Identification and Characterization of a Proteolytically Primed Form of the Murine Coronavirus Spike Proteins after Fusion with the Target Cell

Oliver Wicht, Christine Burkard, Cornelis A. M. de Haan, Frank J. M. van Kuppeveld, Peter J. M. Rottier, Berend Jan Bosch

Virology Division, Department of Infectious Diseases and Immunology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands

ABSTRACT

Enveloped viruses must fuse their envelope with a target cell membrane to get access to host cells and deliver their genetic information. They carry specialized surface glycoproteins that mediate attachment to and fusion with the host membrane. Viral fusion proteins can generally be divided into three distinct classes according to their molecular organization and fusion mechanism (1). Class I fusion proteins such as the influenza virus hemagglutinin and the human immunodeficiency virus Env occur as homotrimeric glycoproteins that are oriented perpendicular to the viral membrane and contain typical structural elements, including a receptor-binding domain, heptad repeat (HR) regions, an amphi- patic fusion peptide (FP), and a C-terminal transmembrane domain (2). These fusion proteins also feature a common fusion mechanism (3). Initial conformational rearrangements triggered by cues such as receptor binding or low pH lead to the exposure and insertion of the FP into the target membrane. Subsequent structural reorganization pulls the two membranes together to achieve fusion. The free energy is provided by the S proteins and released by zipping up of the heptad repeat regions into an energetically favorable, stable six-helix bundle (1). To prevent premature activation after biosynthesis, viral class I fusion proteins adopt a locked conformation and require proteolytic cleavage to render them fusion-ready. This priming step may occur during virus exit from the infected cell, in the extracellular milieu or during entry at or in the next target cell. Proteolytic processing of coronavirus spike (S) fusion proteins during virus entry has been suggested but not yet formally demonstrated, while the nature and functionality of the resulting subunit is still unclear. We used a prototypic coronavirus—mouse hepatitis virus (MHV)—to develop a conditional biotinylation assay that enables the specific identification and biochemical characterization of viral S proteins on virions that mediated membrane fusion with the target cell. We demonstrate that MHV S proteins are indeed cleaved upon virus endocytosis, and we identify a novel processing product S2* with characteristics of a fusion-active subunit. The precise cleavage site and the enzymes involved remain to be elucidated.

IMPORTANCE

Virus entry determines the tropism and is a crucial step in the virus life cycle. We developed an approach to characterize structural components of virus particles after entering new target cells. A prototype coronavirus was used to illustrate how the virus fusion machinery can be controlled.

Coronavirus (CoV) entry is mediated by the spike (S) protein, an exceptionally large glycoprotein of approximately 1,200 to 1,450 amino acid residues in length that comprises the canonical structural features of class I fusion proteins and shares the typical fusion mechanism (11). The trimeric S proteins characteristically decorate the extracellular virus particles and two subunits of similar size can be distinguished. The N-terminal S1 subunit contains the receptor-binding domain, while the C-terminal S2 subunit comprises the fusion machinery, including a putative FP, HR regions, and transmembrane domain.

Some CoV S proteins are cleaved at the S1/S2 junction during biogenesis by furin(-like) proteases, but many CoVs lack a furin cleavage site at the S1/S2 junction and hence carry uncleaved S protein in their virions (12). Other cellular proteases have been reported to cleave CoV S proteins, but these proteases are only available upon attachment or during the uptake of virions by the next target cells (13). The infection of some CoVs can be blocked by protease inhibitors, thereby underlining the importance of proteolytic activation that should render class I fusion proteins into their fusion-competent form (6, 14–16). Remarkably, a cleavage at the S1/S2 junction does not liberate a putative FP at the N terminus of S2 (17). Rather than at the S1/S2 junction, cleavage...
can occur at alternative positions within the S2 domain of the protein to promote the fusion competence. Such alternative cleavage sites have been described within the S2 subunit for the S proteins of severe acute respiratory syndrome coronavirus (SARS-CoV), mouse hepatitis virus (MHV), and infectious bronchitis virus (IBV) (16, 18, 19). In general, a variety of putative, alternative cleavage sites and cleavage timings have been reported or suggested for CoV, and yet the role of S protein cleavage remains largely undefined.

Despite extensive research on the proteolytic requirements for entry, the exact cleavage position within the CoV S protein generating the fusogenic subunit has been difficult to predict, and the formal demonstration of S protein cleavage upon entry is currently lacking. In the present study, we developed a novel unbiased approach to selectively identify and characterize the S proteins of incoming viruses that accomplish fusion. The assay employs a combination of a protein biotin ligase (BirA) and a biotin acceptor peptide added as an extension to the cytoplasmic tail of the S protein. When incoming viral proteins gain access to the cytoplasm of cells expressing BirA ligase, they are specifically labeled with biotin, which then enables isolation, enrichment, and detection. With this assay, we investigated the S glycoprotein of the prototype coronavirus MHV (strain A59). The MHV S proteins are partially cleaved into the noncovalently linked subunits at the S1/S2 junction by furin or furin-like proteases (20). Intriguingly, preventing furin cleavage by mutation or the use of furin inhibitors has no effect on virus infectivity of MHV (21–23). Using our new approach, we demonstrate that the MHV S proteins participating in fusion are proteolytically processed in the target cells at a different position in the S2 subunit. The newly identified S2* subunit has characteristics of the functional fusion machinery.

MATERIALS AND METHODS

Cells, viruses, antibodies, and HR2 peptide. HEK-293T, HeLa, Vero-CCL81, and LR7 (24) cells were maintained in Dulbecco modified Eagle medium supplemented with 10% fetal bovine serum. Generally, MHV (strain A59) was propagated and titrated in LR7 cells in culture medium supplemented with 20 mM HEPES. For the immune detection of S protein in virus supernatants, MHV was grown to high titers in Dulbecco modified Eagle medium supplemented with 0.3% trypsin-ethylenediaminetetraacetic acid (EDTA) (Sigma, catalog no. T9157). For immunoprecipitation (IP) and immune detection, MHV S protein was reacted with polyclonal rabbit anti-BAP antibody (GenScript, catalog no. A00674) or mouse monoclonal anti-FLAG antibody (Sigma, catalog no. A9594). No BirA enzyme was detected in the cell culture supernatants of LR7-BirA cells after 72 h of incubation, as analyzed by Western blotting with a mouse monoclonal anti-FLAG antibody conjugated to HRP.

Conditional biotinylation assay. LR7 or LR7-BirA cells were cultured to confluence in six-well clusters. Cells were inoculated with virus-containing cell culture supernatant supplemented with 50 μg of DEAE-dextran (Sigma, catalog no. D9885)/ml and 10 μM biotin (Sigma, catalog no. B4639) at a multiplicity of infection (MOI) of 10. After 30 min, protein biosynthesis was inhibited by the addition of 50 μg of cycloheximide (Sigma, catalog no. C7698)/ml to prevent S protein synthesis from virus infections. At 90 min postinfection (p.i.), the cells were chilled on ice, washed twice with ice-cold phosphate-buffered saline (PBS), and lysed in ice-cold radioimmunoprecipitation assay (RIPA) buffer (150 mM NaCl, 1% Nonidet P-40, 0.5% sodium deoxycholate, 0.1% sodium dodecyl sulfate (SDS), 50 mM Tris-HCl (pH 8)) supplemented with Complete protease inhibitor cocktail tablets (Roche, catalog no. 11836153001) to prevent further proteolysis and with or without 6 mM sodium pyrophosphate (PP; Sigma, catalog no. 71516) to quench the activity of BirA in cell lysates (32). The cell lysates were cleared by centrifugation at 10,000 × g for 10 min at 4°C. The supernatants were supplemented with 20 μl of 50:50 slurry of protein G-Sepharose (Biovision, catalog no. 6511) supplemented with 0.5 mg of polyclonal anti-BAP antibody (GenScript, catalog no. A00674) and incubated under rotation for 2 h at 8°C to immunoprecipitate the S proteins. Next, Sepharose beads were pelleted at 6,000 × g for 5 min at 4°C and washed thrice with an excess of ice-cold RIPA buffer. Excess supernatant was carefully removed, and samples were finally denatured by the addition of sample buffer and subjected to Western blotting.

If inhibitory compounds were used during the infection, cells were pretreated for 30 min at 37°C, followed by infection in the presence of the respective compounds. The following protease inhibitors were used at their highest recommended working range concentrations according to Sigma’s protease inhibitor technical bulletin INHIB1 (final concentrations): peptatin A (1.5 μM; Sigma, P5318), leupeptin (100 μM, Sigma, catalog no. L2023), E64d (10 μM; Sigma, catalog no. E8640), phosphoramidon (10 μM; Sigma, catalog no. R7385), and AEBSF [4-[2-aminoethyl]-benzenesulfonyl fluoride; 100 μM; Sigma, catalog no. A8456]. HR2 peptide was used at 25 μM. The following lysosomotropic agents were used (final concentration): ammonium chloride (25 mM NH4Cl; Merck, Darmstadt, Germany) and bafilomycin A1 (125 μM; Enzo Life Sciences).

Generation of stable cell lines. The pQCXIN-CM plasmid encoding the MHV receptor, murine carcinoembryonic antigen-related cell adhesion molecule 1a (CCM), was generated by cloning the CCM gene into the pQCXIN Moloney murine leukemia virus (MLV) packaging vector (Clontech) (29). Likewise, the human codon-optimized gene encoding biotin protein ligase (BirA) with a C-terminal hemagglutinin and FLAG tag (the pUM376-BirA PCR template was kindly provided by V. Ogryzko) was cloned into the pQCXIP-BirA packaging vector (30). HEK-293T, HeLa, and Vero-CCL81 cell lines expressing the CCM receptor were made after transduction with vesicular stomatitis virus G protein pseudotyped MLV using the pQCXIN-CM packaging vector. The polyclonal HEK-CCM, HeLa-CCM, and Vero-CCM cell lines stably expressing CCM, as well as murine LR7 cells, were selected and maintained with G418 (PAA). CCM expression was confirmed by immunodetection using mouse monoclonal anti-CCM antibody (MAb CC1, provided by K. Holmes [31]). Polyclonal LR7 cells stably expressing biotin protein ligase (LR7-BirA) were similarly made with the MLV-pseudotyped virus using the pQCXIP-BirA packaging vector. LR7-BirA cells were selected at 15 μg/ml and maintained at 10 μg of puromycin (Sigma, catalog no. P8833)/ml. BirA expression was confirmed by immunodetection using Cy3-conjugated mouse monoclonal anti-FLAG (Sigma, catalog no. A9594). No BirA enzyme was detected in the cell culture supernatants of LR7-BirA cells after 72 h of incubation, as analyzed by Western blotting with a mouse monoclonal anti-FLAG antibody conjugated to HRP.

Construction of recombinant viruses. Recombinant MHVs were generated by targeted recombination as described earlier (27). A transfer vector based on pXHERLM was generated to create the recombinant MHV-BAP virus encoding a tandem repeat of the 15-amino-acid biotin acceptor peptide, including linkers DLP[D/G][D/E][A][K]W[H]E[vaccinated peptide (KLH) (the BAP sequence is underlined) as a C-terminal extension of the S protein (28). The recombinant viruses MHV[φS2] BAP and MHV[φS2] BAP were generated by introducing additional point mutations into the transfer vector using site-directed mutagenesis. MHV[φS2] BAP S protein carries three point mutations—R713S, R7174, and R7175—that substitute all arginines at the furin cleavage site by serines. MHV[φS2] BAP S protein carries two point mutations—R867S and R869S—that substitute the arginines at the putative S2* cleavage site by serines.

MHV-S2*-BAP S protein carries three point mutations—R713S, R7174, and R7175—that substitute all arginines at the furin cleavage site by serines.
Time course biotinylation assay. LR7 or LR7-BirA cells were cultured to confluence on 10-cm dishes, and the inoculum was prepared similar to the conditional biotinylation assay. First, cells were washed twice with ice-cold PBS, and ice-cold inoculum was added for 45 min to allow attachment of the virus to the target cells at 8°C. Next, the inoculum was removed, and the cell layer was washed once with ice-cold PBS, followed by the addition of 37°C culture medium supplemented with 10 μM biotin. Differential periods of infection were achieved by successively delaying the start of attachment and infection while maintaining an equal duration. All samples were harvested at the same time to even out the time between lysis and immunoprecipitation. Then, 50 μg of cycloheximide/ml was added 30 min after warming up the infection to 37°C for all samples with an infection period longer than 30 min or at the end of the infection. The sample for 0 min was prepared for lysis after 1 min at 37°C. Lysis and immunoprecipitation was performed as described in the conditional biotinylation assay, and IP samples were analyzed by Western blotting.

HR2 inhibition of MHV infection. Multiple wells containing LR7 cells were infected with wild-type MHV for 1.5 min to synchronize infection. The inoculum was replaced by culture medium at the start of infection. At increasing time points, supernatants of individual wells were replenished with culture medium supplemented with 20 μM HR2 peptide to block MHV entry. At 4 h p.i., the supernatant was replaced with culture medium containing 1 μM HR2 peptide to inhibit syncytium formation. At 7 h p.i., the cells were fixed with 3.7% formalin, immunoperoxidase staining was performed using K135 serum, and the cells were visualized using an AEC substrate kit (Vector Laboratories). The extent of infection relative to noninhibited virus infection was calculated from the number of plaques observed.

Deglycosylation. LR7 or LR7-BirA cells were cultured to confluence in 10-cm dishes, and the virus infection was performed similarly to that of the conditional biotinylation assay. After IP, samples on the Sepharose beads were denatured and deglycosylated with PNGase F (New England BioLabs, catalog no. P0704) according to the manufacturer’s protocol. Finally, the samples were denatured by the addition of sample buffer and subsequently analyzed by Western blotting.

Western blot analysis. For the detection of S protein in virus-containing cell supernatants, aliquots were directly lysed and denatured in sample buffer containing 50 mM Tris–HCl (pH 6.8), 50% glycerol, 5% 2-mercaptoethanol, 1% SDS, and bromophenol blue and boiled at 95°C for 10 min. Samples after immunoprecipitation were eluted from beads by boiling at 95°C for 10 min in sample buffer. Supernatant was subjected to SDS-PAGE in a discontinuous gel with 8% acrylamide in the separating gel (33). Next, samples were transferred to a polyvinylidene fluoride membrane (Bio-Rad, catalog no. 162-0176). Membranes were blocked with bovine serum and reacted with antibodies or streptavidin–HRP in PBS with bovine serum and 0.5% Tween 20. For detection, we used an Amersham ECL Western blot analysis system (GE Healthcare, catalog no. RPN2109) with X-Omat LS films (Kodak; Sigma, catalog no. F1149).

Computational analysis. The transmembrane domain of MHV S protein was predicted by TMHMM 2.0, and the signal peptide was predicted by SignalP 4.1. HR1 and HR2 regions were defined according to the method of Bosch et al. (11). Glycosylation sites were predicted with Net-NGlyc 1.0 (Technical University of Denmark). Western blot signals were quantified by using ImageJ. Amino acid sequence alignment was performed by CLUSTAL W2 using S sequences of infectious bronchitis virus (IBV strain Beaudette, NP_040831.1), Middle East respiratory syndrome coronavirus (MERS-CoV; strain HCoV-EMC, AF889361.1), mouse hepatitis virus (MHV strain 2, AAF193861.1 and strain MHV-A59, NP_045300.1), severe acute respiratory syndrome coronavirus (SARS-CoV strain Tor2, NP_828851.1), and transmissible gastroenteritis virus (TGEV strain TO14, AF302263_1).

RESULTS

Biotinylation assay to label S protein after virus-cell fusion. During inoculation, not all virions successfully fuse with the target cell and deliver their genome into the cytoplasm. According to the current model of class I protein fusion, the C-terminal tail of the CoV S protein is hidden internally in the intact virion. It will be introduced into the cytoplasm after the virus and cell membrane have fused. In order to be able to discriminate S proteins coming from virions that successfully achieved fusion from those that failed, we designed a biotinylation assay that uses selective intracellular biotin labeling of the protein’s C terminus. To that end, we generated a recombinant MHV–A59 derivative carrying an S protein with a C-terminally appended 37-amino-acid biotin acceptor peptide (MHV-BAP; Fig. 1A) and a recombinant murine cell line that constitutively expresses BirA in its cytoplasm (LR7-BirA). BirA recognizes the biotin acceptor peptide (BAP) as the substrate for biotin ligation in the presence of ATP and free biotin. In intact virions, the BAP faces the luminal side and is protected from modification by BirA, but upon virus-cell fusion it becomes exposed to the enzyme (Fig. 1B). Consequently, BirA can biotinate the BAP tag of S proteins of virions that underwent fusion, enabling the selection and characterization of postfusion S proteins via the biotin label. MHV-BAP displayed similar growth kinetics but yielded 10-fold-reduced titers compared to wild-type MHV (data not shown).

To characterize the S protein of MHV-BAP and to demonstrate biotinylation of the BAP tag, we propagated wild-type MHV and the recombinant MHV-BAP in LR7 cells and LR7-BirA cells. The cell culture supernatants were analyzed by Western blotting with antibodies recognizing the S2 subunit or the BAP tag, or with the biotin-binding streptavidin (Fig. 1C). The monoclonal antibody recognizing the S2 subunit detected the full-length S protein (S0) and the S2 subunit of all virus preparations. A polyclonal antibody directed against the BAP specifically detected S0 and the S2 subunit of MHV-BAP but not those of wild-type MHV. Importantly, biotinylation of BAP-tagged S protein was only detected for MHV-BAP viruses produced in LR7-BirA cells, demonstrating the BirA-dependent biotinylation of the BAP. Recognition of the BAP by the anti-BAP polyclonal antibody was not influenced by its biotinylation status; tagged and nontagged S proteins were detected equally efficient.

Biotinylated S proteins after virus-cell fusion: detection of S2*. Next, we assessed the biotinylation of S proteins after membrane fusion of virions with BirA-expressing target cells. The LR7-BirA cells were inoculated with MHV-BAP (MOI = 10) for 90 min to enable binding and fusion. To detect the biotinylated S proteins, anti-BAP antibody was used to immunoprecipitate the BAP-tagged S proteins from whole-cell lysates. This purification and concentration step was essential for detection. The BirA enzyme maintains its activity in the lysis buffer, even at low temperatures. Consequently, all S protein present in the cell lysate became biotinylated postlysis and could be detected using the streptavidin–HRP conjugate (Fig. 2A, lane 1). In addition to the S0 and S2 forms, which could already be observed in the virus stock (Fig. 1C), an additional product of ~80 kDa was detected which we named S2*. To prevent postlysis biotinylation and analyze the S proteins as they occur in the intact cell, BirA activity was quenched by product feedback inhibition by the addition of PP to the lysis buffer and during the IP procedure (Fig. 2A, lane 2) (32). The S2* was the most abundant S protein product detected, and only limited amounts of S0 and S2 were observed.

To test whether the appearance of the S2* protein indeed correlates with successful infection, we exploited the HR2 peptide, a
synthetic peptide fusion inhibitor, which effectively blocks the membrane fusion activity of the S protein (11). Addition of the HR2 peptide efficiently abrogated biotinylation of the S protein in the presence of PP (Fig. 2A, lane 3). We hypothesized that the S2* subunit represents the proteolytically primed subunit of MHV S protein.

The S2* subunit occurs in stable multimers. We examined the novel S2* subunit for characteristic features of the fusion machinery. To drive membrane fusion, the membrane-anchored domains of class I fusion proteins fold into a highly SDS-stable and temperature-resistant postfusion trimer, facilitated by the zipping up of the two HR domains into six-helix bundles (11, 34). To test whether S2* forms such stable trimers, we analyzed the SDS-PAGE migration of the biotinylated S protein variants after heat treatment of the samples at 65°C rather than at 95°C. The S2* subunit that was biotinylated upon infection of target cells migrated at ~80 kDa if denatured at 95°C. This species was, however, absent after denaturation at 65°C; instead, a larger band was observed at ~200 kDa, in line with the S2* subunit actually occurring as a stable, multimeric postfusion complex (Fig. 2B).

The kinetics of S2* appearance, virus cell fusion, and MHV infection coincide. If the novel S2* subunit represents the proteolytically primed form, the kinetics of S protein cleavage should be equal to or faster than productive MHV infection. We monitored the kinetics of S protein cleavage and fusion by performing a time course of infection with MHV-BAP on LR7-BirA cells. To synchronize infections, virus was allowed to bind to cells at 8°C for 1 h, followed by removal of the inoculum, after which infection was continued at 37°C. Omitting PP during the IP procedure revealed the overall biochemical fate of all (i.e., fused and nonfused) S proteins over a 90-min time period (Fig. 3A). Western blot anal-
undergone was added during infection. A background band (bg) is indicated. The relative amounts of S0, S2, and S2* protein per lane were quantified to illustrate the S protein from virus-cell fusion events was monitored (Fig. 3B). Analysis in the presence of PP during the sample preparation, only experiment showed similar kinetics to proteolysis of S protein infection was stopped at the indicated times postinfection by cell lysis in the absence of the BirA inhibitor PP. Immunoprecipitated S proteins were analyzed by Western blotting, and biotinylated protein was detected by using a streptavidin-HRP conjugate. To assess lysosomal degradation, ammonium chloride (NH4Cl) was added during infection. A background band (bg) is indicated. The relative amounts of S0, S2, and S2* protein per lane were quantified to illustrate the proteolytic processing over time (lower panel). (B) Same as panel A, except that by addition of PP during lysis, only S protein that has been biotinylated during infection was detected. As controls, MHV-BAP in the absence of cells, infection with wild-type MHV, and MHV-BAP infection performed in the presence of the HR2 fusion inhibitor were used. The intensity of the S2* fragment was quantified and is displayed as a bar diagram below. In addition, to determine the kinetics of virus entry independently, MHV infections were supplemented in time with the HR2 fusion inhibitor after a synchronized infection (line diagram). At 7 h p.i., infected cells were detected by immunostaining, and the relative amounts of infection were determined.

To confirm the kinetics of virus-cell fusion by an independent approach, we examined the inhibition of MHV infection by HR2 peptide fusion inhibitor. LR7 cells were pulse inoculated for 1.5 min with wild-type MHV to synchronize binding. Inocula were replaced by culture medium, after which HR2 peptide was added to individual samples at successive time points. The relative amount of infection was determined at 7 h p.i. by immune staining of the cells against MHV. The presence of HR2 peptide from the start completely abolished infection but showed no effect when added 120 min after inoculation (Fig. 3B, line chart). The MHV infection deduced from the HR2 peptide time-of-addition experiment showed similar kinetics to proteolysis of S protein yielding the S2* product but was slower. MHV infection coincided with the accumulation of the S2* subunit as monitored by intracellular biotinylation. In comparison, the intensities of the biotinylated S2* protein bands observed in the virus-cell fusion experiments were quantified and included in the same graph as a bar chart (Fig. 3B, bar chart).

Conserved arginine is not the cleavage site that yields the S2* subunit. The identification of the proteolytic cleavage site that yields the fusion active S2* subunit, could provide further information about the requirements for gaining fusion competence. Judged from the molecular weight of the S2* protein, the cleavage site is located within the N-terminal half of the S2 subunit. This region comprises a conserved arginine, previously described as a potential protease target site and termed S2* in the S proteins of SARS-CoV and IBV (18, 36) (Fig. 4A). Cleavage at this arginine would truncate the S2 domain by ~15 kDa and remove two glycosylation sites, which is in agreement with the observed difference between the S2 and S2* band. We used a reverse-genetics approach to determine whether the MHV S2* subunit indeed results from proteolysis at the putative S2* cleavage site. To that end, mutant MHV-BAP was generated containing two serine substitutions of arginines occurring at or close to the S'2 cleavage (MHVrS2−BAP; Fig. 4A, table). Another MHV variant with a mutated furin cleavage site at the S1/S2 junction was generated by replacing the arginines by serines (MHVFCS−BAP). Mutant viruses were viable and used to infect LR7-BirA cells for 90 min at an equal MOI, after which IP samples were prepared in the absence or presence of PP. Western blot analysis of IP samples showed that the knockout of the furin cleavage site at the S1/S2 junction in

FIG 3 S2* fragment is generated during virus entry. (A) MHV-BAP was bound to LR7-BirA cells, and excess virus was removed to synchronize the infection. The infection was stopped at the indicated times postinfection by cell lysis in the absence of the BirA inhibitor PP. Immunoprecipitated S proteins were analyzed by Western blotting, and biotinylated protein was detected by using a streptavidin-HRP conjugate. To assess lysosomal degradation, ammonium chloride (NH4Cl) was added during infection. A background band (bg) is indicated. The relative amounts of S0, S2, and S2* protein per lane were quantified to illustrate the proteolytic processing over time (lower panel). (B) Same as panel A, except that by addition of PP during lysis, only S protein that has been biotinylated during infection was detected. As controls, MHV-BAP in the absence of cells, infection with wild-type MHV, and MHV-BAP infection performed in the presence of the HR2 fusion inhibitor were used. The intensity of the S2* fragment was quantified and is displayed as a bar diagram below. In addition, to determine the kinetics of virus entry independently, MHV infections were supplemented in time with the HR2 fusion inhibitor after a synchronized infection (line diagram). At 7 h p.i., infected cells were detected by immunostaining, and the relative amounts of infection were determined.
MHV-FCS-BAP prevented the appearance of the S2 form (22) (Fig. 4A, lower panel). In contrast, serine substitution of the two arginines at the presumed S2 cleavage site in MHV-S2-BAP did not prevent the formation of the S2* subunit. When IP was performed in the presence of PP, only allowing the detection of the S proteins involved in fusion, the S2* subunit was clearly detected for all three viruses. The S2* product of the mutant viruses migrated with similar mobility and represented the major form of S protein that underwent fusion. Arginine substitutions at the S1/S2 or S2 site had no detectable effect on virus titers, which remained comparable to MHV-BAP (Fig. 4A). As reported earlier, the deletion of the S1/S2 arginine motif resulted in reduced syncytium formation capacity of the virus (22).

Prediction of the S2’ cleavage site from the molecular weight of the S2* subunit after deglycosylation. Since we could not predict other protease cleavage sites from the S protein amino acid sequence, we tried to identify the S2’ cleavage site by alternative approaches. The biotinylation assay did not yield a sufficient amount and purity of the S2* subunit to allow N-terminal amino acid sequencing. Instead, we deglycosylated the S protein to more precisely determine the molecular weight of S2*, from which the approximate location of the cleavage site might then be deduced. To that end, LR7-BirA cells were inoculated with MHV-BAP for 90 min, and samples were prepared in the absence or presence of pyrophosphate (PP). Biotinylation of immunoprecipitated S proteins was detected by Western blotting, as described in the text. (B) Deglycosylation of biotinylated S proteins. The biotinylation assay was performed with MHV-BAP as described for panel A. Prior to Western blot analysis, all samples were denatured, and selected samples were subsequently deglycosylated using PNGase F. Biotinylated S protein was detected with streptavidin (two exposure times are shown), and the same blot was re-stained with anti-BAP antibody to detect (nonbiotinylated) S proteins (note that streptavidin binding to biotinylated BAP limits detection with the anti-BAP antibody). Full-length S protein is indicated by open triangles, S protein cleaved at the S1/S2 junction is indicated by solid triangles, and the S2* fragment is indicated by asterisks. All S proteins showed faster migration after deglycosylation; S0 and S2 were reduced to a defined band upon deglycosylation, whereas the S2* fragment band remained diffuse. A cellular background band is indicated (bg).
remove all N-linked glycans. Successful deglycosylation was revealed by the S proteins migrating with higher electrophoretic mobility (Fig. 4B, top and middle panel). Deglycosylation of all S proteins (–PP) and of S proteins from virions that had fused (+PP) showed a similar effect. The theoretical molecular masses were predicted to be 70 kDa for the S2 domain and 54 kDa for S2* if the cleavage occurs close to the putative FP. The deglycosylated S2 subunit shifted from the 105-kDa position to the 80-kDa position—slightly higher than predicted—and migrated as a well-defined band. In contrast, the S2* protein also shifted to a lower molecular mass, and yet it remained heterogeneous after deglycosylation, ranging in mass from 60 to 65 kDa. Similar to S2, the S2* subunit appears larger than its predicted molecular mass of 54 kDa; hence, cleavage may occur at the putative S2’ cleavage site or further upstream. The blot was restained with antiserum against the BAP in order to visualize the S proteins from infections of LR7 cell without BirA (Fig. 4B, lower panel) and independent of biotinylation. Of note, the prior streptavidin-biotin interaction reduces the anti-BAP antibody reactivity, particularly in fully biotinylated samples prepared in the absence of PP (Fig. 4B, lanes 2 and 3).

Inhibition of cellular proteases that generate the S2* subunit. To obtain information on the S protein cleavage site and the functional aspect of proteolysis during virus infection, we attempted to identify the responsible host cell proteases. SARS-CoV S protein can be cleaved by multiple proteases, and the availability of those proteases has been linked to the tissue tropism of the virus (7). However, expression of the MHV receptor can render cell lines of different species susceptible to MHV infection (31), and if the S2* subunit represents the fusion active form, the priming protease(s) should occur in various cell lines. To test this, we monitored S protein cleavage in nonmurine cell lines stably expressing the MHV receptor. Virus preparations containing prebiotinylated S protein were produced after a single passage on LR7-BirA (MHV-BAP*bio) and typically contained ca. 70% S0, 30% S2, and a marginal fraction of S2* (Fig. 5A, lane 1). After 90 min of inoculation of two human and one simian cell line (i.e., HEK 293T, HeLa, and Vero cells, respectively), the patterns of S0, S2, and S2* were similar compared to that in the murine LR7-BirA cell line (Fig. 5A). Broad-spectrum protease inhibitors can affect various classes of proteases. In order to characterize the proteases involved in S protein cleavage, a virus entry assay was performed in the presence of various protease inhibitors, suppressing the activity of the main classes of proteases. MHV-BAP infection was performed on LR7-BirA cells for 90 min in the presence of the cysteine protease inhibitor E64d, the metalloprotease inhibitor phosphoramidon, the aspartyl protease inhibitor pepstatin A, the serine and thiol protease inhibitor leupeptin, and the serine protease inhibitor AEBSF (Fig. 5B), as well as the serine protease inhibitor camostat or 1X-concentrated Roche mini-cocktail inhibitor (data not shown). In addition, the involvement of low-pH-dependent proteases was probed using the lysosomotropic agents NH4Cl and bafilomycin A1 (Fig. 5C). None of the applied agents could prevent the S protein cleavage that results in the formation of the S2* subunit. The lysosomotropic agents NH4Cl and bafilomycin A1 abolished fusion similar to the HR2 peptide fusion inhibitor, as indicated by the lack of biotinylated S when IP was performed in the presence of PP (Fig. 5C).

DISCUSSION

We studied the cleavage of the MHV S glycoprotein during virus entry by an unbiased approach that allowed us to isolate fusion proteins of virions that accomplished virus-cell fusion, and we newly identified an S2* subunit. It displayed features of the fusion machinery, suggesting that the S2* subunit represents the fusion-active part of the S protein. In support of this, the majority of the postfusion S proteins were cleaved into the S2* protein and formed heat- and SDS-stable multimers that resemble the postfusion six-helix bundle. Furthermore, the kinetics of appearance of the biotinylated S2* protein coincided with the kinetics of virus

FIG 5 Protease inhibitors or lysosomotropic agents do not prevent S2* formation. (A) Biotinylated MHV-BAP (MHV-BAP*bio) progeny viruses were produced in LR7-BirA cells. Cells overexpressing the MHV receptor murine carcinoembryonic antigen-related cell adhesion molecule 1a (CCM) were infected with MHV-BAP*bio for 90 min. Immunoprecipitated S proteins were analyzed by Western blotting, and biotinylation was detected by using the streptavidin-HRP conjugate. The cleavage status of MHV-BAP*bio prior to infection was visualized by inoculating LR7-BirA with virus-containing cell culture supernatant for 2 h at 37°C and direct lysis without warming (first lane). (B) LR7-BirA target cells were pretreated with various broad-spectrum protease inhibitors for 30 min. Infection with MHV-BAP was allowed in the presence of protease inhibitors for 90 min, and sample preparation was subsequently performed in the absence of PP as described for panel A. (C) Same as panel B, except that infections were performed with MHV or MHV-BAP in the presence of HR2 fusion inhibitor, ammonium chloride (NH4Cl), or bafilomycin A1 (BafA). Lysates were prepared in the absence or presence of PP.
entry, as determined by monitoring the sensitivity of infection to the HR2 peptide fusion inhibitor. The size of the S2* protein indicates cleavage to occur in the S2' region just upstream of the putative FP. We could not determine the exact cleavage site by reverse genetics, and the low mass amounts of the S2* protein did not allow its identification by mass spectrometry. Deglycosylation of the S2* protein resulted in a heterogeneous product, suggesting that cleavage can occur at alternative sites in proximity to the S2' site. Protease inhibitors used to identify the protease responsible for S protein cleavage could not prevent the formation of the S2* subunit. Although the precise details of the cleavage process remain enigmatic, the appearance and characteristics of the S2* subunit support the idea that it represents the fusion-ready subunit.

Previous investigations of CoV fusion protein cleavage have monitored the infectivity of viruses or virus-like particles in the presence of protease inhibitors or after genetically modifying the fusion protein (14, 16, 21, 23, 36, 37). Many studies demonstrate cleavage of S proteins displayed on the cell surface by recombinant proteases, but only a few verify proteolysis in virus preparations upon exposure to recombinant proteases and soluble receptor (38, 39). These studies convincingly correlated cleavage of S protein with its membrane fusion capacity but failed to demonstrate cleavage during virus entry or identifying the fusion-competent subunit. In fact, the biochemical fate of viral glycoproteins on virions that are entering host cells at physiological MOIs is difficult to study. Given the limited amount of virus even at high MOIs, the significant fraction of noninfectious particles in each virus preparation, and the relatively low number of S proteins per virion, the specific detection of S proteins on successfully fusing virions is a great challenge. In the present study, we established a novel biochemical assay based on the conditional biotinylation of proteins to concentrate and purify MHV S proteins involved in functional virus-cell fusion events. This enables the identification and characterization of fused S proteins in combination with more classical experiments using site-directed mutagenesis and protease inhibitors. Our approach excludes contributions of nonfused virions and thus focuses on functional fusion events. Since the infecting virions take a physiological entry route, we do not rely on mimicking the fusion process by the addition of soluble receptor, exogenous protease treatment, or pH shock. The assay can be adapted to monitor the biochemical fate of structural virion components of any enveloped or nonenveloped virus upon entry.

The entry of various CoVs is supported by distinct proteases that can act at the plasma membrane of the target cell or in the endosomal compartments (10, 13). For MHV-A59, proteolytic processing at the S1/S2 junction enables efficient cell-cell fusion, resulting in syncytium formation (40), and mutagenesis of the cleavage site limits the syncytium size (23, 41). However, we showed earlier (22) and confirmed here by substituting all arginines at the S1/S2 junction, the S1/S2 cleavage is dispensable for fusion activity and virus infectivity. This is supported by observations with a natural isolate, MHV-2 (42), or with a cell-passaged MHV/BHK isolate (43), which both lack a genuine furin cleavage site and hence carry uncleaved S proteins on their virions. In our study, only small amounts of the S2 subunit were present on virions that had fused, suggesting that S2 is not the fusion-active form. Nevertheless, cleavage of MHV S protein at the S1/S2 junction may provide additional structural flexibility to increase the accessibility of a cleavage site for priming, as suggested earlier for SARS-CoV (36). It is possible that S proteins are processed into S2*, perhaps via a short-lived intermediate S2 form that is not detected. With fewer priming proteases on the cell surface than in the endolysosomal compartments, this may explain the cell-cell fusion inability of the MHV spikes lacking a functional furin cleavage site.

We observed that S protein cleavage upon MHV infection occurred downstream of the S1/S2 junction and released an S2* fragment of ~80 kDa, which is ~25 kDa smaller than the S2 subunit. Assuming this membrane-bound subunit to carry the membrane fusion function, we probed the S2* subunit for criteria of the fusion machinery. First of all, the S2* subunit was the most abundant S protein species observed after virus-cell fusion and hence likely to be involved in membrane fusion. We assume that S0 and S2 proteins decorate virions which failed to reach the cellular compartment where the appropriate stimuli and proteolytic activity occur for S protein activation. However, a limited number of virions reaches the fusion compartment, where a majority of S proteins are proteolytically processed and triggered for fusion. Second, S2* occurred in heat- and detergent-resistant multimers indicative of the characteristic class I postfusion six-helix bundle. Similarly, treatment of MHV-2 virions with soluble receptor, followed by protease treatment, revealed an equivalent pattern of S0, S2, and S2* (38). Cathepsin L and trypsin cleaved the S protein, yielding a 71-kDa fragment that appeared as a stable, postfusion form, similar to S2* (38). Proteolytic priming of the MHV-2 S proteins upon virus entry was earlier implicated by studies with inhibitors of endolysosomal proteases and lysosomotropic agents and by trypsin bypass experiments, but the actual processing in cells was not confirmed (6). In our study, proteolytic processing of the S protein and virus-cell fusion, as measured by intracellular biotinylation of the S protein and by an independent virus infection assay, occurred with similar kinetics. The HR2 peptide fusion inhibitor prevents virus from fusion by inhibiting 6-helix bundle formation (11). Consistently, it also prevented S proteins of incoming virions from becoming biotinylated, allowing us to discriminate the sequential order of cleavage and fusion. If cleavage is a prerequisite for the S protein to mediate fusion, then HR2 must take effect after the proteolytic event, and HR2 peptide indeed did not affect the cleavage of S protein. We argue, based on these findings, that the S2* fragment fulfills the criteria of the functional fusion protein.

The difference in molecular weight between the S2 and S2* subunits predicts the suspected cleavage site to map ~230 amino acids downstream of the S1/S2 junction. Furthermore, priming of the class I fusion proteins often occurs directly N terminal of the FP, which has been described as a conserved sequence of apolar amino acids in the CoV S protein (16, 36, 37). Both predictions point toward two critical arginine residues in the MHV S2 domain and, intriguingly, cleavage at the same position (S2*) has been implicated to enable SARS-CoV S protein fusion (8, 10). By analogy, we suspected the S2' cleavage site to be used in MHV-A59 S protein, but after mutagenesis of both arginines, the infectivity of MHV remained unaffected, and the S protein cleavage pattern upon fusion remained unaltered.

In an attempt to deduce the cleavage site from its molecular weight, we enzymatically removed the N-linked glycans of the S2* glycoprotein and analyzed its size. Although the deglycosylated S0 and S2 proteins were reduced to sharply defined products, S2* remained ill defined, migrating as a heterogeneous band ranging from 60 to 65 kDa. Assuming that the S2 and S2* product under-
went similar posttranslational modifications, the variable size of the S2* fragment can be best explained by promiscuous proteolytic cleavages, whereas S2 is formed by cleavage precisely at the S1/S2 junction. Heterogeneity of cleavage products might result from a certain degree of plasticity of S2’ cleavage either by the existence of alternative cleavage sites or by involvement of multiple or alternative proteolytic enzymes, analogous to the fusion activation of the SARS-CoV S protein (13). The plasticity of the cleavage site also suggests that cleavage directly adjacent to the FP may not be an absolute requirement for fusion.

In our search for the cleavage site, we applied broad-spectrum protease inhibitors to identify corresponding (classes of) proteases. Testing protease inhibitors in SARS-CoV entry highlighted the involvement of cathepsin L and eventually led to the identification of the cathepsin L cleavage site in the S protein (15, 17). In contrast to SARS-CoV, the protease inhibitors leupeptin and E64d and specific cathepsin L/B inhibitors failed to block MHV-A59 infection (6, 14). We observed no effect on the proteolytic processing of MHV S proteins for broad-range protease inhibitors targeting cysteine, aspartyl, serine, thiol, and metallo proteases. We conclude that heterogeneity of the S2* subunit, our failure to knockout the S2’ cleavage site by mutation, and the insensitivity of MHV toward individual protease inhibitors are all consequences of redundant proteases and/or multiple cleavage sites that mediate MHV S protein priming. However, a given protease inhibitor may not block all individual proteases of a specific class, and our inhibitor panel was lacking threonine protease inhibitors and aminopeptidase inhibitors that potentially prime the S protein (44). Plasticity in cleavage is further supported by the similarity of S protein processing in various cell lines and may confer flexibility to the virus in infecting different tissues (45). Alternatively, heterogeneous S2* fragment could be explained in analogy to filovirus fusion protein processing, which requires gradual trimming by low-pH-activated endosomal proteases to reach fusion competence (46). However, we did not observe an enrichment of a particular S2* species over time, and lysosomotropic agents did not prevent cleavage. Nevertheless, MHV S protein priming is a distinct event that is timed after virus attachment and before lysosomal degradation. Binding to cells alone (Fig. 3A, time course) or incubation of virus preparations with cell lysates (data not shown) was not sufficient to trigger the cleavage event. On the other hand, the application of lysosomotropic agents, which can prevent endosome maturation at higher concentrations, prevented the S protein signal from declining over time. The quantification of the different S forms after 90 min of inoculation in the absence or presence of NH₄Cl indicated that this lysosomal degradation equally affects all forms of S but did not block cleavage into the S2* subunit. Hence, the S2* fragment is not the product of an unspecified lysosomal degradation processes but is cleaved by cellular proteases that are active prior to fusion and before degradation in the lysosomal system.

All class I viral fusion proteins have to minimally meet two requirements to accomplish fusion: proteolytic priming and triggering of membrane fusion. Priming by cleavage is a common maturation step to bring fusion proteins into the fusion-ready, metastable form (1, 2). Our data suggest that the S2* subunit represents primed MHV-A59 S protein and indicate, in combination with other observations, that many—if not all—CoV fusion proteins need cleavage to achieve the fusion-ready form (6, 8, 20, 39). In contrast to many typical class I fusion proteins, priming of S proteins does not occur in the producer cell; cleavage in the target cell provides an extra level of spatial and temporal control of virus fusion. Thus, MHV receptor-induced conformational changes are initiated at the target cell, exposing a proteolytic cleavage site (19, 38, 47). SARS CoV S proteins require a first cleavage to facilitate a consecutive cleavage that then renders the S protein fusion competent (36). Nevertheless, an additional trigger of unknown nature is probably necessary to initiate the membrane fusion, since we could block virus-cell fusion, using lysosomotropic agents, but not S protein cleavage. Low pH in the endolysosomal compartment may itself be a trigger but may as well be necessary for priming by low-pH-activated proteases (14, 48, 49). Triggers of an alternative nature seem, however, more likely because the infection of some CoVs can be bypassed using recombinant proteases without a pH decrease, whereas syncytium formation typically occurs at neutral pH (6, 20, 22, 39, 40). In summary, the priming of S proteins plays a pivotal role in the temporal and spatial regulation of CoV entry. With the conditional biotinyla- tion assay described here, the priming events that occur after receptor binding and depend on cellular proteases can be characterized in detail.

ACKNOWLEDGMENTS

We acknowledge Zou Yong for kindly providing Vero CCL-81 cells. This study was supported by EU Framework 7 program PITN-GA-2009-235649-Virus Entry.

REFERENCES

12. de Haan CA, Hajjema BJ, Schellen P, Wichgers Schreur F, te Lintelo E,

