The SARS coronavirus E protein interacts with the PALS1 and alters tight junction formation and epithelial morphogenesis

Kim-Tat Teoh, Yu-Lam Siu, Wing-Lim Chan, Marc A Schlüter, Chia-Jen Liu, J S Malik Peiris, Roberto Bruzzone, Benjamin Margolis, Béatrice Nal

From Institut Pasteur International Network Annual Scientific Meeting
Hong Kong. 22-23 November 2010

Inter cellular tight junctions define epithelial apico basal polarity and form a physical fence which protects underlying tissues from pathogen invasions. PALS1, a tight junction-associated protein, is a member of the CRUMBS3-PALS1-PATJ polarity complex, which is crucial for the establishment and maintenance of epithelial polarity in mammals. Here we report that the carboxy terminal domain of the SARS-CoV E small envelope protein (E) binds to human PALS1. Using co-immunoprecipitation and pull-down assays, we show that E interacts with PALS1 in mammalian cells and further demonstrate that the last four carboxy-terminal amino acids of E form a novel PDZ-binding motif that binds to PALS1 PDZ domain. PALS1 redistributes to the virion assembly site, where E is enriched, in SARS-CoV-infected Vero E6 cells. Ectopic expression of E in MDCKII epithelial cells significantly alters cellular polarity and induces formation of cysts with multiple lumens. We show that E expression delays formation of tight junctions and affects the subcellular distribution of the apical and tight junction markers GP135 and ZO-1, respectively. We speculate that hijacking of PALS1 by SARS-CoV E plays a determinant role in the disruption of the lung epithelium in SARS patients.

Author details
1HKU-Pasteur Research Centre, Hong Kong, Hong Kong SAR. 2Medizinische Klinik D, Universitätsklinikum Münster, D-48149 Münster, Germany. 3Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, MI 48109, USA. 4Department of Microbiology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR. 5Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI 48109, USA. 6Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR.

Published: 10 January 2011
doi:10.1186/1753-6561-5-S1-P79
Cite this article as: Teoh et al.: The SARS coronavirus E protein interacts with the PALS1 and alters tight junction formation and epithelial morphogenesis. BMC Proceedings 2011 5(Suppl 1):P79.

Submit your next manuscript to BioMed Central and take full advantage of:

- Convenient online submission
- Thorough peer review
- No space constraints or color figure charges
- Immediate publication on acceptance
- Inclusion in PubMed, CAS, Scopus and Google Scholar
- Research which is freely available for redistribution

Submit your manuscript at www.biomedcentral.com/submit

© 2011 Chan et al; licensee BioMed Central Ltd. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.