A highly immunogenic and protective MERS-Coronavirus vaccine based on recombinant MV vaccine platform

Anna H. Malczyka,b, Alexandra Kupkec,d,*, Steffen Prüfera,*, Vivian A. Scheupleinb, Stefan Hutzlerb, Dorothea Kreuzc, Tim Beissertf, Stefanie Bauerf, Stefanie Hubich-Rauf, Christiane Tonderaa, Hosam Shams Eldinc,d, Jörg Schmidtc,d, Júlia Vergara-Alertc,d, Yasemin Süzerb, Janna Seifriedb, Kay-Martin Hanschmanh, Ulrich Kalinkeik,k, Susanne Heroldl, Ugur Sahinf,g, Klaus Cichuteka,b, Zoe Waiblerb,e, Markus Eickmannc,d, Stephan Beckerb,c,d, and Michael D. Mühlebacha,b,#

Oncolytic Measles Viruses and Vaccine Vectors, a Novel Vaccination Strategies and Early Immune Responses, Biostatistics, Paul-Ehrlich-Institut, Paul-Ehrlich-Straße 51-59, Langen, Germany; German Center for Infection Research, Langen, Germany, Institut für Virologie, Philipps Universität Marburg, Marburg, Germany; Universities Gießen & Marburg Lung Center (UGMLC), Department of Internal Medicine II, Section of Infectious Diseases, Gießen, Germany; German Center for Infection Research, Marburg, Germany, TRON gGmbH, Mainz, Germany; Universitätsmedizin Mainz, Mainz, Germany; Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Hannover Medical School and the Helmholtz Centre for Infection Research, Hannover, Germany; German Center for Infection Research, Hannover, Germany

Address correspondence to Dr. Michael Mühlebach, Michael.Muehlebach@pei.de

* equally contributed

Running title: MV as vaccination platform against MERS-CoV

Word count abstract: 243 (abstract), 130 (importance)

Word count text: 8035
Abstract

In 2012, first cases of infection with the Middle East Respiratory Syndrome coronavirus (MERS-CoV) were identified. In the meantime more than one thousand cases of MERS-CoV infection have been confirmed, which typically are associated with considerable morbidity and, in approximately 30% of the cases, mortality. Currently, there is no protective vaccine available. Replication competent recombinant measles virus (MV) expressing foreign antigens constitutes a promising tool to induce protective immunity against respective pathogens. Therefore, we generated MVs expressing the spike glycoprotein of MERS-CoV in its full length (MERS-S) or a truncated, soluble variant of MERS-S (MERS-solS). The genes encoding for MERS-S and MERS-solS were cloned into vaccine strain MV vac2 genome and the respective viruses were rescued (MV vac2-CoV-S and MV vac2-CoV-solS). These recombinant MV were amplified and characterized in passages three and 10. The replication of MV vac2-CoV-S in Vero cells turned out to be comparable with the control virus MV vac2-GFP while titers of MV vac2-CoV-solS were approx. 3-fold impaired. The genomic stability and expression of the inserted antigens was confirmed via sequencing of viral cDNA and immunoblot analysis. In vivo, immunization of IFNAR−/− CD46Ge mice with 2x10^5 TCID50 MV vac2-CoV-S(H) or MV vac2-CoV-solS(H) in a prime-boost regimen induced robust levels of both MV and MERS-CoV neutralizing antibodies. Additionally, induction of specific T cells could be demonstrated by T cell proliferation, antigen-specific T-cell cytotoxicity, and IFN-γ secretion after stimulation of splenocytes with MERS-CoV-S presented by murine DCs. MERS-CoV challenge experiments indicate protective capacity of these immune responses in vaccinated mice.

Importance
Although MERS-CoV has not yet acquired extensive distribution being mainly confined to the Arabic and Korean peninsulas, it could adapt to spread more readily amongst humans and thereby become pandemic. Therefore, the development of a vaccine is mandatory. The integration of antigen-coding genes into recombinant MV resulting in co-expression of MV and foreign antigens can efficiently be achieved. Thus, in combination with the excellent safety profile of the MV vaccine, recombinant MV seems to constitute an ideal vaccine platform. The present study shows that a recombinant MV expressing MERS-S was genetically stable and induced strong humoral and cellular immunity against MERS-CoV in vaccinated mice. Subsequent challenge experiments indicate protection of vaccinated animals, illustrating the potential of MV as vaccine platform with the potential to target emerging infections such as MERS-CoV.
Introduction

In November 2012, a novel coronavirus was identified for the first time in a patient from the Kingdom of Saudi-Arabia who displayed with severe respiratory disease and was treated in June 2012 in London, UK. Later this virus was termed Middle East Respiratory Syndrome-Coronavirus (MERS-CoV) (1). By December 26, 2014, 938 laboratory-confirmed cases of MERS-CoV mostly from the Kingdom of Saudi Arabia and neighboring countries were diagnosed, resulting in 343 casualties (2). Few cases of MERS-CoV were also detected in the USA, the UK, Netherlands, Austria, France, Greece, Italy, and Germany, indicating the viruses’ principle potential to spread (2). Fortunately, direct transmission upon contact with human patients seemed to be limited, yet, is still possible, as determined by analysis of household contact infections in MERS patients’ families (3) and as evidenced by a recent cluster of MERS infections in South Korea with 166 cases between May 20 and June 19 this year, including 106 third and 11 fourth-generation cases (4, 5). As a natural reservoir, dromedary camels have been identified as the most likely source, as indicated by partially identical genomes detected in viruses isolated from humans or camels (6, 7). Additionally, antibodies against the spike glycoprotein of MERS-CoV with virus neutralizing capacity were detected in camels (8–10) and infections of individuals with MERS-CoV have been reported after contact with infected camels (11, 12). Interestingly, while all other members of the C lineage of Betacoronavirus genus have been found in different bat species (13, 14), only closely related, most likely precursor viruses of MERS-CoV have been identified in Neoromicia capensis bats (15). Thus, MERS-CoV has zoonotic origin, but sustained infections, the severity of the disease, and the risk of virus adaption to gain efficient human-to-human transmission mandates the development of effective vaccines to combat local infections and to be prepared for the occurrence of eventually a global pandemic, as previously observed for SARS-CoV in 2003 (16).
Preceding the current MERS-CoV epidemic 10 years ago, SARS-CoV has been the first betacoronavirus arising from zoonotic origin with potential fatal outcome in human patients (1). Experimental vaccines protecting animal models against SARS have been developed (17–19), and the properties of such SARS vaccines may be applicable to vaccines that should protect against MERS-CoV infections. Both neutralizing antibodies and T cell responses are essential for prevention of SARS-CoV infection (17, 18). The Spike protein (S), a coronavirus class I fusion protein (20, 21), has been identified as the most immunogenic antigen of SARS-CoV inducing strong humoral as well as cellular immune responses (17, 19). Similarly, MERS-S expressed by recombinant modified vaccinia virus Ankara or recombinant adenoviral vectors have already been demonstrated to induce neutralizing antibodies (22, 23). The detected neutralizing capacity of induced antibodies is expected, since the receptor-binding domain (RBD) in the S1 domain of both SARS-CoV and MERS-CoV S proteins mediate host-cell receptor binding as pre-requisite for cell entry (24, 25). Thus, S1 is the main target of neutralizing antibodies (26). Also the RBD of MERS-CoV-S alone has been demonstrated to induce strong neutralizing antibody titers (23, 27–31). In combination with different adjuvants, even induction of T cell responses by the recombinant RBD has been described (31). Thus, a prototypic MERS-vaccine should base on MERS-S expression since the induction of neutralizing antibodies has been shown to be a direct correlate of protection in case of SARS-CoV (32).

The measles vaccine is an efficient, live-attenuated, replicating virus inducing both humoral and cellular immune responses with an excellent safety record and probably life-long protection (33, 34). The vaccine’s manufacturing process is extremely well established (35) and millions of doses can be generated quite easily and quickly. Generation of recombinant measles virus (MV) from DNA via reverse genetics is feasible (35) and allows the insertion of additional transcription units (ATU) by duplication of sequences terminated by start and stop sequences (36). Hence,
genes expressing foreign antigens up to 6 kb can be cloned into MV backbone (36) eliciting co-expression of MV proteins and inserted genes. Besides marker genes (37) or immune modulators (38), expression of antigens from foreign pathogens like Hepatitis B or C virus (39, 40), HIV (41), West Nile virus (WNV) (42, 43), Dengue virus (44), Chikungunya virus (CHIKV) (45), or SARS-CoV (19) by recombinant MVs has already been demonstrated. Thereby, robust immune responses against vector and foreign antigens are induced after vaccination of transgenic, MV-susceptible IFNAR-/-CD46Ge mice (46) or non-human primates with respective recombinant MV, in general. Especially protection of vaccinated animals from lethal challenge with WNV (42) or CHIKV (45) was demonstrated indicating the high efficacy of the system. Interestingly, pre-vaccinated animals with protective immunity against measles were still amendable to vaccination with the recombinant MV, since significant immune responses against the foreign antigen(s) are consistently induced (41, 45), and the MV-based CHIKV vaccine demonstrated efficacy in phase I trials irrespective of measles immunity (47).

Here, we aimed at utilizing the efficacy of the MV vaccine platform by generating a live-attenuated vaccine against MERS-CoV based on recombinant MV_vac2. This recombinant virus reflects the MV vaccine strain Moraten (48), which is authorized for vaccination against measles. As antigen we choose the MERS-CoV S glycoprotein to induce neutralizing antibodies and robust cellular immunity. Two variants of the glycoprotein were analyzed as antigen: the full-length, membrane anchored MERS-S, and a truncated, soluble form lacking the transmembrane domain (MERS-solS). Both variants include the S1 domain as target structure. The soluble protein variant should be taken up better by B-cells (49–51), and thus should induce humoral immune responses more efficiently (52), potentially boosting virus neutralizing antibody titers (VNT). The respective genes were inserted into two different positions of the MV genome to modulate expression of the antigens, and all recombinant MV were successfully rescued. Cells
infected with such viruses expressed the desired antigens. Indeed, immunization of IFNAR⁻/⁻
CD46Ge mice induced strong humoral and cellular immune responses directed against MV and
MERS-CoV S, which were sufficient to protect vaccinated animals from MERS-CoV infection.
Thereby, MV platform based vaccines are a powerful option to develop a pre-pandemic vaccine
against MERS-CoV.

Material and Methods

Cells

Vero (African green monkey kidney) (ATCC CCL-81), 293T (ATCC CRL-3216), and EL4
mouse T (ATCC TIB-39) cell lines were purchased from ATCC (Manassas, VA, USA) and
cultured in DMEM supplemented with 10% fetal bovine serum (FBS; Biochrom, Berlin,
Germany) and 2 mM L-Gln (Biochrom). JAWSII dendritic cells (ATCC CRL-11904) were
purchased from ATCC and cultured in MEM-α with ribonucleosides and deoxyribonucleosides
(GIBCO BRL, Eggenstein, Germany) supplemented with 20% FBS, 2 mM L-Gln, 1 mM sodium
pyruvate (Biochrom), and 5 ng/ml murine GM-CSF (Peprotech, Hamburg, Germany). DC2.4 and
DC3.2 murine dendritic cell lines (53) were cultured in RPMI containing 10% FBS, 2 mM L-Gln,
1% non-essential aminoacids (Biochrom), 10 mM HEPES (pH 7.4), and 50 μM 2-
Mercaptoethanol (Sigma-Aldrich, Steinheim, Germany). All cells were cultured at 37°C in a
humidified atmosphere containing 6% CO₂ for a maximum of 6 months of culture after thawing
of the original stock.

Plasmids

The codon-optimized gene encoding MERS-CoV-S (Genebank accession no. JX869059) flanked
with AatII/MluI binding sites in plasmid pMA-RQ-MERS-S was obtained by gene synthesis

A truncated form of MERS-S lacking the transmembrane domain was amplified by PCR, flanked with *AatII/MluI* binding sites, and fully sequenced. Both antigens, as well as the CMV promotor (54), were inserted into p(+)-BR-MVvac2-GFP(H) or p(+)-MVvac2-ATU(P) (48) via *AatII/MluI* or *SfiI/SacII*, respectively, to generate p(+)-PolIII-MVvac2-MERS-S(H), p(+)-PolIII-MVvac2-MERS-S(P), p(+)-PolIII-MVvac2-MERS-solS(H), or p(+)-PolIII-MVvac2-MERS-solS(P). For construction of lentiviral transfer vectors encoding the MERS-CoV antigens, the ORF of MERS-S was amplified by PCR with primers encompassing flanking *NheI/XhoI* restriction sites and template pMA-RQ-MERS-S. Details on primers and PCR are available upon request. PCR products were cloned into pCR2.1-TOPO (Invitrogen Life technologies) and fully sequenced. Intact antigen ORF was cloned into pCSCW2gluc-IRES-GFP (55) using *NheI/XhoI* restriction sites to yield pCSCW2-MERS-S-IRES-GFP.

Production of lentiviral vectors

Viral vectors were produced using 293T cells and polyethyleneimine (PEI) (Sigma-Aldrich) transfection (56). 1x10⁷ 293T cells were seeded per 175 cm² cell culture flasks and cultured overnight. To produce VSV-G pseudotyped lentiviral vectors, these cells were transfected using a standard three plasmid lentiviral vector system. Cells were transfected with 17.5 μg pCSCW2-MERS-S-IRES-GFP transfer vector, 6.23 μg pMD2.G, and 11.27 μg pCMVΔR8.9 (57), as described (58). The medium was exchanged one day post transfection, and [HIV_{MERS-S-IRES-GFP(VSV-G)}] vector particles were harvested two and three days after transfection. For harvest of vector particles, the supernatant of three culture flasks was filtered (0.45 μm), pooled, and concentrated by centrifugation (100,000 × g, 3 h, 4°C). Pellets were resuspended in DMEM and stored at -80°C.
Generation of antigen-expressing cell lines

Syngeneic target cells based on the C57BL/6-derived DC lines JAWSII, DC2.4, DC3.2, as well as T cell line EL-4 were transduced with \([\text{HIV}_{\text{MERS-S-BRES-GFP(VSV-G)}}]\) vector-containing supernatant to express MERS-S and the green marker protein GFP (JAWSII\textsubscript{green}-MERS-S, EL-4\textsubscript{green}-MERS-S, DC2.4\textsubscript{green}-MERS-S, and DC3.2\textsubscript{green}-MERS-S), thereby presenting respective peptides via MHC-I. EL-4 cells were alternatively transduced with \([\text{HIV}_{\text{TurboFP635(VSV-G)}}]\) vectors (59) to express red-fluorescent Katushka protein as negative control (EL-4\textsubscript{red}). For this purpose, \(1 \times 10^5\) target cells were seeded in 24-well plates and transduced with 0.1, 1, or 10 \(\mu\)l of concentrated vector suspension. For analysis of transduction efficiencies, cells were fixed in 1% paraformaldehyde (Merck Millipore, Darmstadt, Germany), and the percentage of GFP- or Katushka-positive cells was quantified by flow cytometry using an LSRII flow cytometer (BD, Heidelberg, Germany). Cell populations revealing a 1-10% fraction of GFP-positive cells were used for single cell cloning by limiting dilution. For that purpose, cell dilutions with 50 \(\mu\)l conditioned medium statistically containing 0.3 cells were seeded per well in 96-well plates. Single cells clones were cultured and analyzed by flow cytometry. GFP-positive clones were selected for further analysis.

Viruses

The viruses were rescued as described (54). In brief, 5 \(\mu\)g of MV genome plasmids with MERS-CoV-antigen ORFs were co-transfected with plasmids pCA-MV-N (0.4 \(\mu\)g), pCA-MV-P (0.1 \(\mu\)g), and pCA-MV-L (0.4 \(\mu\)g) encoding MV proteins necessary for genome replication and expression in 293T cells cultured in 6-well plates using Lipofectamine 2000 (Invitrogen Life Technology). The transfected 293T cells were overlaid two days after transfection onto 50% confluent Vero cells seeded in 10 cm-dishes. Overlay cultures were closely monitored for
isolated syncytia indicating monoclonal replicative centers. Single syncytia were picked and overlaid onto 50% confluent Vero cells cultured in 6-well plates and harvested as “passage 0” (P0) by scraping and freeze-thaw cycle of cells at the time of maximal infection. Subsequent passages were generated after TCID₅₀ titration of infectious virus according to the method of Kaerber and Spaerman (60) and infection of Vero cells at an MOI = 0.03. The viruses were passaged up to P10. MERS-vaccine viruses and control viruses MVₜₐ₅₅-GFP(H) and MVₜₐ₅₅-GFP(P) in P3 were used for characterization, viruses in P4 for vaccination. MERS-CoV (isolate EMC/2012) (1) used for neutralization assay and challenge was propagated in Vero cells and titrated as described above for recombinant MV. All virus stocks were stored in aliquots at -80°C.

Measles virus genome sequence analysis

The RNA genomes of recombinant MV in P3 or P10 were isolated using the QIAamp RNeasy Kit (QIAgen, Hilden, Germany) according to manufacturers’ instructions and resuspended in 50 μl RNase-free water. Viral cDNA was reversely transcribed using Superscript II RT kit (Invitrogen) with 2 μl vRNA as template and random hexamer primers, according to manufacturer’s instructions. For specific amplification of antigen ORFs, the respective genomic regions of recombinant MV were amplified by PCR using primers binding to sequences flanking the regions of interest and cDNA as template. Detailed description of primers and procedures are available upon request. The PCR products were directly sequenced (Eurofins Genomics, Ebersberg, Germany).

Western Blot Analysis

For Western Blot analysis, cells were lysed and immunoblotted as previously described (61). A rabbit anti-MERS-CoV serum (1:1,000) was used as primary antibody for MERS-CoV-S and a
rabbit anti-MV-N polyclonal antibody (1:25,000) (Abcam) for MV-N detection. A donkey HRP-
coupled anti-rabbit IgG (H&L) polyclonal antibody (1:10,000) (Rockland, Gilbertsville, PA)
served as secondary antibody for both. Peroxidase activity was visualized with an enhanced
chemiluminescence detection kit (Thermo Scientific, Bremen, Germany) on Amersham
Hyperfilm ECL (GE Healthcare, Freiburg, Germany).

Production of recombinant soluble MERS-CoV spike protein

The S protein lacking the transmembrane domain was genetically tagged with 6 His residues at
its carboxyterminus. The resulting construct was inserted into a Semliki Forest Virus derived
self-replicating RNA vector (SFV replicon) downstream of the subgenomic promoter. These
replicons were transcribed \textit{in vitro} and purified as previously described (62, 63). Integrity of
purified replicon was assessed by on-chip electrophoresis (2100 BioAnalyzer; Agilent, Santa
Clara, CA). To produce SFV vector particles, replicon RNA and helper RNA were co-
electroporated into BHK21 cells using a square-wave electroporator (one pulse, 750 V/cm of 16
ms; BTX ECM 830; Harvard Apparatus, Holliston, MA). Particles were harvested after 24 h,
frozen in N\textsubscript{2}(l), and stored at -80°C. For protein production, 2×107 BHK21 were transduced with
SFV particles (MOI = 40) and harvested after 24 h. Cell pellets were lysed (PBS, 0.2% Triton X-
100, Protease Inhibitor Cocktail (Roche)) for 30 min at 4°C. Afterwards, cells were sonificated
and lysates were cleared by centrifugation (30 min, 21,000 × g, 4°C). The supernatant was
filtered (0.2 μm), loaded on a HisTrap HP column (17-5247-01; GE Healthcare) and washed with
10 vol binding buffer (20 mM Na\textsubscript{2}HPO\textsubscript{4}, 0.5 M NaCl, 10 mM imidazol). S protein was eluted
with binding buffer containing 0.5 M imidazol by gradient, followed by buffer exchange to PBS.
Protein integrity was checked by Western blot analysis, using a mouse anti-His mAb (1:50;
Dianova, Germany).
Animal experiments

All animal experiments were carried out in compliance with the regulations of the German animal protection law and have been authorized by the RP Darmstadt. Six- to 12-week-old IFNAR−/−-CD46Ge mice expressing human CD46 (46) were inoculated intraperitoneally (i.p.) with 1×10^5 TCID$_{50}$ of recombinant MV or 200 μl OptiMEM on days 0 and 28, and bled via the retrobulbar route on days 7, 28, and 32 or 49 p.i. under anesthesia. Serum samples were stored at -20°C. Mice were euthanized on days 32 or 49 p.i., and spleens were isolated. For challenge experiments, immunized mice were transduced i.n. on day 63 with 20 μl of an adenoviral vector encoding human DPP4 and mCherry with a final titer of 2.5×10^8 PFU per inoculum (AdV-hDPP4, ViraQuest Inc.) and challenged i.n. with 20 μl of MERS-CoV with a final titer of 7×10^4 TCID$_{50}$ on day 68. The mice were euthanized 4 d after challenge and representative lung samples of the left lobe were prepared for RNA isolation.

Antibody ELISA

MV bulk antigens (10 μg/ml; Virion Serion, Würzburg) or recombinant MERS-S protein (20 μg/ml) were coated in 50 μl carbonate buffer (Na$_2$CO$_3$ 30 mM; NaHCO$_3$ 70 mM; pH 9.6) per well on Nunc Maxisorp® 96 well ELISA plates (ebioscience) and incubated overnight at 4°C. The plates were washed three times with 150 μl ELISA washing buffer (PBS, 0.1% Tween 20 (w/v)) and blocked with 50 μl Blocking buffer (PBS; 5% BSA; 0.1% Tween 20) for 2 h at room temperature. Mice sera sampled on days -7 or 49 were serially diluted in ELISA dilution buffer (PBS, 1% BSA, 0.1% Tween 20), and 50 μl/well were used for the assay. The plates were incubated at 37°C for 2 h and washed again with ELISA washing buffer. Plates were incubated
with 50 μl/well of HRP conjugated rabbit anti-mouse IgG (Dako, 1:1000 in ELISA dilution buffer) at room temperature for 1 h. Subsequently, the plates were washed and 100 μl TMB substrate (ebioscience) were added per well. The reaction was stopped by addition of 50 μl/well H₂SO₄ (1 N) and the absorbance at 405 nm was measured.

Neutralization Assays

For quantification of virus neutralizing titers (VNT), mouse sera were serially diluted in two-fold dilutions in DMEM. 50 pfu of MVvacc-GFP(P) or 200 TCID₅₀ of MERS-CoV were mixed with serum dilutions and incubated at 37°C for 1 h. Virus suspensions were added to 1×10⁴ Vero cells seeded 4 h prior to assay in 96-well plates and incubated for 4 d at 37°C. Virus neutralizing titers (VNT) were calculated as reciprocal of the highest dilution abolishing infection.

ELISpot Assays

Murine IFN-γ ELISpot assays were purchased (ebioscience, Frankfurt, Germany) and performed according to manufacturer’s instructions using Multiscreen-IP ELISPOT PVDF 96-well plates (Millipore, Darmstadt, Germany). 5×10⁵ splenocytes isolated 4 d after boost immunization were co-cultured with 5×10⁴ JAWS-IIgreen-MERS-S, DC2.4green-MERS-S, or DC3.2green-MERS-S, or the untransduced DCs for 36 h in 200 μl RPMI (10% FBS; 2 nM L-Gln; 1% Penicillin/Streptomycin). Medium alone served as negative control. 10 μg/ml concanavalin A (ConA) (Sigma Aldrich) was used for demonstration of splenocyte reactivity. 10 μg/ml recombinant MV bulk antigens (Virion Serion, Würzburg, Germany) were used to analyze MV-specific immune responses in vaccinated animals. Cells were removed from the plates and the plates incubated with biotin-conjugated anti-IFN-γ antibodies and avidin-HRP according to
manufacturer’s instructions. AEC substrate solution for development of spots was prepared according to manufacturer’s instructions using 3-amino-9-ethyl-carbazole (Sigma-Aldrich) dissolved in N,N-dimethylformamide (Merck Millipore). Spots were counted using an Eli.Scan ELISpot Scanner (A.EL.VIS, Hamburg, Germany) and ELISpot Analysis Software (A.EL.VIS).

T cell proliferation assay

Splenocytes isolated three weeks after booster immunization were labeled with 0.5 μM carboxyfluorescein-succinimidyl-ester (CFSE) (ebioscience) as previously described (64). In brief, 5×10^5 labelled cells were seeded in RPMI 1640 supplemented with 10% mouse serum, 2 nM L-Glutamin, 1 mM HEPES, 1% penicillin/streptomycin, and 2-mercaptoethanol [100 μM] in 96-wells. 200 μl Medium containing ConA [10 μg/ml], MV bulk antigens [10 μg/ml] or 5×10^3 JAWSII green-MERS-S cells were added to each well, and cells were cultured for 6 d. Medium and untransduced JAWSII cells served as controls. Stimulated cells were subsequently stained with CD3-PacBlue (clone 500A2; Invitrogen Life Technologies; 1:50) and CD8-APC (clone 53-6.7; ebioscience; 1:100) antibodies and fixed with 1% PFA (in PBS). Stained cells were analyzed by flow cytometry using an LSR II flow cytometer (BD) and FACS Diva software (BD).

CTL killing assay

For re-stimulation of T cells isolated 4 d after booster immunization, 5×10^6 splenocytes were co-cultured with 5×10^4 JAWSII green-MERS-S cells for 6 d in 12-wells in RPMI 1640 supplemented with 10% FBS, 2 nM L-Glutamin, 1 mM HEPES, 1% penicillin/streptomycin, 2-mercaptoethanol [100 μM], and 100 U/ml rIL-2 (murine, Peprotech). 2×10^3 EL-4 red cells were labeled with 0.5 μM CFSE and mixed with 8×10^3 EL-4 green-MERS-S cells per well. Splenocytes were counted and co-
cultured with EL-4 target cells at the indicated ratios for 4 h. Afterwards, EL-4 cells were labeled with Fixable Viability Dye eFluor® 780 (ebioscience), fixed with 1% PFA, and analyzed by flow cytometry using an LSR II flow cytometer (BD) and FACS Diva software (BD). For indication of Antigen:NC EL-4 ratio the cell count of living MERS-S expressing cells was divided by the population of living negative controls.

Determination of viral RNA copy numbers and infectious virus in mouse tissue

Samples of immunized and challenged mice, i.e. 6x6 mm tissue slices of approx. 0.035±0.011 g weight excised from the center of the left lung lobe, were homogenized in 1 ml DMEM with ceramic beats with a diameter of 1.4 mm in a FastPrep™ SP120 instrument for 3 × 40 s at 6.5 m/s. The homogenate was centrifuged for 3 min at 2,400 rpm in a Mikro 200R centrifuge (Hettich Lab Technology) to remove tissue debris. Live viruses titers in supernatant (TCID$_{50}$/ml) were determined on Vero cells as described above. 100 µl of the supernatants were used for RNA isolation with the RNeasy Mini Kit (QIAgen) according to the manufacturer’s instruction. RNA amount was measured with the NanoDrop ND-100 Spectrophotometer. Total RNA was reversely transcribed and quantified by real time PCR using SuperScript III OneStep RT-PCR System (Invitrogen Life Technologies) as described previously (65) with the primer upE-Fwd and upE-Rev and the probe upE-Prb on the ABI7900 HT Fast Real Time PCR System (Life Technologies Instruments).

Additionally, for every sample of the transduced and infected mice, evidence for successful hDPP4 transduction was determined by real time RT-PCR for mCherry with the OneStep RT-PCR Kit on the Rotor Gene Q (both Qiagen). Primers and probe (Tib-Molbiol, Berlin, Germany) were as follows: mCherry forward: CATGGTAACGATGAGTTAG, mCherry reverse: GTTGCCCTTCCTAATAAGG, and mCherry probe: FAM (6-carboxyfluorescein)–
TACCACCTTACTTCCACCAATCGG–BBQ (BlackBerry®Quencher). Primers and probe were used in final concentrations of 0.4 μM and 0.2 μM, respectively. qRT-PCR program was as follows: 50°C for 30 min, 95°C for 15 min, 40 cycles of 95°C for 15 s, 48°C for 30 s, and 72°C for 20 s. All samples for mCherry were evaluated in one run to exclude an impact of different conditions on the results in different runs. Quantification was carried out with a standard curve based on 10-fold serial dilutions of appropriate cloned RNA ranging from 10^2 to 10^5 copies.

Briefly, PCR fragments were generated using the primers described above. For cloning, the TOPO TA Cloning Kit with pCR2.1-TOPO plasmid (Invitrogen) and *E. coli* were used. Inserts were examined for correct orientation and length and were amplified with plasmid-specific primers, purified, and transcribed into RNA with SP6/T7 Transcription Kit (Roche).

Histopathological and immunohistochemical examination of lung tissue

Lungs of vaccinated and mock vaccinated mice transduced with AdV-hDPP4 were collected on day 4 post challenge with MERS-CoV. Tissue was fixed in 4% paraformaldehyde and embedded in paraffin. Sections were cut with a Leica RM2255 microtome (Leica Biosystems) and stained with hematoxylin and eosin (H&E). For detection of MERS-CoV, a rabbit polyclonal antibody against MERS-CoV spike protein S1 (100208-RP; Sino Biological Inc, Beijing, CN) diluted 1:50 was used. To monitor adenovirus transduction, a mouse monoclonal antibody against mCherry (ab125096; Abcam, Cambridge, UK) diluted 1:250 was used after antigen retrieval with Target Retrieval Solution (Dako) for 23 min at 97°C. To block unspecific binding, slides were incubated for 10 min with 20% nonimmune pig serum (MERS-CoV) or for 30 min with 20% nonimmune horse serum (mCherry). Primary antibodies were incubated overnight at 4°C. A pig anti-rabbit IgG and a biotinylated horse anti-mouse IgG served as secondary antibodies for MERS-CoV and mCherry, respectively. For detection of antigen-antibody complexes, the ABC-method for
mCherry and the rabbit PAP-method for MERS-CoV were used in combination with DAB for staining. Papanicolaou stain was used for counterstaining.

Statistical analysis

To compare the means of different groups in growth curves, neutralization assay and ELISpot, a non-parametric One-way ANOVA was performed. For proliferation assay the mean differences between control and vaccinated groups were calculated and analysed by unpaired t test. To all three groups in CTL killing assays a linear curve was fitted for antigen vs. logarithmised effector-target ratio E:T. The p values testing for differences in slopes were calculated and MERS-S(H) or MERS-solS(H) compared with control ATU. The P values were not adjusted for multiplicity due to the explorative character of the study. For analysis of challenge data, mean ratios and 95% Confidence Intervals were calculated based on logarithmised and back-transformed data. The ratio instead of the difference was chosen due to the rather log-normal distribution of the data. Width of the confidence intervals caused by high variability of the data and limited sample size (N = 10 observations each). For comparisons between groups the Wilcoxon’s 2-Sample Test was used. P values were not adjusted for multiple comparisons due to the explorative character of the study.

Results

Generation and expression of MERS-CoV-S by recombinant MV vac2

Since the spike protein (S) of SARS-CoV has been shown to potently induce humoral and cellular immune responses, MERS-S was chosen as appropriate antigen to be expressed by the recombinant MV vaccine platform. In addition to full-length MERS-S, a truncated form lacking the transmembrane and cytoplasmic domains (solS) was cloned into two different additional
transcription units (ATUs) either behind P (post P) or H (post H) cassettes of vaccine strain MV vac2 genome (Fig. 1A). Virus clones of all recombinant genomes were successfully rescued and amplified up to passage 10 (P10) in Vero cells with titers of up to 6×10^7 TCID$_{50}$/ml. The stability of the viral genomes was demonstrated via sequencing of viral genomes after RT-PCR (data not shown). Besides the exclusion of mutations or deletions of the antigen-encoding genes, the verification of antigen expression is essential for vaccine function and, thus, virus characterization. Western blot analysis of Vero cells infected with the different MV vac2-MERS vaccines revealed expression of the antigen (Fig. 1B). Interestingly, the expression of both S and solS was higher when cells were infected with viruses encoding antigens in post-H ATU compared to the post-P constructs. Therefore, growth kinetics were analyzed to check if the insertion or expression of the S antigen variants into or by recombinant MV, respectively, may impair the vaccines’ replication (Fig. 1C, D). For that purpose, the vaccine viruses containing the MERS-S or MERS-solS gene in post H (Fig. 1C) or post P (Fig. 1D) positions were analyzed in parallel to respective MV vac2-GFP control viruses. MV vac2 encoding full-length, membrane-bound MERS-S grew comparably to the control viruses; only MV vac2-MERS-solS(P) (Fig. 1D) and MV vac2-MERS-solS(H) (Fig. 1C) revealed an approx. 3-fold reduced maximal virus titer, albeit no statistical significance could be observed (1.5×10^5 TCID$_{50}$/ml for MV vac2-MERS-solS(P) and 4.7×10^5 TCID$_{50}$/ml for MV vac2-MERS-solS(H) vs. 4.7×10^5 for MV vac2-GFP(P) and 1.2×10^6 TCID$_{50}$/ml for MV vac2-GFP(H)) (Fig. 1C). Thus, cloning and rescue of MVs expressing MERS-CoV antigens, even at the cost of 4049 bp additional genome length, was achieved easily and relative quickly. All constructs expressed the inserted antigens without significant impact on viral replication.
Antibodies with neutralizing capacity directed against MV or MERS-CoV are induced by MV\textsubscript{vac2}-MERS-S and MV\textsubscript{vac2}-MERS-solS

To test the efficacy of the MV\textsubscript{vac2}-MERS vaccines \textit{in vivo}, genetically modified IFNARch- CD46Ge mice were chosen, since they are the prime small animal model for analysis of MV-derived vaccines (46). Based on the higher antigen expression of MERS-S and MERS-solS if cloned into the post-H position of the MV genome, the respective viruses were used for vaccination. Thus, 6 mice per group were inoculated via the intraperitoneal (i.p.) route on days 0 and 28 with each time 1×10^5 TCID\textsubscript{50} of MV\textsubscript{vac2}-MERS-S(H), MV\textsubscript{vac2}-MERS-solS(H), or MV\textsubscript{vac2}-ATU(P), the latter a recombinant control virus without insertion of a foreign antigen-encoding gene cassette into an otherwise empty additional transcription unit. Medium-inoculated mice served as negative controls. 21 days after boost immunization, sera of immunized mice were analyzed in comparison to pre-bleed sera by ELISA on antigen-coated plates for antibodies binding to MV bulk antigens or MERS-S (Fig. 2A,B). Indeed, sera of mice vaccinated with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H) clearly encompassed IgG binding to MERS-S (Fig. 2B), whereas no antibodies were found in mice before vaccination (Fig. 2A), or in control mice. Moreover, sera of mice vaccinated with any recombinant MV had IgG in the serum binding to MV bulk antigens, as expected, indicating successful vaccination with MVs and general mouse reactivity. To determine the neutralizing capacity of the induced antibodies, sera dilutions’ potential to neutralize 200 TCID\textsubscript{50} of MERS-CoV or 50 plaque-forming units (PFU) of MV\textsubscript{vac2}-GFP(H) (Fig. 3A-C) was assayed. All mice immunized with recombinant MV (including the control virus) indeed developed MV virus neutralizing titers (VNT) already after the first immunization (Fig. 3B). These titers were boosted approx. 6-fold upon the second immunization (512 to 3072 VNT, Fig. 3C). Evidence for induction of neutralizing antibodies against MERS-CoV was only found in mice vaccinated with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H), as
expected. VNT against MERS-CoV reached a titer of 96 to 167 after the first immunization (Fig. 3B) and was boosted about 5-7-fold by the second immunization (Fig. 3C). Mice immunized with MVvac2-MERS-S(H) induced slightly higher MERS-CoV VNTs compared to MVvac2 expressing the truncated form of the spike protein (167 vs. 96 after the first and 874 vs. 640 after the second immunization) (Fig. 3B, C). However, this difference was not statistically significant. No VNTs against MV or MERS-CoV were detected in control mice inoculated with medium alone. In summary, both recombinant MVs expressing MERS-S or MERS-solS specifically induced significant amounts of antibodies in immunized mice capable to neutralize MV as well as MERS-CoV.

Splenocytes of animals vaccinated with MVvac2-MERS-S or MVvac2-MERS-solS secrete IFN-γ upon MERS-S specific stimulation

To analyze the ability of MV-based vaccine viruses to induce MERS-CoV-specific cellular immune responses, splenocytes of animals vaccinated with MVvac2-MERS-S(H), MVvac2-MERS-solS(H), or control animals inoculated with medium or MVvac2-ATU(P) were analyzed for antigen-specific IFN-γ secretion by ELISpot assay. For this purpose, mice were immunized following the described prime-boost scheme, and splenocytes were isolated four days after the second immunization. To re-stimulate the antigen-specific T cells in vitro, syngeneic murine DC cell lines (JAWSII, DC2.4, and DC3.2) had been genetically modified by lentiviral vector transduction to stably express MERS-S protein and thereby to present the respective T cell epitopes on MHC. Single cell clones were derived by flow cytometric sorting of single GFP-positive cells. Antigen expression by transduced DCs was verified by Western Blot analysis (data not shown).
ELISpot assays using splenocytes of vaccinated animals in co-culture with JAWSII-MERS-S revealed about 2,400 IFN-γ secreting cells per 1×10^6 splenocytes after immunization with MV$_{vac2}$-MERS-S or MV$_{vac2}$-MERS-solS (Fig. 4A). In contrast, control mice revealed a background response of about 200 IFN-γ producing cells per 1×10^6 splenocytes. As expected, re-stimulation of T cells by JAWSII presenting no exogenous antigen revealed only reactivity in the range of background (Fig. 4A). To rule out clonal or cell line-associated artifacts, antigen-specific IFN-γ secretion by splenocytes of MV$_{vac2}$-MERS-S or MV$_{vac2}$-MERS-solS vaccinated mice was confirmed by stimulation with transgenic DC2.4 (Fig. 4B) or DC3.2 (Fig. 4C) cell clones expressing MERS-S. These cell lines stimulated 1,200 to 2,300 IFN-γ secreting cells per 1×10^6 splenocytes in animals receiving the recombinant MERS vaccines, whereas no background stimulation of respective controls was observed. The differences between MV control and MV$_{vac2}$-MERS-S or MV$_{vac2}$-MERS-solS vaccinated mice were significant for all cell lines. Additionally, cellular immune responses targeting MV antigens were detected upon stimulation with MV bulk antigens in vaccinated mice that had received any recombinant virus, as expected. However, MV bulk antigens stimulated only about 930 to 1,500 IFN-γ secreting cells per 1×10^6 splenocytes of MV vaccinated animals. Finally, splenocytes of all mice revealed a similar basic reactivity to unspecific T cell stimulation, as confirmed by similar numbers of IFN-γ secreting cells upon ConA treatment (Fig. 4D). Remarkably, both stimulation by ConA or MV bulk antigens resulted in lower numbers of IFN-γ$^+$ cells than stimulation by DCs expressing MERS-S, indicating an extremely robust induction of cellular immunity against this antigen. Thus, the generated MV-based vaccine platform expressing MERS-S or MERS-solS not only induces humoral, but also strong MERS S-specific cellular immune responses.
MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H) induce antigen specific CD8+ CTLs

While ELISpot analyses revealed antigen-specific IFN-γ secretion by vaccinated mice’ T cells, we next aimed at detecting antigen-specific CD8+ CTLs which would be important for clearance of virus infected cell. For that purpose, proliferation of CD8+ T cells upon stimulation with MERS-S was analyzed 3 weeks after the boost via a flow cytometric assay. Mice were immunized as described and splenocytes were isolated 21 days after the boost. JAWSII cells expressing MERS-S were used for re-stimulation of MERS-S-specific T cells. The splenocytes were labelled with CFSE and subsequently co-cultured with JAWSII-MERS-S cells or, as a control, with parental JAWSII cells for 6 d and finally stained for CD3 and CD8 before being analyzed by FACS for proliferation, detectable by the dilution of the CFSE stain due to cell division.

T cells of mice vaccinated with MV\textsubscript{vac2}-MERS-S or MV\textsubscript{vac2}-MERS-solS revealed an increase in the population of CD3+CD8+CFSElow cells after re-stimulation with JAWSII-MERS-S cells compared to re-stimulation with parental JAWSII without MERS antigens (Fig. 5A). In contrast, T cells of control mice did not reveal this pattern, but the CFSElow population remained rather constant, as expected. This specific increase in CD3+CD8+CFSElow cells, which was significant for MV\textsubscript{vac2}-MERS-S and nearly significant (P = 0.0505) for MV\textsubscript{vac2}-MERS-solS vaccinated mice, indicates that CD3+CD8+ cytotoxic T lymphocytes (CTLs) specific for MERS-S have proliferated upon respective stimulation. Thus, MERS-specific cytotoxic memory T cells are induced in mice after vaccination with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H).

Induced T cells reveal antigen-specific cytotoxicity.

To demonstrate the effector ability of induced CTLs, a killing assay was performed to directly analyze antigen-specific cytotoxicity (Fig. 5B). Splenocytes of immunized mice isolated 4 days
post booster vaccination were co-cultured with JAWSII-MERS-S or the non-transduced control
JAWSII cells for 6 d to re-stimulate antigen-specific T cells. When these re-stimulated T cells
were co-incubated with a defined mixture of EL-4\textsubscript{green}-MERS-S target and EL-4\textsubscript{red} control cells
(ratio 4:1), only T cells from MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H)-vaccinated mice
significantly shifted the ratio of live MERS-S-expressing target cells to control cells in a dose
dependent manner (Fig. 5B). This antigen-dependent killing was also dependent on re-stimulation
with JAWSII-CoV-S cells, since naïve T cells did not shift significantly the ratios of target to
non-target cells.

These results indicate that CTLs isolated from MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H)
vaccinated mice are capable of lysing cells expressing MERS-S. Neither splenocytes of control
mice re-stimulated with JAWSII-MERS-S nor splenocytes of MERS-S vaccinated mice re-
stimulated with control JAWSII cells showed such an antigen-specific killing activity. These
results demonstrate that the MV-based vaccine platform induces fully functional antigen-specific
CD8+ CTLs in vaccinated mice when being applied as MERS-CoV vaccine.

Vaccination of mice with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H) rescues animals
from challenge with MERS-CoV

The induction of strong humoral and cellular immune responses directed against MERS-CoV in
mice vaccinated with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-solS(H) indicated that those animals
are possibly protected against a challenge with MERS-CoV. To investigate efficacy of the
candidate vaccines, two independent experiments were performed where groups of five mice
were either vaccinated with MV\textsubscript{vac2}-MERS-S(H), MV\textsubscript{vac2}-MERS-solS(H), control MV (MV\textsubscript{vac2}-
ATU(P)), or left untreated. All mice immunized with MV\textsubscript{vac2}-MERS-S(H) or MV\textsubscript{vac2}-MERS-
solS(H) showed VNTs directed against MERS-CoV with titers up to 1,280 for MERS-S and up to
960 for MERS-solS. No MERS-CoV neutralizing antibodies were detected in control mice (data not shown). Since the murine DPP4 does not serve as a functional MERS-CoV entry receptor (66) and mice are therefore not susceptible to MERS-CoV infection, the vaccinated mice were intranasally (i.n.) transduced with a recombinant adenoviral vector to express human DPP4 (AdV-hDPP4) in murine airways. At five d after airway transduction with AdV-hDPP4, mice were infected i.n. with \(7 \times 10^4 \) TCID\(_{50}\) MERS-CoV. Four days later, animals were euthanized, lungs isolated, the tissue homogenized and homogenates used for purification of total RNA and virus titration. In the lungs of mock control mice, MERS-CoV RNA was detected by qRT-PCR (9,649 ± 3,045 MERS-CoV genome copies/ng RNA; Fig. 6A). Mice vaccinated with control MV\(_{\text{vac2}}\)-ATU(P) showed slightly lower copy numbers of viral RNA (5,923 ± 3,045 MERS-CoV genome copies/ng RNA; Fig. 6A). Vaccination with MV\(_{\text{vac2}}\)-MERS-S(H) or MV\(_{\text{vac2}}\)-MERS-solS(H) resulted in near-complete reduction of viral loads to 74 ± 60 genome copies/ng RNA or 51 ± 32 genome copies/ng RNA, respectively (Fig. 6A). Next, titers of infectious virus were determined in the lung tissue. While the titers were generally low, they corresponded to the qRT-PCR data. In mock control mice, titers of up to 5,000 TCID\(_{50}\)/ml were determined (Mean: 868 ± 692 TCID\(_{50}\)/ml) and in lungs of mice vaccinated with the vaccine backbone without MERS antigen (MV\(_{\text{vac2}}\)-ATU(P)), 1,673 ± 866 TCID\(_{50}\)/ml were detected. A considerable albeit statistically not significant reduction of infectious virus titers was found in mice vaccinated with MV\(_{\text{vac2}}\)-MERS-S(H) or MV\(_{\text{vac2}}\)-MERS-solS(H) compared to mock control mice (Fig. 6B). These results revealed that, indeed, vaccination with the recombinant measles viruses was able to protect mice against a challenge with MERS-CoV.

MERS-CoV infection of transduced mice was not always successful, which was indicated by a completely negative PCR result for viral genomes in about 40% of all animals. In approximately 30% of MERS-CoV negative animals, PCR for the mCherry gene was negative indicating that...
transduction was not successful and explaining why these mice were not susceptible. Why the remaining transduced mice were not infected is currently unclear. However, even when the drop-out animals were included in statistical analysis, the difference between mean viral loads of the medium control group and MV$_{\text{vac2-MERS-solS(H)}}$ (ratio: 278.2, 95% CI 1.52 – 50,904) treated animals stayed significant (P = 0.0329). Protection of the MV$_{\text{vac2-MERS-S(H)}}$ vaccinated group was close to significance (P = 0.057) compared to mock animals (ratio 149.2, 95% CI 0.82 – 27,301).

Histological analyses were performed to analyse if the reduced viral load in mice vaccinated with MV$_{\text{vac2-MERS-solS(H)}}$ or MV$_{\text{vac2-MERS-S(H)}}$ was matched by less pathological changes in mouse lungs (Fig. 7). For this purpose, lungs were examined with H&E staining to visualize inflammation. Additionally, MERS-S and mCherry expression was determined by immunohistochemistry using antigen-specific antibodies. Consistent with qRT-PCR, all mice that were positive in qRT-PCR for the mCherry gene expressed mCherry in epithelia of the lungs demonstrating successful transduction (Fig. 7, right column). The histopathological examination of H&E-stained lung tissues clearly showed differences between the vaccinated mice and controls (Fig. 7, left column). In the mock (OptiMEM) as well as vector control (MV$_{\text{vac2-ATU(P)}}$) groups, large areas of inflamed tissue were observed densely packed with lymphocytes, macrophages, and, to a lesser extent, neutrophils and eosinophils. Moreover, hyperplasia of the bronchus-associated lymphoid tissue was present at various degrees. These inflamed areas colocalized with expression of MERS-CoV spike protein (Fig. 7, middle column). Mice that were vaccinated with recombinant MV expressing MERS S showed less signs of inflammation and consistently less MERS-S expression after challenge with MERS. These differences were most obvious in lungs of MV$_{\text{vac2-MERS-solS(H)}}$ vaccinated animals, where only small foci of
inflammation could be observed. These results revealed that vaccination with recombinant MV expressing MERS S reduced pathological changes in the lungs of MERS-CoV infected mice.

Discussion

In this study, we have demonstrated the capacity of recombinant MV encoding different forms of the MERS-CoV S glycoprotein to induce both strong humoral and cellular immune responses that revealed protective capacity in a challenge model of mice vaccinated with these stable life-attenuated vaccines. So far, different strategies to develop vaccines against MERS-CoV have been proposed including recombinant full-length S protein (67) or the receptor-binding domain (RBD) of MERS-S (27, 28, 30, 31, 68), as well as platform-based approaches using modified vaccinia virus Ankara (MVA, (22)) or adenoviral vectors (AdV, (23)) encoding MERS-S. Similar to our MV-based vaccine, these experimental vaccines induced humoral immune responses with virus-neutralizing capacity. Among vectored vaccines, immunization with MVA or AdV expressing MERS-S resulted in VNTs in the range of 1,800 or 1,024, respectively, when used to immunize Balb/c mice. Vaccination with MV_vac2-MERS-S or MV_vac2-MERS-solS induced somewhat lower VNTs of about 840, which is an extremely robust titer taking into account that mice were immunized with 10^3-fold fewer virus particles compared to MVA, and 10^6-fold lower particles than replication-deficient AdV. Moreover, transgenic IFNAR^-/-CD46Ge mice have been used in our study with defects in type I IFN receptor signaling. Knock-out of the type I IFN receptor results in reduced adaptive immune responses (68–70) since type I IFNs are an important link between the innate and adaptive immunity via, among others factors, activation of DC (71), giving those mice’ adaptive immune system some disadvantage. Nevertheless, these mice have to be used routinely to analyze efficacy of MV-based vaccines in a small animal model (46), since wt mice are not susceptible to MV infection for mainly two reasons: Firstly, murine
homologues of MV receptors cannot be used for cell entry (69) with the exception of nectin-4 (70). Secondly, MV replication is strongly impaired by type I IFN responses (71, 72), and mice with intact IFNAR feedback loop failed to be susceptible to MV infection (46). Therefore, the IFNAR^{-/-}-CD46Ge mouse strain transgenic for human MV vaccine receptor CD46 and with a knock-out of the IFNAR is used to analyze MV-based vaccines. Additionally, the mouse strain backgrounds (Balb/c vs. C57BL/6) differ in T helper cell responses (BALB/c, predominantly Th2; C57BL/6, Th1 responses (73)), which reflects in different balance of cellular vs. humoral immunity (74, 75). Thus, the mouse model which had to be used in this study certainly is disadvantageous with respect to VNTs. To directly compare efficacy of the different vector systems, all vectors should ideally be used side-by-side in the same animal model. This may be a focus of future studies. The VNT of about 1,000 induced by three immunizations with recombinant RBD are hardly comparable to our results since other protocols for determination of VNT were used in these studies (27, 31). Interestingly, the expression of the soluble version of S by MV did not enhance VNTs. This is consistent with humoral immunity induced by DNA vaccines targeting SARS-CoV. Plasmids encoding soluble SARS-S lacking the transmembrane domain provoked lower VNTs than membrane-bound variants (32). An altered, less physiological conformation of the S protein has been proposed to result from deletion of the transmembrane domain, which should be responsible for worse immune recognition and lower antibody titers binding to the native, correctly folded S proteins in virus particles. In contrast, the soluble S1 domain of MERS-S expressed by AdV actually induced slightly higher VNTs compared to full-length S (23). However, soluble constructs consisting of the MERS-S1 and S2 domain have not been compared to soluble S1 domain, yet. Interestingly, recombinant MV expressing soluble MERS-S revealed slightly impaired replication in comparison to control MV, in contrast to MV expressing full-length MERS-S. This impaired viral replication might base on cytotoxicity of
MERS-solS, probably as a result of an altered folding or the solubility of the S protein. Cytotoxic effects of the S protein have already been observed for the S2 domain of SARS-S (76–80), but not for other coronaviruses like MHV (81). Though, both MV-based vaccines encoding either the soluble or the full-length variant of MERS-S did induce strong VNTs and cellular immune responses.

The protective capacity of humoral immune responses against CoV infection is controversially discussed. Neutralizing antibodies have been identified as correlates of protection against SARS-CoV challenge, since passive serum transfer was sufficient to rescue animals from challenge (32, 82), and T cell-depletion did not impair protection (32). In contrast, immunization with the nucleocapsid protein resulted in protection against the coronavirus infectious bronchitis virus (IBV) without induction of neutralizing antibodies (83, 84), indicating the capacity of cellular immune responses for IBV protection. Anyway, the antigenic potential of S for induction of CD4+ or CD8+ T cell immunity has already been demonstrated for SARS-CoV (32, 85) using recombinant protein or DNA vaccines. Also for MERS-CoV, application of RBD protein together with adjuvants has been shown to induce cellular immunity (27, 31). We demonstrated here in this study induction of cellular immunity by a vectored vaccine that works independently from adjuvants or application strategy. The MV-based vaccine induced very strong MERS-S-specific CD8+ T cell responses, revealed by ELISpot, killing, and proliferation assays. The broad repertoire of reactivity, in the case of antigen-specific proliferation also 21 days after the booster immunization, indicates induction of both functional effector and memory T cell repertoire by MV_vac2-MERS-S and MV_vac2-MERS-solS. Thereby, the extraordinary high number of IFN-γ secreting T cells in vaccinated mice both stresses the potential of the vaccine platform and underlines the immunogenicity of MERS-S.
On top, the present study tested whether the induced immune responses protected mice against a challenge infection with MERS-CoV. Indeed, vaccination with \(\text{MV}_{\text{vac2-MERS-S}} \) or \(\text{MV}_{\text{vac2-MERS-solS}} \) significantly reduced viral loads in the lungs of vaccinated mice after challenge with MERS-CoV. As expected, this reduction of viral load correlated with reduced pathological alterations in the lung, indicating that MV-derived MERS vaccines were able to confer protection against MERS-CoV infection. At least 4 mice out of each group did not reveal any MERS-CoV infection nor any pathological lung alterations indicating failure of infection in these individuals. In 30% of those mice, transduction with the recombinant adenovirus expressing human DPP4 seemed to be not successful. However, the majority of mice with no signs of MERS-CoV infection, at all, showed expression of mCherry indicating that transduction was successful. Currently the reason of the failure to infect these animals is unclear.

The direct correlates of protection in the vaccinated mice remain to be determined in future studies. Most recently, mice transgenic for human DPP4 have been developed, that allow analysis of MERS-CoV infection on a more robust and physiologic basis (86). These could only be used for analysis of MV-based vaccines after intercrossing them with IFNAR\(^{-/-}\)-CD46Ge or similar mouse strains to gain mice simultaneously susceptible to MV and MERS-CoV, which may also be a focus of future work.

Efficacy of \(\text{MV}_{\text{vac2}} \)-based MERS vaccines has been demonstrated in MV naïve mice. Theoretically, pre-existing anti-vector immunity against the MV backbone may be considered as potential limitation both for the specific MERS-vaccines tested in this study, but also of recombinant MV as vaccine platform, in general, for the use in MV-immunized patients (87). However, it has been clearly demonstrated both in mice (41, 45) and non-human primates (41) with humoral immune responses regarded to be protective against measles, that vaccination with recombinant MVs encoding antigens of HIV-1 (41) or Chikungunya virus (45) still induced...
surprisingly robust antigen-specific immune responses. Most interestingly, when analyzing efficacy of recombinant MV-CHIKV vaccine in a phase I trial in human volunteers, the vaccine was recently shown to be effective in inducing anti-CHIKV immune responses irrespective of pre-existing anti-measles immunity (47). These data question the “sterilizing” character of measles immunity, and clearly indicate the potential of recombinant MV as promising vaccine platform for vaccination against MERS-CoV or other infectious agents, in general. Indeed, efficacy of MV-based recombinant vaccines has been demonstrated pre-clinically with quite a range of different pathogens’ antigens, e.g. HBV (39), Dengue virus (44), WNV (42) and CHIKV (45). Additionally, the efficacy of MV to induce immune responses against coronaviruses has been shown for the S and nucleocapsid protein of SARS-CoV (19). All these recombinant vaccines have in common that they are based on a very well known platform: MV vaccines have been shown to exhibit an extremely beneficial safety profile in the light of millions of applied doses over the last 40 years. Only heavily immune-suppressed patients are excluded from measles vaccination campaigns, but the protection holds over decades and is thought to be most likely for life (33, 34).

Most interestingly, a quite similar recombinant vaccine based on a rhabdovirus, member of another family within the mononegavirales order, is currently tested in the clinic as experimental vaccine against Ebola virus (EBOV) infections. Recombinant vesicular stomatitis virus (VSV) encoding the Ebola Zaire strains’ glycoprotein replacing VSV-G (VSV-ZEBOV) was shown to be effective in animal models (88, 89) and is now tested in phase I trials for safety in human patients (90), in preparation to being moved to the field to combat current EBOV epidemics. Thereby, the potential interest in such platform-based vaccines to combat emerging or re-emerging infections is impressively highlighted.
Taken together, MV vaccine strain Moraten-derived recombinant MV vac2 vaccines are effective
vaccines against MERS-CoV, inducing both humoral and cellular immune responses protective
for vaccinated animals. Thereby, the capacity of the recombinant MV-based vaccine platform for
generation of fast available and effective vaccines has been demonstrated also with a more
general view to future emerging or re-emerging infections, but also with view on MERS-CoV:
MV-MERS-S provides an opportunity for further development of this experimental vaccine to be
prepared especially for the risk of pandemic spread of this disease.

Acknowledgements

The authors would like to thank Vivian Koch, Daniela Müller, Michael Schmidt and Gotthard
Ludwig for excellent technical assistance, Sonja Witzel, Manuel Gimmel, Tina Hempel, Aileen
Laubenheimer, and Tobias Blödel for excellent technical support in production of recombinant
MERS-S protein, and Roland Plesker for assistance in animal experiments. We thank Lucie
Sauerhering and Erik Dietzel for help with animal studies in BSL-4. The authors are indebted to
Ron Fouchier for providing MERS-CoV strain EMC/2012, to Kenneth Rock for DC2.4 and
DC3.2 cells, and to Christian Drosten and Doreen Muth for PCR-protocols. The authors would
further like to thank Bakhos Tannous for providing pCSCW2gluc-IRES-GFP and Kenneth
Lundström for the SFV vector system. This work was supported by the German Center for
Infection Research (DZIF; TTU 01.802, TTU 01.904) and the Deutsche Forschungsgemeinschaft
(SFB1021, SFB593).
References

Figure Legends

Fig.1. Generation and characterization of MV\textsubscript{vac2}-MERS-S and MV\textsubscript{vac2}-MERS-solS. (A) Schematic depiction of full-length MERS-S and a soluble variant lacking the transmembrane and cytoplasmatic region (MERS-solS) (upper schemes) and recombinant MV\textsubscript{vac2} genomes used for expression of those (lower schemes). Antigen or antigen encoding genes are depicted in dark grey; MV viral gene cassettes (in light grey) are annotated. \textit{MluI} and \textit{AatII} restriction sites used for cloning of antigen-genes into post P or post H ATU are highlighted (B) Immunoblot analysis of Vero cells infected at an MOI of 0.03 with MV\textsubscript{vac2}-MERS-S, MV\textsubscript{vac2}-MERS-solS, or MV\textsubscript{vac2}-GFP encoding extra genes in post H (C) or post P (D) ATU. Titers of samples prepared at indicated time points post infection were titrated on Vero cells. Means and standard deviations of three independent experiments are presented. ns, not significant.
Fig.2. Induction of antibodies specifically binding MERS-S or MV antigens. Sera of mice vaccinated on days 0 and 28 with indicated viruses were sampled on days -7 (pre-bleed, A) and 49 (B) and analyzed for antibodies binding MERS-S or MV bulk antigens by ELISA. Medium-inoculated mice served as mock control. Antibodies binding to recombinant MERS-S or MV bulk antigens are detectable by OD_{405} in the ELISA. Means and standard deviation of each group are depicted ($n = 6$; filled triangles, MV\textsubscript{vac2}-MERS-S(H); filled circles, MV\textsubscript{vac2}-MERS-solS(H); open circles, mock; open squares, MV\textsubscript{vac2}-ATU(P)).

Fig.3. Analysis of neutralizing antibodies. Virus neutralizing titers (VNT) of animals vaccinated on days 0 and 28 with indicated viruses sampled on day -7 (A,D), 28 (B,E), and 49 (C,F) completely neutralizing 200 TCID\textsubscript{50} of MERS-CoV or 50 pfu of MV. Medium-inoculated mice served as mock. VNT were calculated as reciprocal of the highest dilution abolishing infectivity. Dots represent single animals ($n = 10$); horizontal line represents mean per group. Y-axis starts at detection limit; all mice at detection limit had no detectable VNT. ns, not significant; *, $P < 0.05$; **, $P < 0.01$; ***, $P < 0.0001$

Fig.4. Secretion of IFN-γ after antigen-specific restimulation of splenocytes. IFN-γ ELISpot analysis using splenocytes of mice vaccinated on days 0 and 28 with indicated viruses, isolated 4 d after boost immunization, and after co-culture with JAWSII (A), DC2.4 (B), or DC3.2 (C) dendritic cell lines transgenic for MERS-S (black columns) or untransduced controls (white columns). (D) To analyse cellular responses directed against MV, splenocytes were stimulated with 10 μg/ml MV bulk antigens (grey columns) or left unstimulated (white columns). The reactivity of splenocytes was confirmed by ConA treatment (10 μg/ml) (speckled columns).
Presented are means and standard deviation per group (n = 6). ns, not significant; *, P < 0.05; **, P < 0.01.

Fig.5. Induction of MERS-S specific CTLs. (A) Proliferation assay using splenocytes of mice vaccinated on days 0 and 28 with MVvac2-MERS-S(H) or MVvac2-MERS-solS(H), isolated 21 d after boost immunization, and after co-culture with JAWSII dendritic cell lines transgenic for MERS-S (right, filled triangles) or untransduced controls (left, filled circles). Depicted are the percentages of CD8+ T cells with low CFSE indicating proliferation in the samples. Results for splenocytes of vaccinated mice are displayed individually and trend between paired unstimulated and re-stimulated samples is outlined. Splenocytes of control vaccinated mice (open circles, mock; open squares, MVvac2-ATU(P)) were pooled. (B, C) Killing assay using splenocytes of mice vaccinated on days 0 and 28 isolated 4 d after boost immunization. Splenocytes were co-cultured with untransduced JAWSII (B) or with antigen-presenting JAWSII-MERS-S (C) or for 6 days. Activated CTLs were then co-cultured with EL-4-MERS-S target cells (Antigen) and EL-4red control cells (N) at indicated E:T ratios for 4 h. Ratio of living target to non-target cells (Antigen:NC) was determined by flow cytometry. Depicted (filled triangles, MVvac2-MERS-S(H); filled circles, MVvac2-MERS-solS(H); open circles, mock; open squares, MVvac2-ATU(P)) are means and standard deviation of each group (n = 6). ns, not significant; *, P < 0.05; **, P < 0.01; *** P < 0.0001

Fig.6 Viral load after MERS-CoV challenge in vivo. (A, B) Viral load determined as (A) genome copies per ng RNA or (B) infectious virus titers in the lungs of pre-vaccinated mice after transduction with DPP4-encoding AdV 21 d after boost, and challenge with MERS-CoV 25 day after boost. 2 independent experiments with n = 4-5 per group. Error bars, SEM; dotted line,
LOD (LOD of qPCR < 1.7 copies/ng RNA); ns, not significant; *, P < 0.05 (C) AdV transduction control, mCherry mRNA copies per ng RNA. Error bars, SEM.

Fig.7 Histopathological changes and immunohistochemical analysis of lungs after challenge.

Analysis of lung tissue of representative pre-vaccinated mice (as indicated) after transduction with hDPP4-encoding AdV and challenge with MERS-CoV. Pictures arranged in one row were from samples of the same individual mouse. Paraffin-fixed tissue was stained with hematoxylin and eosin (H&E, first column; scale bar 200 μm), with Ab against MERS-CoVspike antigen (middle column; scale bar 100 μm), and as control of AdV transduction against mCherry (left column; scale bar 50 μm).