORF1a* and *upE* RT-iiPCR and the corresponding singleplex reference RT-qPCR assays were able to detect as low as <10 copies/µl of synthetic RNA and 3.7×10^{-1} PFU/ml of infectious TCF. Similar results were obtained when analytical sensitivities of *ORF1a* and *upE* RT-iiPCR assays were evaluated using sputum samples spiked with a MERS-CoV isolate. Furthermore, the clinical sensitivity and specificity of both singleplex MERS-CoV RT-iiPCR assays were evaluated using archived sputum samples collected from confirmed cases of MERS-CoV infection during the Korean outbreak in 2015. To estimate the diagnostic performance, the singleplex RT-iiPCR assay results were compared side-by-side with the reference singleplex RT-qPCR assay. The data indicated that the sensitivities of the singleplex MERS-CoV *ORF1a* and *upE* RT-iiPCR assays were 99.03% (54/55; 95% CI, 95.88-100%) and 100% (55/55; 95% CI, 97.43-100%), respectively, while those of the reference RT-qPCR assays were 97.09% (52/55; 95% CI, 87.43-100%) for *ORF1a* and 99.03% (54/55; 95% CI, 95.88-100%) for *upE*.

Possible explanation for the discrepancy with initial diagnosis seen in two specimens (P085 [2015-06-14] and P130 [2015-06-14]) could be viral RNA degradation during long-term storage. The viral RNA copy number of false-negative samples was below detection limit in both assays (assessed by reference RT-qPCR <10 copies) while the C_{T} value of internal amplification control remained moderately low (Rnase P C_{T} 27.3 and 30.2, respectively), indicating the possibility of viral RNA loss during storage and/or the extraction process. Moreover, in a number of specimens tested, the overall estimated viral load detected during our study was lower compared to viral copy number estimated a year earlier (data not shown). These observations suggest that sensitivity of the assay can be adversely affected by collection method and storage of clinical specimens. In the case of the specimen from patient ID P148 (collected on 2015-06-21) that was tested as false negative by the reference ORF1a RT-qPCR assay, it could potential be due to the presence of extremely low concentrations of target RNA. The RNA levels of the internal amplification control in this sample (Rnase P C_{T} 38.5) were the lowest compared to the rest of the samples, suggesting relatively low RNA extraction levels. Nevertheless, the data presented in this study demonstrate that the performance of both singleplex ORF1a and upE MERS-CoV RT-iiPCR tests is equivalent or higher compared to the reference singleplex RT-qPCR tests and provides much faster results (within an hour).

Bats and alpacas are potential reservoirs for MERS-CoV in the wild while dromedary camels may be the only animal host responsible for animal-to-human transmission of MERS-CoV (43, 44). Accordingly, regular screening and isolation of MERS-CoV-infected camels have been recommended to help control MERS-CoV spread (45). Thus, the field-deployable MERS-CoV RT-iiPCR on the POCKIT™ system has potential to be used for timely on-site
monitoring of MERS-CoV carriers in camel and alpaca herds and in bat populations in the wild. It would be interesting to see whether these newly developed assays could be used to detect MERS-CoV in samples from dromedary camels, bats, and alpacas in epidemiological investigations.

Lastly, we conclude that the two rapid, highly sensitive and specific MERS-CoV RT-iiPCR methods coupled with the field-deployable platform described here can be effectively used as an on-site, point-of-need diagnostic tool to aid diagnosis of MERS-CoV infection in clinics, hospitals, airports, or premises where a large number of people congregate (e.g. religious festivals) as well as in epidemiological investigations including animal reservoirs.

Acknowledgements

The authors appreciate Dr. Sung Soon Kim (Korea Centers for Disease Control and Prevention, KCDC) for providing the MERS-CoV strains used in this study.
References

25. Wilkes RP, Lee PY, Tsai YL, Tsai CF, Chang HH, Chang HF, Wang HT. 2015. An insulated isothermal PCR method on a field-deployable device for rapid and sensitive detection of canine parvovirus type 2 at points of need. Journal of Virological...
Methods 220:35-38.

Figure legend:

Figure 1. POCKIT™ system workflow for point-of-need detection of MERS-CoV RNA.

This system includes a compact automatic nucleic acid extraction device (taco™ mini) and a portable PCR device (POCKIT™). After sample collection, nucleic acids are extracted using a preloaded extraction plate in approximately 30 min and, subsequently, the lyophilized RT-iiPCR reaction is reconstituted and nucleic acids are added. The mixture was transferred to an
R-tube™ and tested in a POCKIT™ device. TaqMan® probe hydrolysis-based amplification signals are automatically detected, processed, and interpreted, providing qualitative results on the display screen in 60 min.
Table 1. Analytical sensitivity analysis of MERS-CoV ORF1a and upE RT-iiPCR using TCF containing MERS-CoV

<table>
<thead>
<tr>
<th>Assay</th>
<th>PFU/ml</th>
<th>MERS-CoV RT-iiPCR</th>
<th>MERS-CoV RT-qPCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>MERS-CoV ORF1a</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^1</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^0</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-1}</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-2}</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-3}</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-4}</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>MERS-CoV upE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^1</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^0</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-1}</td>
<td>3/3</td>
<td>3/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-2}</td>
<td>1/3</td>
<td>1/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-3}</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
</tr>
<tr>
<td>3.7 x 10^{-4}</td>
<td>0/3</td>
<td>0/3</td>
<td></td>
</tr>
</tbody>
</table>
Table 2. Analytical sensitivity analysis of MERS-CoV ORF1a and upE RT-iiPCR assays using virus-spiked sputum samples

<table>
<thead>
<tr>
<th>Sample no.</th>
<th>Virus amount (PFU/ml)</th>
<th>ORF1a</th>
<th>upE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>RT-iiPCR</td>
<td>RT-qPCR (C<sub>T</sub>)</td>
</tr>
<tr>
<td>SP1</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (28.60)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>5</sup></td>
<td>+</td>
<td>+ (32.31)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (35.58)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP2</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (32.34)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>5</sup></td>
<td>+</td>
<td>+ (36.60)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>- (38.93)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP7</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (31.18)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>0</sup></td>
<td>+</td>
<td>+ (34.87)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (36.92)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP8</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (29.01)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>5</sup></td>
<td>+</td>
<td>+ (32.48)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (36.34)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP9</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (29.54)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>0</sup></td>
<td>+</td>
<td>+ (33.44)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (34.61)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP10</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (31.48)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>5</sup></td>
<td>+</td>
<td>+ (32.80)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (36.35)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP11</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (28.35)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>0</sup></td>
<td>+</td>
<td>+ (31.04)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (32.87)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP12</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (28.04)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>0</sup></td>
<td>+</td>
<td>+ (31.50)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (32.62)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>SP13</td>
<td>3.7 x 10<sup>1</sup></td>
<td>+</td>
<td>+ (28.49)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>0</sup></td>
<td>+</td>
<td>+ (30.93)</td>
</tr>
<tr>
<td></td>
<td>3.7 x 10<sup>11</sup></td>
<td>+</td>
<td>+ (32.30)</td>
</tr>
<tr>
<td>No virus</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>
Table 3. Intra- and inter-assay variability of MERS-CoV *ORF1a* and *upE* RT-iiPCR

<table>
<thead>
<tr>
<th>MERS-CoV ORF1a RT-iiPCR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay Run</td>
<td>RT-iiPCR Result*</td>
<td>S/N †</td>
</tr>
<tr>
<td></td>
<td>(Positive/Total)</td>
<td>(Average ± SD)</td>
</tr>
<tr>
<td>1</td>
<td>3/3</td>
<td>4.95 ± 0.03</td>
</tr>
<tr>
<td>2</td>
<td>3/3</td>
<td>4.92 ± 0.02</td>
</tr>
<tr>
<td>3</td>
<td>3/3</td>
<td>4.85 ± 0.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MERS-CoV upE RT-iiPCR</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Assay run</td>
<td>RT-iiPCR Result*</td>
<td>S/N †</td>
</tr>
<tr>
<td></td>
<td>(Positive/Total)</td>
<td>(Average ± SD)</td>
</tr>
<tr>
<td>1</td>
<td>3/3</td>
<td>4.94 ± 0.05</td>
</tr>
<tr>
<td>2</td>
<td>3/3</td>
<td>4.85 ± 0.05</td>
</tr>
<tr>
<td>3</td>
<td>3/3</td>
<td>4.93 ± 0.05</td>
</tr>
</tbody>
</table>

* Nucleic acid extract of 10⁻³ dilution (3.7 x 10⁻¹ PFU/ml) of MERS-CoV infectious TCF

†S/N: signal-to-noise ratio; SD: standard deviation
Table 4. Detection of MERS-CoV by RT-iiPCR and RT-qPCR in sputum samples collected from MERS-CoV-infected patients

<table>
<thead>
<tr>
<th>Patient's ID</th>
<th>Age</th>
<th>Gender</th>
<th>Date of onset</th>
<th>Outcome</th>
<th>No. of samples</th>
<th>Collection date</th>
<th>Initial laboratory testing (RT-PCR)</th>
<th>MERS-CoV RT-iiPCR</th>
<th>MERS-CoV RT-qPCR</th>
<th>Estimated viral load[10 \text{ copies}]</th>
<th>Internal control (C\text{T})[3]</th>
<th>RNase P</th>
</tr>
</thead>
<tbody>
<tr>
<td>P016</td>
<td>40</td>
<td>M</td>
<td>2015-05-19</td>
<td>Recovered</td>
<td>8</td>
<td>2015-06-09</td>
<td>+ + + + + + 3.906 4.195 35.8</td>
<td>35.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-10</td>
<td>+ + + + + 2.681 3.111 32.8</td>
<td>32.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-10'</td>
<td>+ + + + + 3.507 3.289 32.2</td>
<td>32.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11</td>
<td>+ + + + + 6.024 6.482 30.9</td>
<td>30.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11'</td>
<td>+ + + + + 5.779 6.224 32.1</td>
<td>32.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-13</td>
<td>+ + + + + 5.266 5.837 31.9</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14</td>
<td>+ + + + + 2.363 2.846 32.3</td>
<td>32.3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14'</td>
<td>+ + + + + 2.478 3.128 32.7</td>
<td>32.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P030</td>
<td>60</td>
<td>M</td>
<td>2015-05-30</td>
<td>Recovered</td>
<td>6</td>
<td>2015-06-08</td>
<td>+ + + + + 6.527 7.049 29.7</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-09</td>
<td>+ + + + + 4.936 5.132 28.4</td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-09'</td>
<td>+ + + + + 4.917 5.243 29.7</td>
<td>29.7</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11</td>
<td>+ + + + + 6.017 6.406 27.4</td>
<td>27.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11'</td>
<td>+ + + + + 5.986 6.360 28.4</td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11''</td>
<td>+ + + + + 6.238 6.521 24.9</td>
<td>24.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P031</td>
<td>69</td>
<td>M</td>
<td>2015-05-30</td>
<td>Fatal</td>
<td>5</td>
<td>2015-06-08</td>
<td>+ + + + + 6.821 6.864 27.8</td>
<td>27.8</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-11</td>
<td>+ + + + + 7.878 8.242 28.2</td>
<td>28.2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-12</td>
<td>+ + + + + 5.996 6.416 34.1</td>
<td>34.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-17</td>
<td>+ + + + + 5.322 5.003 24.6</td>
<td>24.6</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14</td>
<td>+ + + + + 6.701 7.025 28.4</td>
<td>28.4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-15</td>
<td>+ + + + + 5.672 5.700 27.1</td>
<td>27.1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-16</td>
<td>+ + + + + 5.983 5.812 31.9</td>
<td>31.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P082</td>
<td>82</td>
<td>F</td>
<td>2015-06-04</td>
<td>Fatal</td>
<td>3</td>
<td>2015-06-11</td>
<td>+ + + + + 2.716 4.159 31.0</td>
<td>30.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14</td>
<td>+ + + + + 3.756 4.600 27.9</td>
<td>27.9</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-------</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>P085</td>
<td>65</td>
<td>F</td>
<td>2015-06-06</td>
<td>Recovered</td>
<td>5</td>
<td>2015-06-10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.347</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.049</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14</td>
<td>+</td>
<td>n.d.</td>
<td>+</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.376</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.842</td>
</tr>
<tr>
<td>P110</td>
<td>57</td>
<td>F</td>
<td>2015-06-02</td>
<td>Recovered</td>
<td>2</td>
<td>2015-06-13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.538</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-13'</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.040</td>
</tr>
<tr>
<td>P122</td>
<td>55</td>
<td>F</td>
<td>2015-06-06</td>
<td>Recovered</td>
<td>6</td>
<td>2015-06-10</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>6.168</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-12</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.075</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-13</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.218</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.866</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.100</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.702</td>
</tr>
<tr>
<td>P130</td>
<td>65</td>
<td>F</td>
<td>2015-06-12</td>
<td>Recovered</td>
<td>2</td>
<td>2015-06-14</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.672</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-16</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2.160</td>
</tr>
<tr>
<td>P148</td>
<td>38</td>
<td>F</td>
<td>2015-06-06</td>
<td>Recovered</td>
<td>4</td>
<td>2015-06-15</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.564</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-17</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.781</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-18</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.516</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-21</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>n.d.</td>
<td>n.d.</td>
<td>2.743</td>
</tr>
<tr>
<td>P172</td>
<td>60</td>
<td>F</td>
<td>2015-06-15</td>
<td>Recovered</td>
<td>10</td>
<td>2015-06-22</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.359</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-25</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.936</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-27</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.133</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-28</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.949</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-28'</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>4.559</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-29</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3.961</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-29'</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2.923</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-29''</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>2.710</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2015-06-30</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>5.497</td>
</tr>
</tbody>
</table>

Dates indicated with (') and (") indicate sample replicate
†Patients were confirmed positive by real-time RT-qPCR at the Korean Center for Disease Control laboratory during the 2015 outbreak.
‡Viral loads (\log_{10} copies) were quantified by using *in vitro* transcribed RNA derived from the amplicon region of each assay.
§All specimens were tested for the human *Rnase P* gene to monitor nucleic acid extraction efficiency and the presence of PCR inhibitors as described in Lu et al. (2014).
‘n.d’, not detected.
Table 5. Diagnostic performance comparison between MERS-CoV RT-iiPCR and RT-qPCR assays

<table>
<thead>
<tr>
<th></th>
<th>MERS-CoV RT-qPCR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>MERS-CoV RT-iiPCR</td>
<td>Positive</td>
<td>52</td>
<td>2</td>
<td>54</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>49</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td></td>
<td>52</td>
<td>51</td>
<td>103</td>
</tr>
</tbody>
</table>

Agreement (95% CI): 98.06% (94.43-100 %); $\kappa = 0.96$

<table>
<thead>
<tr>
<th></th>
<th>MERS-CoV RT-qPCR</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Positive</td>
<td>Negative</td>
<td>Total</td>
<td></td>
</tr>
<tr>
<td>MERS-CoV RT-iiPCR</td>
<td>Positive</td>
<td>54</td>
<td>1</td>
<td>55</td>
</tr>
<tr>
<td></td>
<td>Negative</td>
<td>0</td>
<td>48</td>
<td>48</td>
</tr>
<tr>
<td></td>
<td></td>
<td>54</td>
<td>49</td>
<td>103</td>
</tr>
</tbody>
</table>

Agreement (95% CI): 99.03% (95.88-100 %); $\kappa = 0.99$
Figure 1. POCKIT™ MERS-CoV Detection (-1.5 h)
POCKIT™ MERS-CoV Detection (~1.5 h)