This week in therapeutics

<table>
<thead>
<tr>
<th>Indication</th>
<th>Target/marker/pathway</th>
<th>Summary</th>
<th>Licensing status</th>
<th>Publication and contact information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Infectious disease</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Coronavirus | Coronavirus NSP6 protein (nsp6) | Cell culture studies suggest targeting nsp6 could help treat coronavirus infection. In a chemical screen using normal human lung cell lines, a small molecule called K22 inhibited replication caused by a pathogenic strain of human coronavirus with an IC$_{50}$ value of 0.7 µM. In human airway epithelial cells, K22 decreased replication of various coronavirus strains including Middle East respiratory syndrome coronavirus (MERS-CoV) compared with vehicle. In culture, coronavirus strains with nsp6 mutations were resistant to K22, suggesting the compound targets that protein. Next steps include optimizing the activity of K22 and elucidating the biological function of NSP6. | Unpatented; licensing status not applicable | Lundin, A. *et al.* PLoS Pathog.; published online May 29, 2014; doi:10.1371/journal.ppat.1004166
Contact: Edward Trybala, University of Gothenburg, Gothenburg, Sweden
e-mail:
edward.trybala@microbio.gu.se
Contact: Volker Thiel, Kantonal Hospital St. Gallen, St. Gallen, Switzerland
e-mail:
volker.thiel@vetsuisse.unibe.ch |

SciBX 7(25); doi:10.1038/scibx.2014.741
Published online June 26, 2014