Workshop/poster session 8: Pathogen evasion of the host cytokine response

236 SARS-coronavirus inhibits interferon induction both at pre- and post-transcriptional levels

Thomas Kuri 1, Xiaonan Zhang 2, Luis Martinez-Sobrino 3, Adolfo Garcia-Sastre 3, Zhenghong Yuan 2, Friedemann Weber 1, 3 Department of Virology, University of Freiburg, D-79085 Freiburg, Germany, 7 Key Lab of Medical Molecular Virology, Fudan University, Shanghai, China, 3 Mount Sinai School of Medicine, NY, USA

Severe acute respiratory syndrome (SARS) is caused by a novel coronavirus termed SARS-CoV. We have previously shown that SARS-CoV has the ability to prevent the activation of IRF-3, thus inhibiting the synthesis of the antiviral type I interferons (IFN) such as IFN-beta. Several unspecific as well as IFN-3-specific IFN antagonists of SARS-CoV have recently been identified. However it was also suggested that cells may simply be unable to detect the infection, because the virus is hiding in compartments surrounded by a double layer of membranes. Here, we demonstrate that this balance of viral hiding and preventing the activation of the cellular defense mechanisms can be tipped by pretreating cells with small amounts of IFN-alpha. By exploiting this priming effect, we were able to achieve an induction of IFN-beta and several other antiviral genes in response to infection with SARS-CoV. Surprisingly however, neither IFN nor other cytokines were secreted into the supernatant, although the corresponding mRNAs were clearly upregulated, whereas expression of endogenous proteins remained unaffected. These findings indicate that SARS-CoV does also inhibit a step following transcription of antiviral genes, most probably by inhibiting the secretion of cellular proteins. Thus, SARS-CoV displays a wide range of measures to counteract the type I IFN response at multiple levels.


237 Reovirus inhibits interferon signaling through a novel mechanism involving nuclear accumulation of IRF9

Barbara Sherry 1, Jennifer Zurney 2, Takeshi Kobayashi 2,4, Geoffrey H. Helm 5,4, Terence S. Dermody 2,4, 5 Department of Molecular Biomedical Sciences, North Carolina State University, NC, USA, 2 Department of Microbiology, North Carolina State University, NC, USA, 3 Department of Pediatrics, Vanderbilt University School of Medicine, Nashville, TN, USA, 4 Department of Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, USA, 5 Department of Infectious Diseases, The Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University School of Medicine, Nashville, TN, USA

The secreted cytokine interferon-alpha/beta (IFN-α/β) binds its receptor to activate the Jak-STAT signal transduction pathway, leading to formation of the hetero-trimeric IFN-stimulated gene factor 3 (ISGF3) transcription complex, for induction of IFN-stimulated genes (ISGs) and establishment of an antiviral state in the cell. Many viruses have evolved countermeasures to inhibit this IFN pathway, thereby subverting the innate antiviral response. Here we demonstrate that the mildly myocarditic EMCV inhibits interferon signaling. The secreted cytokine interferon-related antiviral factor (IRF9) nuclear accumulation associated with viral subversion of the IFN response, and provide evidence that virus strain-specific differences in IFN antagonism are a determinant of disease.


238 Innate immune response triggered by influenza A virus is negatively regulated by suppressor of cytokine signalling (SOCS)1 and SOCS3 through a RIG-I/IFNAR1-dependent pathway

Julien Pothicier, Michel Chignard, Mustapha Si-Tahar, Unité Défense Innée et Inflammation, Inserm U74, Institut Pasteur, 25 rue du Dr. Roux, 75015 Paris, France

Influenza A virus (IAV) triggers a contagious respiratory disease that produces considerable lethality. Although this lethality is likely due to an excessive host inflammatory response, the negative feedback mechanisms aimed to regulate such response are unknown. Here, we investigated the role of the eight “suppressor of cytokine signaling” (SOCS) regulatory proteins in IAV-triggered cytokine expression in human respiratory epithelial cells. SOCS1–SOCS7, but not cytokine inducible ssc homolog 2-containing protein (CIS), are constitutively expressed in these cells and only SOCS1 and SOCS3 expression is up-regulated upon IAV challenge. Using distinct approaches affecting the expression and/or the function of the IFNα/β receptor (IFNAR1), the viral sensors TRIF and RIG-I as well as MAVS (a RIG-I signaling intermediate), we demonstrated that SOCS1 and SOCS3 up-regulation requires a TRIF-independent, RIG-I/ MAVS/IFNAR1-dependent pathway. Importantly, using vectors overexpressing SOCS1 and SOCS3, we revealed that while both molecules inhibit antiviral responses, they differentially modulate inflammatory signaling pathways.


239 PML is cleaved and degraded in EMCV-infected cells

Bouchra M’chichi, Tarik Regad, Laurent Danoux, Yann Percheranier, Mourouma K. Chelbi-Alix, CNRS FRE 2937, Institut André Lwoff, 7 rue Guy Morlet, 94801 Villejuif, France

The interferon-induced ProMyelocytic Leukaemia (PML) protein localises both in the nucleoplasm and in matrix-associated multi-protein complexes known as nuclear bodies (NBs). NBs are disorganised in acute promyelocytic leukaemia or during some viral infections, suggesting that PML NBs could be a part of cellular defence mechanisms. PML is expressed as a family of isoforms (PML 1–VII) as a result of alternative splicing from a single gene. We have shown that PMLII isoform expression in CHO and U373MG cells confers resistance to Vescicular Stomatitis Virus, influenza virus and Human Foamy Virus but not to Encephalomyocarditis Virus (EMCV). EMCV counteracts this antiviral defense by inducing its degradation both in cells stably expressing PMLII or in IFN-treated cells. Indeed, EMCV infection induced PML transfer from the nucleoplasm to the nuclear matrix and PML SUMOylation. Cleavage of PML is carried out by the EMCV 3C protease which colocalises with PML within the NBs. Degradation of PMLII during EMCV infection required its RING domain, its C-terminal region and its sumoylation, this process occurs in a proteasome- and caspase-dependant manner. EMCV-induced PML degradation may be a mechanism to antagonize IFN-induced antiviral state.

E-mail address: mchelbi@vijf.cnrs.fr (M.K. Chelbi-Alix)