Corrigendum to ‘Phagocytic cells contribute to the antibody-mediated elimination of pulmonary-infected SARS coronavirus’ [Virology (2014) 157–168]

Fumihiko Yasuia, Michinori Kohara a,*, Masahiro Kitabatakab, Tetsu Nishiwakic, Hideki Fujid, Chise Tateno e, Misako Yonedaf, Kouichi Moritaga, Kouji Matsushimac, Shigeo Koyasud, Chieko Kai

a Department of Microbiology and Cell Biology, Tokyo Metropolitan Institute of Medical Science, 2-1-6 Kamikitazawa, Setagaya-ku, Tokyo 156-8506, Japan
b Department of Immunology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto 860-8556, Japan
c Department of Molecular Preventive Medicine, School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
d Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku-ku, Tokyo 160-8582, Japan
e PhoenixBio Co., Ltd., 3-4-1 Kagamiyama, Higashihiroshima 739-0046, Japan
f Laboratory Animal Research Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8539, Japan
g Department of Virology, Institute of Tropical Medicine, Nagasaki University, 1-12-4 Sakamoto, Nagasaki 852-8523, Japan
h Department of Immunology, Graduate School of Medicine, University of the Ryukyus, 207 Uehara, Nishihara-cho, Okinawa 903-0213, Japan
i Laboratory for Immune Cell System, RIKEN Research Center for Integrative Medical Sciences (IMS-RIKEN), 1-7-22 Suehiro-cho, Yokohama 230-0045, Japan

The authors regret that the Fig. 1 that was published is incorrect. The corrected Fig. 1 is given below. The authors would like to apologise for any inconvenience caused.
Fig. 1. CD4+ T cells play an important role in the control of SARS-CoV infection. (A–C) Aged BALB/c mice (*n=4–7/time point), young BALB/c mice (**n=5–10/time point), and young SCID mice (***n=4–8/time point) were infected intranasally with 1 × 10⁵ TCID₅₀ of SARS-CoV Vietnam strain. (A) Virus titers in the lung (TCID₅₀/g lung tissue) of aged BALB/c mice (closed circles), young BALB/c mice (gray circles), or young SCID mice (open squares) sacrificed at 2, 4, 6, 9, or 21 dpi (except for 20 dpi in young BALB/c mice). *p < 0.05, **p < 0.01 (compared with young BALB/c mice and SCID mice at the respective time point). N.D.: not detected. (B) Representative lung sections (hematoxylin and eosin staining; section thickness 4 μm) from aged BALB/c mice at 9 dpi (a and c) and 21 dpi (b and d) and from young SCID mice at 9 dpi (e and g) and 21 dpi (f and h). For all micrographs, original magnification is 200×. (C) Detection of virus-infected cells in the lungs at 2, 9, or 21 dpi (SARS-CoV nucleocapsid protein [brown staining]; original magnification, 400×). (D) Temporal change of pulmonary virus titer in the following: aged BALB/c mice (green); untreated SCID mice (blue); SCID mice transplanted with splenocytes from naïve BALB/c mice (yellow); or SCID mice transplanted with splenocytes from sensitized BALB/c mice (red). Splenocytes (4 × 10⁷ cells) were administered intravenously to each recipient SCID mouse 1 day before infection. Data are presented as mean ± S.D. (*n=4/time point). *p < 0.05 (compared with naïve splenocyte-transplanted SCID mice at 2 dpi or with other groups at 4 dpi). (E) Representative lung sections (hematoxylin and eosin staining; section thickness 4 μm) from each group in (D) at 9 dpi. SPL, splenocyte. For all micrographs, original magnification is 200×. (F) Flow cytometry analysis of CD4 and CD8 expression on lymphocytes isolated from spleen 1 day after administration of the indicated mAb. (G) Virus titers in the lung of untreated (white), CD8+ cell-depleted (light gray), CD4+ cell-depleted (dark gray), or CD4+ and CD8+ cell-depleted BALB/c mice (black) at 6 and 9 dpi. The limit of detection was < 1 × 10³ TCID₅₀/g lung. Data are presented as mean ± S.D. (*n=3–7/time point).