Subgenomic messenger RNA amplification in coronaviruses
Author(s): Hung-Yi Wu, David A. Brian and Peter Palese
Source: Proceedings of the National Academy of Sciences of the United States of America, Vol. 107, No. 27 (July 6, 2010), pp. 12257-12262
Published by: National Academy of Sciences
Stable URL: http://www.jstor.org/stable/20724237
Accessed: 05-02-2016 12:44 UTC

REFERENCES
Linked references are available on JSTOR for this article:

You may need to log in to JSTOR to access the linked references.

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.
Subgenomic messenger RNA amplification in coronaviruses

Hung-Yi Wu and David A. Brian

Departments of Microbiology and Pathobiology, University of Tennessee College of Veterinary Medicine, Knoxville, TN 37996-0845

Edited by Peter Palese, Mount Sinai School of Medicine, New York, NY, and approved May 17, 2010 (received for review January 14, 2010)

Coronaviruses possess the largest known RNA genome, a 27- to 32-kb (+)-strand molecule that replicates in the cytoplasm. During virus replication, a 3′-terminal nested set of five to eight subgenomic (sg) mRNAs are made that are also 5′-coterminal with the genome, because they carry the genomic leader as the result of discontinuous transcription at intergenic donor signals during (−)-strand synthesis when templates for sgRNA synthesis are made. An unanswered question is whether the sgRNAs, which appear rapidly and abundantly, undergo posttranscriptional amplification. Here, using RT-PCR and sequence analyses of head-to-tail-ligated (−) strands, we show that after transfection of an in vitro-generated, marked sgRNA into virus-infected cells, the sgRNA, like the genome, can function as a template for (−)-strand synthesis. Furthermore, when the transfected sgRNA contains an internally placed RNA-dependent RNA polymerase template-switching donor signal, discontinuous transcription occurs at this site, and a shorter, 3′-terminally nested leader-containing sgRNA is made, as evidenced by its leader–body junction and by the expression of a GFP gene. Thus, in principle, the longer-nested sgRNAs in a natural infection, all of which contain potential internal template-switching donor signals, can function to increase the number of the shorter 3′-nested sgRNAs. One predicted advantage of this behavior for coronavirus survivability is an increased chance of maintaining genome fitness in the 3′-one-third of the genome via a homologous recombination between the (now independently abundant) WT sgRNA and a defective genome.

By virtue of an RNA-dependent RNA polymerase (RdRp) template switch, coronaviruses, which include the severe acute respiratory syndrome (SARS) virus, generate a 3′-coterminal nested set of subgenomic mRNAs (sgmRNAs) that also contain the leader of the genome (1). The leader is 65–90 nt long, depending on the species of coronavirus, and the template switch likely occurs during synthesis of (−)-strand templates for sgRNA synthesis (2, 3) (Fig. 1, Upper), although some switching during (−)-strand synthesis (4) may occur as well (5). With few exceptions, sgmRNAs generated from 3′-proximal template-switching donor sites on the genome are progressively more abundant [up to 70-fold more at the peak time of RNA synthesis, at 6–8 h postinfection (6)] than those generated from 5′-proximal sites. The sgmRNAs are translated to virion structural proteins or to nonstructural accessory proteins, both of which may function as virulence factors or as inhibitors of host immune responses (7, 8).

The function of the common leader on sgRNAs is not known, but we postulated that if [in its (−)-strand form, called the antileader] serves as a promoter for sgRNA replication, providing a means for sgRNA amplification (6, 9). The replication model was deemed feasible because the antileader is longer than the reported <20 nt replication promoters in togaviruses and orthomyxoviruses (10, 11). The sgRNA replication hypothesis led to a search for (−)-strand copies of coronavirus sgRNAs in porcine transmissible gastroenteritis virus (TGEV) and bovine coronavirus (BCoV) (6, 9). The presence of sgRNA (−)-strands and their properties (6, 9) seemed to be consistent with a sgRNA replication model, because (i) the rates of appearance of sgRNA (+) and (−) strands were inversely related to their length (6, 9); (ii) sgRNA-length dsRNA replicative intermediates [also called transcriptive intermediates (12)] were found that were (presumably iteratively) active in (−)-strand sgRNA synthesis in TGEV and mouse hepatitis coronavirus (MHV) (9, 12–14); and (iii) the 3′-terminal 55 nt and poly(A) tail together were found to be sufficient for (−)-strand synthesis from a defective interfering (DI) RNA in MHV (15).

Experiments that directly tested whether a reporter-containing sgRNA underwent replication after transfection into helper virus-infected cells did not support a sgRNA replication model for BCoV (16) or MHV (17), however. For BCoV, no accumulation of the reporter-containing 1.7-kb sgRNA (shown as sgRNA-1 in Fig. 2) was found when compared with that for a cotransfected helper virus-dependent replicon, a 2.2-kb DI RNA containing the same reporter (shown as DI RNA-1 in Fig. 2) (16).

In the present work, using BCoV as a model, we reexamined the potential for sgRNA amplification by a mechanism other than replication and postulated that if sgRNAs function as templates for (−)-strand synthesis as does the genome, then perhaps internal template-switching donor signals on the longer sgRNAs during (−)-strand synthesis would lead to production of shorter internally encoded sgmRNAs (Fig. 1, Lower). Using RT-PCR and sequencing of head-to-tail-ligated (−)-strand molecules, we demonstrated that a marked synthetic sgRNA can function as a template for (−)-strand RNA synthesis, and using RT-PCR sequencing of leader–body junctions and expression of a reporter GFP from a sgRNA, we demonstrated that a template-switching signal within the sgRNA can lead to the generation of a shorter internally nested sgRNA. We found no evidence to indicate that the transfected sgRNAs within the 24–72-h duration of the experiments, in the absence of experimentally applied selection pressures, had recombined with the helper virus genome in such a way as to generate the shorter reporter-containing sgRNA from the genome. Our findings indicate that in principle, coronaviral sgmRNAs, once made from the genome, can be amplified by acting as templates for a cascading transcription process. We speculate about the biomedical implications of this behavior, including how it might aid in the survival of the large coronavirus genome.
Fig. 1. Model for coronavirus subgenomic mRNA amplification. (Upper) Model for generating sgmRNA (−)-strands (dashed gray line) from the viral genome (solid black line) during (−)-strand synthesis. In this model, the coronaviral RdRp pauses at intergenic template-switching donor signals (vertical black bars) and is transferred by a copy-choice mechanism to a highly similar acceptor site near the 5' end of the genome to copy the 5'-terminal leader. In this way, a complete (−)-strand template for sgmRNA A synthesis is made. Synthesis of a full-length (−)-strand (the antigenome, not depicted) would be used for genome replication. (Lower) The model for subgenomic mRNA amplification tested in this study. This model proposes that the RdRp sees the sgmRNA (solid black line) as a small genome, initiates (−)-strand synthesis on it, and switches template at an internal intergenic copy-choice signal to make a (−)-strand template (dashed gray line) to synthesize a shorter internally nested sgmRNA. The leader is indicated by a filled box. An open box indicates the (−)-strand copy of the leader (called an antileader). Note that in this figure, sgmRNA 6 also will come from template switching on the viral genome (not depicted), as well as from sgmRNA 3 (depicted).

Fig. 2. Positive-strand RNA molecules used as templates for testing (−)-strand synthesis and sgmRNA production in helper virus-infected cells. At the top is a truncated diagram of the BCoV genome indicating its parts that are present in a naturally occurring BCoV defective interfering RNA (WT DI RNA). RNA molecules to be transfected were generated in vitro with T7 RNA polymerase from Miu I-linearized plasmid DNAs. Reporters T are A, a 30-nt in-frame sequence derived from the transmissible gastroenteritis coronavirus N gene; MHV 3' UTR, the 301-nt 3' UTR from mouse hepatitis virus-AS9; EGFP, the 720-nt GFP gene in the −1 reading frame with respect to the upstream DI RNA and N ORF5s; and gD, a 52-nucleotide sequence from the herpes simplex virus gD gene. IS denotes the 18-nt intergenic sequence containing the heptameric template-switching signal UCUAAGA. The 65-nt BCoV leader is identified by a solid black rectangle. The position of the 421 nt differentiating the DI RNA from sgmRNA 7 is shown.

Results

Transfected sgmRNAs Function as Templates for (−)-Strand Synthesis. Northern blot analyses have proven feasible for detecting BCoV sgmRNA 7 (−)-strand RNAs during natural infection, when the numbers of (+)-strand sgmRNAs range from ~20 molecules/cell for the viral genome to ~5,000 molecules/cell for sgmRNA 7 [the nucleocapsid (N) protein-encoding, 3'-terminal, and most abundant of eight sgmRNAs] at peak abundance (6–8 h postinfection) and the (−)-strand counterparts range from 20- to 50-fold less (6). These have not proven feasible for detecting the low numbers of sgmRNA (−) strands generated from DI RNA parents transfected into helper virus-infected cells where sgmRNA production for a given template-switching signal is far less robust; for example, for the sgmRNA 7 template-switching signal, it is ~13 molecules per cell from DI RNA, versus ~2,000 from the viral genome at 24 h postinfection (18). Therefore, identification of sgmRNA (−) strands made from transfected (+)-strand templates must rely on a more sensitive method, such as RT-PCR analyses, which demonstrate an increase in numbers over time, followed by sequence confirmation of the RT-PCR product.

To determine whether a (+)-strand sgmRNA transfected into BCoV helper virus–infected cells can function as a template for sgmRNA (−)-strand synthesis by viral RdRp, we used RT-PCR with cDNA-deduced BCoV sgmRNA 7 marked with the MHV 3' UTR (sgmRNA A in Fig. 2) to distinguish it from BCoV helper virus sgmRNAs. A 3'-proximal segment within the 301-nt MHV 3' UTR, nt number 46–156 from the 3' end [which differs by ~60% in sequence from the comparable region in the 288-nt BCoV 3' UTR (19, 20), and which is identified as a hypervariable region among
group 2 coronaviruses (19), was exploited for specific RT-PCR differentiation between BCoV and MHV 3’ UTRs (Fig. 3A). Despite this difference, BCoV DI RNA with the MHV 3’ UTR (DI RNA-2 in Fig. 2) replicated well (Fig. S1), as anticipated, because the BCoV 3’ UTR supports replication in the MHV genome (21); thus, we used it as a positive control for testing RdRp-dependent (−)-strand synthesis from transfected (+)-strand sgmRNA2-2 (described below).

Because T7 RNA polymerase generates transcripts in vitro that can be up to a 1% copy-back sequence (22) (Fig. 3B), direct RT-PCR sequencing of (−) strands obtained from cells cannot differentiate between (−) strands made by T7 RNA polymerase (before transfection) and (−) strands made by viral RdRp (after transfection). Thus, we carried out head-to-tail ligation of RNA from transfected cells and developed an RT-PCR primer set that uses the MHV 3’ UTR (−)-strand-specific primer (Fig. 3A) and a BCoV leader (+)-strand-specific primer (Fig. 3B) to detect the head-to-tail-ligated RdRp-generated ss(−) strands (Fig. 3B). These primers do not yield a product from copy-back RNA (Fig. 3B and control data described in Fig. 4). These experiments presumed that some fraction of the RdRp-generated sgmRNA(−) strands would be 5’ monophosphorylated and thus ligatable with T4 RNA ligase 1 (23). Although both circular [the expected predominant form (24)] and tandemly ligated molecules are possible after ligation, the results from both would lead to the same conclusion because of the specificity of the RT primer for the MHV 3’ UTR. A head-to-tail ligation method has been similarly applied to identify terminal features on influenza virus RNAs (24).

In BCoV-infected cells transfected with DI RNA-2 (the positive control) (Fig. 4A), a ~210-nt RT-PCR product from putative head-to-tail-ligated RdRp-generated (−)-strand RNA was found (Fig. 4B, lanes 9–14, arrowhead) that was not found in transfected mock-infected cells (Fig. 4B, lanes 2–7) or in control reactions with in vitro-ligated mixed components containing infected cell RNA and input DI RNA-2 (Fig. 4B, lanes 15–21). The sequence of the cDNA-cloned ~210-nt ligated product obtained at 12 h posttranscription (hpt) in BCoV-infected cells (Fig. 4B, lane 11) confirmed a head-to-tail molecule and demonstrated a 5’ poly(U) tail of ~30 nt (Fig. 4C). Interestingly, the 3’ terminus of the BCoV leader (−) strand was missing five 3’-terminal bases, consistent with an incompletely understood sequence hypervariability reported previously for the (+)-strand BCoV leader (25). In BCoV-infected cells transfected with sgmRNA2-2 RNA (Fig. 4D), a ~210-nt product from head-to-tail-ligated, putative RdRp-generated (−)-strand RNA was found (Fig. 4E, lanes 9–14, arrowhead) that was not found in transfected mock-infected cells (Fig. 4E, lanes 2–7) or in control reactions with in vitro-ligated mixed components containing infected cell RNA and input sgmRNA-2 (Fig. 4E, lanes 16–21). RT-PCR sequencing of the cDNA-cloned ~210-nt product obtained at 12 hpt (Fig. 4E, lane 11) confirmed a ligated head-to-tail (−) strand and also demonstrated a 5’-poly(U) tail of ~30 nt and a 3’-terminal 5-nt deletion (Fig. 4F). Strikingly, in contrast to the pattern seen for DI RNA, the sgmRNA(−) strands were expressed for a shorter period (6–18 hpt, with peak abundance at 12 hpt), suggesting that replication of the sgmRNA2-2 molecule might not occur or that if it does occur, it is short-lived.

These findings also suggest that the initiation of (−) strand synthesis is likely derived from a cleaved primer within the 5’ poly(U) tail, because the (−)-strand RNAs were ligatable with T4 RNA ligase 1 and thus necessarily 5’-monophosphorylated (23) (Discussion).

Because a high rate of homologous RNA recombination between coronavirus molecules is well documented (25% over the entire genome) (26–28), and, along with experimentally applied selection methods, served as the basis for the first reverse-genetics system developed in coronaviruses (1, 29, 30), we conducted concurrent analyses of the helper virus genome to search for evidence of a recombinant genome that might have given rise to the observed marked ligated (−)-strand molecules. For this, the 6- to 24-h samples from DI RNA-2 and sgmRNA2-2 that demonstrated head-to-tail–ligated (−) strands (Fig. 4 B and E) were tested by RT-PCR for a 1,639-nt 3’–proximal helper virus genome-integrated reporter–containing sequence between the membrane (M) protein gene and the 3’ UTR. This was done under PCR conditions (with a 90-s extension time vs. 30 s as used in Fig. 4 B and E) that can readily identify a 1,637-nt fragment from a helper virus genome (Fig. 5B, Top and Bottom, lane 15). None was found (Fig. S2A, lanes 2–9), leading us to conclude that

Fig. 4. Transfected sgmRNA2-2 marked with the MHV 3’ UTR functions as a template for (−)-strand synthesis. (A) Predicted results with transfected DI RNA-2 (control). (B) RT-PCR with primers described in Fig. 3B reveals a ~210-nt product of ligated (−)-strands from BCoV-infected cells (Center, arrowhead), but not from uninfected cells (Left) or from an in vitro ligation reaction with RNA from infected cells mixed with 1 ng of DI RNA-2 (Right). (C) Sequence of the cDNA-cloned ligated junction from 12 hpt (lane 11 of B, shown in the [−] strand), in which the MHV 3’ UTR (ending in . . . ATACAC . . .) with the poly(A) tail is shown to be joined to the 5’-base-truncated BCoV leader 5’ end (5’TGGAC . . .) (vertical bar). (D) Predicted results with transfected sgmRNA2-2. (E) RT-PCR reveals a ~210-nt product from ligated (−)-strands from BCoV-infected cells (Center, arrowhead), but not from uninfected cells (Left) or from an in vitro ligation reaction with RNA from infected cells mixed with 1 ng of sgmRNA2-2 (Right). (F) Sequence of the cDNA-cloned ligated junction from 12 hpt (lane 11 of E, showing the same features as the sequence depicted in C). M, ds DNA size markers in nt pairs.
Fig. 5. A short sgRNA is produced from transfected sgRNA1-3, which carries a transcription signal and EGFP gene. (A) Predicted results with DI RNA-3 (control). (B) RT-PCR reveals a 150-nt leader-body product from transfected BCoV-infected cells (lanes 17–24, arrowhead), but not from uninfected cells (lanes 2–11) or from infected cells alone (RT-PCR control a), from a mixture of RNA from infected cells at 13 h postinfection with 1 ng of DI RNA-3 (RT-PCR control b), or from an RT-PCR mix with primers alone (RT-PCR control c). The 150-nt RT-PCR product is not observed in cells infected with progeny helper virus passages 1 and 2 (lanes 25 and 26) or in blind passages from uninfected cells (lanes 12 and 13). A 1,757-nt RT-PCR product from input DI RNA-3 is identified with an asterisk. (C) Sequence of the cDNA-cloned 150-nt RT-PCR product from lane 21 in B showing the leader-body junction (vertical bar), the heptameric template-switching signal (underlined), and the AUG translation start codon (overlined) for EGFP. (D) Predicted results with sgRNA1-3. (E) RT-PCR reveals a 150-nt leader-body product from transfected BCoV-infected cells (lanes 17–24, arrowhead), but not from uninfected cells (lanes 2–11), from infected cells alone (RT-PCR control a), from a mixture of RNA from infected cells at 13 h postinfection with 1 ng of sgRNA1-3 (RT-PCR control b), or from an RT-PCR mix with primers alone (RT-PCR control c). The 150-nt RT-PCR product likewise is not observed in cells infected with progeny helper virus passages 1 and 2 (lanes 25 and 26) or in blind passages from uninfected cells (lanes 12 and 13). A 1,336-nt RT-PCR product from input sgRNA1-3 is identified with an asterisk. (F) Sequence of the cDNA-cloned 150-nt RT-PCR product from lane 21 in E showing the same features as described in C. (G) Fluorescence evidence of EGFP expression from the sgRNA1-3-encoded short sgRNA. Panels 1 and 3 are mock-infected cells transfected with DI RNA-3 and sgRNA1-3, respectively; panels 2 and 4 are BCoV-infected cells transfected with DI RNA-3 and sgRNA1-3, respectively. In all cases, cells were examined for fluorescence at 16 h posttransfection.
rus genome. In the first approach, RT-PCR tests on RNA extracted at 12 hpt from cells infected with progeny helper virus from transfected cells (identified as virus passages 1 and 2) demonstrated no evidence of the small reporter-containing sgRNA (Fig. 5 B and E, lanes 25 and 26). In the second approach, RT-PCR tests on RNA from the transfected cells described in Figs. 5 B and E, lanes 15–24, in which an upstream M gene–specific primer replaced the leader-specific primer 2 in three separate PCR primer combinations, demonstrated no evidence of a recombinant helper virus genome (Fig. S2B). Together, these results indicate that a longer sgRNA with an internal RdRp template-switching donor signal can serve as a template for generating shorter internally encoded sgRNAs.

Discussion

We have demonstrated two previously undescribed features of coronavirus sgRNA synthesis: (i) sgRNA (+) strands can function as templates for sgRNA (−)-strand RNA synthesis, and (ii) template-switching signals on sgRNA (+) strands can trigger synthesis of internally nested (+)-strand sgRNAs. The first finding is consistent with two previous reports describing putative requirements for initiation of (−)-strand synthesis in coronaviruses. Lin et al. (15) demonstrated by RNase protection assays that the 3′-terminal 55 nt along with the poly(A) tail in coronavirus DI RNA (and by implication, sgRNA) are sufficient for (−)-strand synthesis in vivo. Züst et al. (33) demonstrated, through genetic and phylogenetic evidence, that an intramolecular pairing between nine bases at the genome 3′ terminus and bases within loop 1 of the 3′ UTR pseudoknot mapping 220 nt upstream, even without the nt 30-170 sequence from the 3′ end, is required for MHV genome replication. The model of Züst et al. (33) proposes that the nine-base interaction is necessary for assembly of the replication complex and initiation of (−)-strand synthesis. These authors further suggested that this required base pairing might have occurred in trans in the earlier study of Lin et al. (15). Because the polyadenylated 3′ UTR on sgRNAs is identical to that on the genome, the 3′-proximal structural requirements for (−)-strand synthesis as defined previously (15, 33) would be expected to be met. The present study extends the observations on initiation of (−)-strand synthesis by showing that poly(U) is part of the nascent (−) strand. The identity of the primer used by the primer-dependent viral RdRp (nsp 12) remains unresolved by our experiments (34, 35). We presume that the 5′ monophosphorylated U enabling head-to-tail ligation by T4 RNA ligase 1 shown in Fig. 4 is the product of an as-yet-unidentifiedendonuclease, because initiation of coronavirus (−)-strand synthesis likely uses a 5′ triphosphorylated single nucleotide primer [as would be the case for de novo initiation (36)] or an oligonucleotide primer [as would be made by the viral primase (nsp 8) (37)]. The coronaviral endonuclease (EndoU) (nsp 15) is an unlikely candidate for this cleavage, because it leaves a 2′-3′ cyclic phosphate (38, 39) that is not ligatable with T4 RNA ligase 1 (23). The importance of the cleavage in the nascent (−) strand as observed here, if any, remains to be determined.

We did not extend our analyses to explore how the genome-specific 5′ proximal (+)-strand 421 nt differentiating DI RNA from sgRNA 7 (Fig. 2) (16) influences the initiation of (−)-strand synthesis. However, it is clearly not required in cis for initiation of sgRNA (−)-strand synthesis, as has been postulated (3), although it might function to enhance initiation. Certainly the 5′-proximal 421-nt sequence contributes to long-term accumulation of DI RNA compared with sgRNA 7 (Figs. 4 and 5) (16), suggesting that some feature within it might be required for the initiation of new (+)-strand synthesis. The (−)-strand complement of the 421 nt, for example, might function to anchor the (−)-strand template within the membranous replication/transcription complex for reiterated (+)-strand synthesis, as has been suggested for the (−)-strand of tomato bushy stunt virus (40, 41). In the absence of an anchor, sgRNA (−) strands might be ushered from the replication/transcription compartment and thus provide only a short-term template function. To the best of our knowledge, the only report of posttranscriptional sgRNA replication is that for flock house virus (42), so these features might prove instructive for further analysis of coronavirus sgRNA.

Our second finding indicates that the larger sgRNAs transcribed from the genome via the template-switching process could themselves serve as donor templates for discontinuous transcription and the generation of internally nested sgRNAs, as depicted in Fig. 1. Lower. This mechanism likely would contribute to the progressively greater abundance of the 3′-proximal sgRNAs. It also suggests that RdRp template-switching rates at signaling sites on the sgRNA would be influenced by the flanking and other more distant enhancer elements known to affect template switching on the genome (31, 43–47).

We envision the biomedical implications of sgRNA amplification in coronaviruses to include the following:

(i) A cascading mechanism for sgRNA production would relieve pressure on the large genome as the sole template for sgRNA synthesis and thus might facilitate genome length (−)-strand synthesis.

(ii) A rapid appearance of large numbers of sgRNAs encoding virulence factors, whether the resulting proteins act directly to cause lesions (8) or indirectly to inhibit host immune responses (7), could significantly enhance early disease development.

(iii) Although copy-choice recombination between the transfected marked sgRNAs and helper virus genome was not observed in the experiments of short duration performed here, much experimental evidence documenting coronavirus recombination has unequivocally established that it would occur over time and under selective pressures (27–30, 48). Furthermore, recombination between coronavirus genome and sgRNAs occurring during natural infections has been offered as an explanation for the skewing of higher recombination rates toward the 3′ end of the MHV genome (28, 48). Thus, we postulate that a pool of sgRNAs having been amplified posttranscriptionally from a fit genome could recombine with a postranscriptionally (mutated) debilitated genome to restore fitness. The demonstration that coexpressing subgenome-length defective picornavirus RNA molecules can give rise to a full-length fit standard virus genome through recombination (49) lends support to this idea. Thus, a sgRNA-assisted, recombination-based fitness restoration mechanism as postulated here could, along with a proofreading function for the coronavirus-encoded 3′-5′ exoribonuclease (NendU; nsp 14) (50), contribute significantly to the survival of the largest known viral RNA genome.

Materials and Methods

Plasmid Construction, In Vitro T7 RNA Polymerase Synthesis of Marked DI RNAs and sgRNAs, Transfection, and Virus Propagation.

Construction of pDI RNA-1 and sgRNA-1.1 (formerly called pDrDep1 and pNRep2, respectively) (Fig. 2) have been described previously (16). pDI RNA-2 and sgRNA-2 (Fig. 2) were made by replacing the 288-nt 3′ UTR of BCV-Mebus (GenBank accession no. U00735) in pDI RNA-1 and sgRNA-1.1 with the 301-nt 3′ UTR of MHV-AS9 (GenBank accession no. NC_001846) from fragment G DNA (51). pDI RNA-3 and sgRNA-3 (Fig. 2) are identical to pDI RNA-1 and sgRNA-1.1, respectively, except that inserted at the Nils site is an 836-nt sequence containing, in order, an 18-nt intergenic sequence harboring the underlined heptameric template-switching signal (5′-AAATACTCAAAGTTAAGG-3′), the 720-nt EGFP gene including a stop codon (from pmRES1-EGFP DNA [Clontech]), a 6-nt Kpnl recognition sequence, and a 92-nt HSV 1-dg epitope-encoding sequence (31). In both pDI RNA-3 and sgRNA-3, the EGFP gene is in the −1 reading frame with respect to the upstream DI RNA and N gene coding regions. For each, uncapped T7 RNA polymerase transcripts were made from plasmid linearized with MluI (Fig. 2), treated with

Wu and Brian

PNAS | July 6, 2010 | vol. 107 | no. 27 | 12261

This content downloaded from 194.27.18.18 on Fri, 05 Feb 2016 12:44:14 UTC
All use subject to JSTOR Terms and Conditions
RNase-free DNase (Promega), and chromatographed through a BioSpin 6 column (Bio-Rad) before use in transfection (18). BC0V was propagated on human retinal tumor (HRT)-18 cells, and MVH was propagated on delayed brain tumor (DBT) cells (18, 20). For transfection, HRT in 35-mm dishes at ~80% confluence (~1 × 10^6 cells/dish) was infected with BC0V at a multiplicity of infection of 5 PFU per cell and transfected 1 h later with 600 ng of transcript RNA using Lipofectin (Invitrogen). (16).

Head-to-Tail Ligation of Viral (--) Strand RNA Products and Analysis of the Junction. RNA was extracted with TRIzol (Invitrogen), and one fourth of the volume from one plate (10 μg total per plate) in 25 μL of water was heat-denatured at 65°C for 5 min and then quick-cooled on ice. Then 3 of 10x ligase buffer and 2 U (in 2 μL) of T4 RNA ligase 1 (New England Biolabs) were added, and the mix was incubated for 16 h at 16°C. Phenol-chloroform-extracted ligated RNA in 20 μL of reaction buffer was used for the RT reaction with SuperScript II reverse-transcriptase RNA syntheses (Invitrogen) and primer BCV2649-532(--) (Table 1), and RT primer in Fig 4, which binds 99–122 nt from the poly(U) tail in the (--) strand of the MVH-ASV 3′ UTR. In this, 5 μL was used in a 50-μL PCR with AccPrime Taq DNA polymerase (Invitrogen), primer BCV2649-532(--) (Table 1), primer 2 in Fig 4, which binds nt 29–54 in the (--) strand of BCoV, and primer MVH3UTR199–122(--) (Table 1). The resulting mixture was heated to 94°C for 2 min, then subjected to 34 cycles of 30 s at 94°C, 30 s at 55°C, and 30 s at 72°C. The -210-bp PCR product resolved by a nondenaturing agarose (2.5%) gel electrophoresis was sequenced either directly or after cloning into TOPO XL PCR (Invitrogen).

Leader-Junction Sequence Analyses of (+)-Strand sgRNAs Derived from Transfected DI RNA and sgRNA. RNA was extracted with TRIzol, and RT-PCR reactions were carried out with oligonucleotide 5 GD(+) (Table 1) the RT primer in Fig 5 which binds within the (--) strand of the partial HSV 1 GD gene (31) for RT, oligonucleotide leader20C(+) (Table 1) (primer 2 in Fig 5 which binds the 3′-terminal 20 nt within the (--) strand of the BCoV leader), and oligonucleotide EGFP2(+) (Table 1) [primer 3 in Fig 5 which binds the (--) strand of the EGFP gene] for PCR. RT-PCR was carried out as described for head-to-tail ligation assays, except that 5 μL of the RT reaction mixture was used in a 50-μL PCR mix that was heated to 94°C for 2 min and then subjected to 29 cycles of 30 s at 94°C, 30 s at 55°C, and 90 s at 72°C. The agarose gel-purified -150-bp PCR products were sequenced either directly or after cloning into TOPO XL PCR (Invitrogen).

ACKNOWLEDGMENTS. This work was funded by US Public Health Service Grant AI4367 and the University of Tennessee, College of Veterinary Medicine Center of Excellence in Livestock Diseases and Human Health.