Short communication

Severe acute respiratory syndrome coronavirus accessory proteins 6 and 9b interact in vivo

Enrique Calvo a,1, Marta L. DeDiego b,1, Pilar García c, Juan A. López a, Pilar Pérez-Breña c, Ana Falcón c,∗

a Unidad de Proteómica, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
b Centro Nacional de Biotecnología (CNB), CSIC, Madrid, Spain
c Unidad de Virus Respiratorios, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Madrid, Spain

A R T I C L E  I N F O
Article history:
Received 19 April 2012
Received in revised form 11 July 2012
Accepted 12 July 2012
Available online 20 July 2012

Keywords:
SARS coronavirus
Protein 6
Protein 9b
Protein–protein interactions
LC–MS

A B S T R A C T
The 3′ proximal one-third of the severe acute respiratory syndrome coronavirus (SARS-CoV) genome encodes the structural proteins and eight accessory proteins, including 3a, 3b, 6, 7a, 7b, 8a, 8b and 9b, varying in length from 39 to 274 aa which do not share significant homology with viral proteins of known coronaviruses. The SARS-CoV protein 6 is 63 amino acids in length and has been previously involved in virus pathogenicity and replication. To further analyze this functions, the interaction of SARS-CoV protein 6 with other viral and/or cellular factors has been analyzed during SARS-CoV infective cycle. Protein 6 immunoprecipitation from extracts of SARS-CoV infected cells and mass spectrometry analysis revealed an interaction of viral proteins 6 and 9b in biologically relevant conditions. This interaction has been reinforced by co-localization of both proteins in the cytoplasm of SARS-CoV infected cells.

© 2012 Elsevier B.V. All rights reserved.

Severe acute respiratory syndrome (SARS) has affected more than 8000 individuals and caused more than 800 deaths in 26 countries since the first case emerged in China in November 2002. The etiological agent of this disease was found to be a previously unknown coronavirus (SARS-CoV) (Drosten et al., 2003; Fouchier et al., 2003; Ksiazek et al., 2003; Lee et al., 2003; Peiris et al., 2003; Rota et al., 2003). In the last years SARS-CoV like viruses have been found circulating in bats from several continents (Drexler et al., 2010; Lau et al., 2005; Quan et al., 2010; Rihtari et al., 2010) and bats have been described as putative reservoirs of SARS-CoV (Calisher et al., 2006; Li et al., 2005). Thus, the possibility of SARS reoccurrence remains.

Coronaviruses are a family of enveloped viruses with an infectious single-stranded positive-sense RNA genome of ~30 kb. The SARS-CoV genome organization is similar to that of other coronaviruses. The 5′-proximal two-thirds of the genome encode gene 1, essentially involved in viral RNA synthesis, whereas the 3′-proximal one-third of the genome encodes the structural proteins (spike, S; envelope, E; membrane, M and nucleocapsid, N) and eight accessory proteins (3a, 3b, 6, 7a, 7b, 8a, 8b and 9b) varying in length from 39 to 274 aa, which do not share significant homology with viral proteins of known coronaviruses (Narayanan et al., 2008). Some of these accessory proteins, 3a, 6, 7a, 7b and 9b have been described as structural proteins (Huang et al., 2006, 2007; Ito et al., 2005; Schaecher et al., 2007; Xu et al., 2009). Although the function of many of the accessory proteins remains unclear, SARS-CoV protein 6 is one of the best characterized accessory proteins. SARS-CoV protein 6 is 63 amino acids in length, its mRNA is present in SARS-CoV infected cells (Snijder et al., 2003) and a minimal transcription regulatory sequence is located upstream of the gene 6 open reading frame (ORF6). Evidence for the presence of protein 6 in clinical specimens has been provided (Chan et al., 2005), and antibodies against its C-terminus have been detected in SARS patients sera (Chow et al., 2006). Protein 6 has been found to localize to the rough endoplasmic reticulum (ER) and Golgi apparatus in transfected cells and in a vesicle-associated intracellular distribution in SARS-CoV infected cells (Geng et al., 2005; Gunalan et al., 2011; Kumar et al., 2007; Pewe et al., 2005). Analysis of a recombinant mouse hepatitis virus (MHV) encoding SARS-CoV protein 6 has demonstrated that it enhances virulence of an attenuated murine coronavirus (Pewe et al., 2005). Protein 6 co-immunoprecipitates with viral RNAs and accelerates replication of a mouse coronavirus (Tangudu et al., 2007). Previous data have shown the intracellular membrane localization of protein 6 in recombinant MHV infected cells (Pewe et al., 2005) and suggested its possible role in the membrane-associated events of coronavirus replication cycle (Tangudu et al., 2007), including viral RNA
Fig. 1. Amino acid sequence and transmembrane domains of SARS-coronavirus proteins 6 and 9b. (A) Amino acid sequence of protein 6 is shown in black. The transmembrane domain is highlighted in gray. (B) Amino acid sequence of protein 9b. The amino acids involved in the hydrophobic lipid-binding tunnel are highlighted in gray.

Fig. 2. SARS-CoV protein 6 expression and subcellular localization. Vero E6 cells were infected with SARS-CoV (S) or mock-infected (M). At the hours post-infection indicated in the figure (h.p.i), cells were either fixed for immunofluorescence or total cell extracts were obtained in Laemmli buffer. (A) Total cell extracts were separated by SDS-PAGE and expression of nucleoprotein (N) and protein 6 (6) was analyzed by Western blot. (B) SARS-CoV infected cell cultures were fixed at 17 h.p.i. Confocal immunofluorescence of protein 6 and ER was developed with anti-PDI rabbit antibody (ER marker) and anti-protein 6 rat antibody. Data were visualized with Alexa Fluor 488-conjugated anti-rabbit (green) and TxBRed-conjugated anti-rat (red) antibodies. Co-localization of protein 6 in the ER is shown in yellow (merge). (C) Protein 6 expression was detected by immunofluorescence using an anti-protein 6 rabbit antibody and TxBRed-conjugated anti-rabbit antibody (a–c). DAPI (blue) was used for cellular nuclei staining (d–f). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)
synthesis (Gosert et al., 2002; Stertz et al., 2007), viral membrane protein synthesis, and virus assembly and secretion (de Haan and Rottier, 2005). More recently, protein 6 has been shown to induce membrane rearrangement and we demonstrated that it is required for optimal replication of SARS-CoV (Zhao et al., 2009; Zhou et al., 2010). Furthermore, it has been shown that protein 6 inhibits IFN-β synthesis and signaling (Kopecky-Bromberg et al., 2007) and may act as a cell death inducer (Ye et al., 2010). The amino acid sequence of protein 6 and its previously described transmembrane domain (Zhou et al., 2010) is shown in Fig. 1A.

The interaction of protein 6 with other viral proteins has been previously described, although most of these interactions are limited to two-hybrid or cotransfection assays (Pan et al., 2008; von Brunn et al., 2007). Only the co-localization of protein 6 with nsp8 has been described in SARS-CoV infected cells (Kumar et al., 2007).

The protein 9b is synthesized from an alternative reading frame of the N gene in SARS-CoV and is 98 amino acids in length. Antibodies against protein 9b have been found in patients, demonstrating that it is produced during infection (Qu et al., 2005). Expression of truncated 9b recombinant proteins in mammalian cells has previously revealed that protein 9b binds to cellular membranes and appears to be associated with intracellular vesicular structures, indicating a possible role in virus assembly via membrane association (Meier et al., 2006). Accordingly, protein 9b has been described as a virion associated protein (Xu et al., 2009), although its function remains to be fully characterized. The crystal structure of protein 9b indicates that this is an unusual membrane binding protein with a long hydrophobic lipid-binding tunnel (Meier et al., 2006). The amino acid sequence of protein 9b and the amino acids involved in this central hydrophobic cavity that binds lipid molecules are highlighted in Fig. 1B.

To elucidate protein 6-mediated function and to analyze any possible interaction of SARS-CoV protein 6 with other cellular and/or viral factors during the SARS-CoV viral infective cycle, a proteomic approach was carried out in SARS-CoV infected cells, which may offer more biologically relevant results than other methods and assays performed previously. Rabbit anti-protein 6 antibody and a pre-immune rabbit antibody were used for immunoprecipitation of mock and SARS-CoV infected cells. Vero E6 cells were SARS-CoV infected at an MOI of 8 or mock-infected as a control. All work was done by triplicate in biosafety level 3 containment facilities by personnel wearing positive-pressure air-purifying respirators (HEPA AirMate; 3M, Saint Paul, MN). To select the appropriate time post-infection to perform the interaction assays and to corroborate its subcellular localization during infection, a time course expression of protein 6 was monitored by Western blot and immunofluorescence assays at high multiplicity of infection (Fig. 2). Expression kinetic of protein 6 was monitored at various times post-infection in total cell extracts of SARS-CoV or mock infected cells by Western blot with rat anti-protein 6 antibody (Zhao et al., 2005). A specific band of 7 kDa was observed in SARS-CoV infected cell extracts (Fig. 2A, anti-protein 6) and this band was not observed in mock-infected extracts. SARS-CoV infection was corroborated monitoring nucleoprotein (N) expression (Imgenex), which appears as a double band of approximately 46 kDa (Fig. 2A, anti-nucleoprotein). Protein 6 was detected in SARS-CoV infected cells at least from 4 hours post-infection (hpi) (Fig. 2A, lane 2) and high levels of protein 6 were detected at 17 hpi (Fig. 2A, lane 4). To analyze the subcellular location of protein 6, rabbit anti-PDI as endoplasmic reticulum (ER) marker (Santa Cruz Biotechnology) (Fig. 2B, in green), and rat anti-protein 6 (Fig. 2B, in red) antibodies were used for confocal microscopy analysis. This assay revealed that protein 6 partially localized to the ER in SARS-CoV infected cells (Fig. 2B, merge). Thus, it has been shown that protein 6 is expressed at high levels from 17 hpi during the SARS-CoV infection cycle and that this protein indeed localized in the cytoplasm and partially to the ER of SARS-CoV infected cells at 17 hpi.

To perform interaction studies, a rabbit antibody specific for protein 6 was generated using the same methodology used to generate rat-anti-protein 6 antibody (Zhao et al., 2009). To corroborate rabbit anti-protein 6 antibody specificity, immunofluorescence analysis was carried out with rabbit-anti-protein 6 antibody at several times post-infection (Fig. 2C, boxes a, b and c, in red). DAPI staining was used as a control to localize the cell nucleus (Fig. 2C, boxes d, e and f, in blue). The rabbit antibody showed a specific signal only in infected cells and the subcellular distribution pattern of the signal is similar to that observed for protein 6 (Fig. 2B and Geng et al., 2005; Pewe et al., 2005), indicating that the antibody specifically recognized the protein 6.

To identify viral and cellular proteins that interact with protein 6, immune matrices were prepared by overnight incubation of protein A-agarose with either anti-protein 6 (anti-protein 6) or preimmune rabbit sera (anti-control). These matrices were incubated with soluble extracts from SARS-CoV infected (S) or mock-infected cells (M). (A) After washing, aliquots of total extracts (Input) or the immunoprecipitates were analyzed by Western-blot using anti-protein 6 rat antibodies. (B) The complexity of the total extracts (Input) and immunoprecipitated samples was analyzed by silver-staining. The arrows show the IgG and the arrowhead shows the protein A.
Fig. 4. Identification of SARS-CoV interacting 9b protein by LC–MS. (A) MS/MS spectrum from the doubly-charged ion at m/z 581.8 Da spanning the sequence LGSQ…SMAR, and corresponding to protein 9b from SARS-CoV. Figure displays the main fragmentation series (y-carboxy and b-ami-no). Water loss is marked with an (*). (B) Extracted Ion Chromatogram (EIC) of the SIM experiments monitoring the doubly-charged ions at m/z 581.8 (LGSQ…SMAR, left) and 725.3 (AFQSTPIVVQMTK, right). Upper and lower panels shows respectively the results from control and anti-6-immunoprecipitated SARS-infected cells preparations.

The remaining aliquots of resin-bound immunoprecipitated proteins were digested with 1 μg of modified porcine trypsin (Sequence grade, Promega) for 1 h at 37 °C under shaking conditions (1300 rpm). The reactions were stopped by adding acetic acid and the tryptic peptides were analyzed by LC–MS on an Esquire HCT Ultra ion-trap (Bruker-Daltonikks, Bremen, Germany) mass spectrometer following described procedures (Calvo et al., 2005). Despite the high amount of protein A in comparison with other proteins, a peptide was detected within the chromatogram in the SARS-CoV infected-sample immunoprecipitated with specific anti-protein 6 antibody (retention time at 34.1 min, not shown), but not in the control sample immunoprecipitated with a pre-immune sera. The comprehensive analysis of the corresponding MS/MS spectrum (Fig. 4A) unambiguously identified the sequence LGSQ…SMAR of the SARS-CoV protein 9b, with a Mascot score of 68, signifying individual ions scores > 57 identity or extensive homology (p < 0.05). This sequence represented 11% of protein coverage, a value which lies within described common values due to the short sequence of protein 9b. We attempted to use an anti-9b antiserum in Western blot to assays co-IP of 9b protein. However, this technique was not sensitive enough to detect 9b protein under these experimental conditions. To improve the obtained results by MS, a new set of samples was analyzed by LC–MS with a more sensitive scan mode (Single Ion Monitoring, SIM), which only analyses the indicated masses. Thus the selected 9b protein-derived ions can be detected and fragmented more efficiently. Masses at m/z 581.8 and 725.3, corresponding to doubly-charged peptides LGSQ…SMAR and AFQSTPIVVQMTK respectively, were monitored along the gradient. Both ions were properly detected and analyzed in the anti-6 immunoprecipitated samples but were not detected in the control samples immunoprecipitated with a pre-immune sera.
proteins 6 and 9b partially co-localize in the cytoplasm of SARS-CoV infected cells. Vero E6 cell cultures were SARS-CoV infected and were fixed and analyzed by confocal immunofluorescence. Three representative examples are shown (S.1–S.2 and S.3). SARS-CoV protein 6 was detected with rat anti-protein 6 antibody and visualized with Tx-Red-conjugated anti-rat antibody (a, f, k). SARS-CoV protein 9b was detected with mouse anti-protein 9b antibody and visualized with FITC-conjugated anti-mouse antibody (b, g, l). Merge images show the localization of proteins 6, 9b, and DAPI stained nucleus in blue (c, h, m). The masks show the partial co-localization of proteins 6 and 9b in the cytoplasm of SARS-CoV infected cells (d, i, n). The graphics show the quantification of co-localization signal (e, j, o). The asterisk shows a non-infected cell, as a control. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of the article.)

(Fig. 4B). All these data indicated that proteins 6 and 9b interact in vivo.

We detected for the first time the interaction of protein 6 with protein 9b using pull-down experiments during SARS-CoV infection. Previously, it has been described that SARS-CoV protein 6 interacts with karyopherin α2 and viral nsp8, nsp3 and 7b proteins (Frieman et al., 2007; Kumar et al., 2007; von Brunn et al., 2007), that have not been identified in this work. Because different techniques within this and the cited articles had been used, different results might emerge. Several SARS-CoV viral protein–protein interaction studies have shown different results depending on the technology used to perform them. Thus, two-hybrid assays carried out in mammalian cells have shown only partially overlapping results with those shown in yeast two-hybrid assays (Imbert et al., 2008; Pan et al., 2008; von Brunn et al., 2007). Surprisingly, even two different studies performing similar yeast two hybrid assays showed no overlapping interactions (Imbert et al., 2008; von Brunn et al., 2007). The presence of high levels of protein A in this work could hamper the detection of other previously described SARS-CoV protein 6-interacting proteins.

To corroborate the interaction between proteins 6 and 9b, confocal immunofluorescence assays were performed (Fig. 5). Mock and SARS-CoV infected Vero E6 cells were washed and fixed at 17 hpi with 10% paraformaldehyde for 20 min, and processed for immunofluorescence following described procedures (Garagortu et al., 2005). Cells were incubated with previously described rat and mouse antibodies specific for 6 and 9b proteins, respectively (Xu et al., 2009; Zhao et al., 2009). The preparations were mounted in Prolong reagent and analyzed by confocal microscopy using a Leica TCS SP5 laser scanning system. Images were acquired sequentially every 0.5 μm employing LAS AF 2.6.0 software (Leica Microsystems). To assess the extent of co-localization of fluorescence signals, quantitative analysis was performed using the same program. A minimum of 44 cells were analyzed and all of them showed an overlap coefficient >0.64, indicating a partial co-localization of both proteins. Three representative quantifications are shown in Fig. 5 (Fig. 5, mask and co-localization).

A cytoplasmic partial co-localization of proteins 6 and 9b during SARS-CoV infection was shown (Fig. 5, mask), which indicates that the two proteins are less than about 200 nm apart, reinforcing the notion that proteins 6 and 9b may interact in vivo. The expression of protein 9b in SARS-CoV infected cells was observed partially localized both in the cytoplasm and in the nucleus, in agreement with the described subcellular localization of recombinant 9b protein in transfected cells (Moshymskyy et al., 2007; von Brunn et al., 2007) and in SARS-CoV infected cells at similar hpi (Sharma et al., 2011) (Fig. 5, merge). The co-immunoprecipitation and partial cytosolic co-localization showed by the overlap coefficient of proteins 6 and 9b at 17 hpi is in agreement with the time kinetics shown for protein 9b during infection (Sharma et al., 2011). To corroborate that there is no cross-signal between the different channels used in the immunofluorescence assays, a non-infected cell is shown in Fig. 5 (Fig. 5, S.3 anti-6, anti-9b and merge).

We describe here an interaction of two viral proteins in vivo in SARS-CoV infected cells, where the conditions were the most likely to be biologically relevant. However, the possible existence of an additional factor mediating the interaction between proteins 6 and 9b during the infection remains to be elucidated, and


