Definition. Let k be a positive integer. Given n numbers, decide whether any k of them sum to zero.

Example. $(k = 5, n = 11)$

$$\{-975, -505, -430, -237, -178, -29, 67, 439, 660, 674, 898\}$$

Hardness.

Pătrașcu & Williams '10 *No $n^{o(k)}$ algorithm for k-SUM!*

Abboud et al. '14 * k-SUM is $W[1]$-complete!

Time complexity.

- k even \hspace{1cm} $O(n^{\frac{k}{2}} \log n)$
- k odd \hspace{1cm} $O(n^{\frac{k+1}{2}})$

Two-track complexity.

- Query complexity = $Q(n)$
- "Other operations" complexity = $T(n)$
- "Other operations" time complexity = $\tilde{O}(m n^2)$

Goal. With queries as small as possible, \(f(k)n^{O(1)}\) queries and \(n^{\frac{k}{2}+O(1)}\) word-RAM running time.

Results.

<table>
<thead>
<tr>
<th>Folklore</th>
<th>Erickson '99</th>
<th>Meiser '93</th>
<th>New</th>
</tr>
</thead>
<tbody>
<tr>
<td>k</td>
<td>$n^{\frac{k}{2}}$</td>
<td>$n^{\frac{k}{2}+1}$</td>
<td>n^3</td>
</tr>
<tr>
<td>k odd</td>
<td>$\Omega(n^{\frac{k}{2}})$</td>
<td>$\Omega(n^{\frac{k}{2}+1})$</td>
<td>2^n</td>
</tr>
<tr>
<td>n</td>
<td>n^3</td>
<td>n^3</td>
<td>$n^{\frac{k}{2}}+8$</td>
</tr>
<tr>
<td>$S(n)$</td>
<td>$Q(n)$</td>
<td>$T(n)$</td>
<td></td>
</tr>
</tbody>
</table>

Examples of k-SUM arrangements.

For $n = 2$, $x_2 = 0$, $x_2 + x_2 = 0$, $x_1 = 0$, $x_1 + x_1 = 0$, $x_1 + x_2 = 0$ for $n = 3$.

Reduction to a point location problem. Given an input point $q \in \mathbb{R}^n$ and m hyperplanes, decide whether q lies on any of the hyperplanes.

- n input numbers (q_1, q_2, \ldots, q_n)
- an input point in \mathbb{R}^n
- \(O(n^k)\) k-tuple sums $\sum_{j=1}^k x_{i_j} = 0$
- \(O(n^k)\) hyperplanes

New Algorithm. Divide the problem into a few $o(n)$-sized subproblems for which we prune and search using ε-nets. We first pick a large ε-net to filter out most of the hyperplanes then fall back to smaller ε-nets.

Meiser’s algorithm.

1. Pick an ε-net N of size $O(n^{2 \log^2 n})$.
2. Compute the cell C of the arrangement $A(N)$ that contains q using linear queries.
3. Compute a simplex S inscribed in C and containing q using LP and ray-shooting.
4. Filter then recurse on at most \(n^k\) hyperplanes meeting S.

Improved algorithm.

1. Pick an ε-net N of size $O(n^{k/2+2 \log^2 n})$.
2. Compute the cell C of the arrangement $A(N)$ that contains q using Meiser’s algorithm.
3. Compute a simplex S inscribed in C and containing q using simplices of step 2.
4. Filter then call Meiser’s algorithm on $O(n^\frac{k}{2})$ hyperplanes meeting S.