Effects of a SARS-associated coronavirus vaccine in monkeys

The causative agent of severe acute respiratory syndrome (SARS) has been identified as a new type of coronavirus. Here, we have investigated the ability of adenoviral delivery of codon-optimised SARS-CoV strain Urbani structural antigens spike protein S1 fragment, membrane protein, and nucleocapsid protein to induce virus-specific broad immunity in rhesus macaques. We immunised rhesus macaques intramuscularly with a combination of the three Ad5-SARS-CoV vectors or a control vector and gave a booster vaccination on day 28. The vaccinated animals all had antibody responses against spike protein S1 fragment and T-cell responses against the nucleocapsid protein. All vaccinated animals showed strong neutralising antibody responses to SARS-CoV infection in vitro. These results show that an adenoviral-based vaccine can induce strong SARS-CoV-specific immune responses in the monkey, and hold promise for development of a protective vaccine against the SARS causal agent.

The Lancet 2003; 362: 1895–96

Events of the past year have shown that a new and deadly disease has become epidemic. The syndrome, called severe acute respiratory syndrome (SARS), has spread to many countries on several continents and has taken its toll in illness and death. Through the efforts of an international consortium of laboratories, the causative agent of SARS was identified as a new type of coronavirus. In less than 2 months after the SARS-associated coronavirus (SARS-CoV) was identified, the genomic sequences of two independently isolated viruses were completed.1 Here, we report our initial efforts to develop a SARS-CoV vaccine. We generated three adenoviral-based vectors that express codon-optimised SARS-CoV strain Urbani structural antigens, including the spike protein S1 fragment, membrane protein, and nucleocapsid protein. We constructed adenoviral vectors in which early regions 1 and 3 had been deleted by use of Cre-lox recombination. Codon optimisation and gene synthesis were done with the UpGene codon optimisation algorithm software (http://www.vectorcore.pitt.edu/UpGene.html). Combinations of spike, membrane, and nucleocapsid proteins have been tested previously as vaccines against different strains of coronavirus. In particular, induction of high concentrations of virus-specific antibodies against transmissible gastroenteritis requires stimulation by at least two viral proteins, and the best responses are induced by a combination of spike and nucleocapsid proteins.2

Here, we immunised six rhesus macaques intramuscularly on day 0 with a combination of the three Ad5-SARS-CoV vectors (1×10¹ⁱ viral particles each); two control animals were immunised with the same amount of empty adenoviral vector. On day 28, animals received a second vaccination with the same regimen. We monitored all animals for T-cell and antibody responses. The rhesus macaque was chosen for these studies because it is a highly relevant translational model for people. Immunological assays including the ELISPOT assay have been well characterised and validated in this model.

We did western blot analysis directed toward the spike protein S1 fragment—the most likely to elicit neutralising responses—on serum samples from immunised animals. We transfected HEK293 cells with expression plasmids encoding the S1 fragment or a control empty plasmid, and cells were harvested 48 hours later. Lysates were separated by gel electrophoresis and transferred to a polyvinylidene difluoride (PVDF) membrane. Antibodies against the S1 fragment were detected by immunoprobing with immunised animal serum (1 in 1000), followed by detection with horseradish peroxidase-conjugated goat antimouse IgG (H+L). Western blot analysis detected antibodies against the S1 fragment in all six immunised animals but not in either control animal at 6 weeks after vaccination (figure 1). To investigate T-cell responses in immunised monkeys, we did ELISPOT assays to measure production of interferon-γ on peripheral blood mononuclear cells obtained at intervals after vaccination as described.3 We used 15-mer overlapping peptides as antigens, which represented the complete sequence of the SARS-CoV strain Urbani nucleocapsid protein. We chose the nucleocapsid protein because it is a representative antigen for the T-cell response in this vaccine setting. All animals receiving intramuscular injections of Ad5-SARS-CoV vaccine showed nucleocapsid-specific T-cell responses in response to immunisation (figure 2). The intensity of the response varied among animals, but was generally largest after the booster vaccination, with a peak frequency of about one nucleocapsid-specific T cell per 2000 freshly isolated peripheral blood mononuclear cells (monkeys 13601 and 1201; figure 2).

Finally, we tested the neutralising capacity of serum samples from immunised monkeys in an in-vitro micro-neutralisation assay. All procedures were done at biosafety level 3. We diluted heat-inactivated serum samples serially and seeded them in triplicate into 96-well plates. We then added about 37 plaque forming units of SARS-CoV (Urbani 71 kd—)

Figure 1: Western blot analysis of immunised (1699, 1201, 1401, 11300, 13601 and 15101) and control (1901 and 2001) monkeys

Bands indicate presence of S1-specific antibodies in serum.
Our results show that an adenoviral-based vaccine can induce SARS-CoV-specific T-cell and virus neutralising antibody responses. It is essential to determine whether patients convalescing from SARS have similar responses, since this could suggest that such vaccine-induced responses are protective. The capacity for our immunisation strategy to protect from infection will require challenge tests in a clinically relevant SARS disease animal model. Use of such a model will also be important to exclude any potential for vaccine-induced immunopathology, as seen in the feline infectious peritonitis virus model. A non-human primate challenge model of SARS has been described, although its suitability for vaccine testing remains to be determined.

Contributors

W Gao and L D’Aauto generated the codon-optimised SARS-CoV proteins and recombinant adenoviral vectors, and did the western blot analyses. W Bellini and A Tamin did the SARS-CoV microneutralisation assay. S Barratt-Boyes and A Soloff were responsible for immunisations and the interferon-γ ELISPOT T-cell assay. P Robbins and E Nwanegbo were responsible for the adenoviral neutralising assay. A Gambotto was the principal investigator; he conceived and coordinated the study. A Gambotto had full access to the data and had final responsibility for the decision to submit for publication.

Conflict of interest statement

None declared.

Acknowledgments

This work was supported by National Heart Lung and Blood Institute, Program of Excellence in Gene Therapy supplement Grants U01 HL6949-01S1 to A Gambotto. The authors thank K Okada and H Sun for assistance with adenoviral preparation. The sponsors of the study had no role in study design, data collection, data analysis, data interpretation, or in the writing of the report.

