

Become a ninja with Angular (free
sample)

Ninja Squad

Table of Contents
1. Free sample . 1

2. Introduction. 2

3. A gentle introduction to ECMAScript 2015+. 5

3.1. Transpilers . 5

3.2. let . 6

3.3. Constants. 7

3.4. Shorthands in object creation . 8

3.5. Destructuring assignment . 8

3.6. Default parameters and values . 10

3.7. Rest operator . 12

3.8. Classes . 13

3.9. Promises . 15

3.10. Arrow functions . 18

3.11. Async/await . 21

3.12. Sets and Maps . 22

3.13. Template literals . 22

3.14. Modules. 23

3.15. Conclusion . 25

4. Going further than ES2015+ . 26

4.1. Dynamic, static and optional types . 26

4.2. Enters TypeScript . 27

4.3. A practical example with DI. 27

5. Diving into TypeScript . 30

5.1. Types as in TypeScript. 30

5.2. Enums . 31

5.3. Return types. 32

5.4. Interfaces . 32

5.5. Optional arguments . 33

5.6. Functions as property . 34

5.7. Classes . 34

5.8. Working with other libraries . 36

5.9. Decorators . 37

6. Advanced TypeScript. 40

6.1. readonly . 40

6.2. keyof . 40

6.3. Mapped type . 41

6.4. Union types and type guards . 43

7. The wonderful land of Web Components. 46

7.1. A brave new world. 46

7.2. Custom elements. 47

7.3. Shadow DOM . 48

7.4. Template . 48

7.5. Frameworks on top of Web Components . 49

8. Grasping Angular’s philosophy. 51

9. From zero to something . 55

9.1. Node.js and NPM. 55

9.2. Angular CLI . 55

9.3. Application structure. 57

9.4. Our first component. 58

9.5. Bootstrapping the app . 60

10. End of the free sample . 62

Appendix A: Changelog . 63

A.1. Changes since last release - 2023-05-03. 63

A.2. v15.2.0 - 2023-02-23 . 63

A.3. v15.1.0 - 2023-01-11 . 63

A.4. v15.0.0 - 2022-11-16 . 64

A.5. v14.2.0 - 2022-08-26 . 64

A.6. v14.1.0 - 2022-07-21 . 64

A.7. v14.0.0 - 2022-06-03 . 65

A.8. v13.3.0 - 2022-03-16 . 65

A.9. v13.2.0 - 2022-01-27 . 65

A.10. v13.1.0 - 2021-12-10 . 65

A.11. v13.0.0 - 2021-11-04 . 65

A.12. v12.2.0 - 2021-08-05 . 66

A.13. v12.1.0 - 2021-06-25 . 66

A.14. v12.0.0 - 2021-05-13 . 66

A.15. v11.2.0 - 2021-02-12 . 66

A.16. v11.1.0 - 2021-01-21 . 66

A.17. v11.0.0 - 2020-11-12 . 66

A.18. v10.2.0 - 2020-10-22 . 67

A.19. v10.1.0 - 2020-09-03 . 67

A.20. v10.0.0 - 2020-06-25 . 67

A.21. v9.1.0 - 2020-03-26 . 67

A.22. v9.0.0 - 2020-02-07 . 67

A.23. v8.2.0 - 2019-08-01 . 68

A.24. v8.1.0 - 2019-07-02 . 69

A.25. v8.0.0 - 2019-05-29 . 69

A.26. v7.2.0 - 2019-01-09 . 70

A.27. v7.1.0 - 2018-11-27 . 70

A.28. v7.0.0 - 2018-10-25 . 70

A.29. v6.1.0 - 2018-07-26 . 71

A.30. v6.0.0 - 2018-05-04 . 72

A.31. v5.2.0 - 2018-01-10 . 73

A.32. v5.0.0 - 2017-11-02 . 73

A.33. v4.3.0 - 2017-07-16 . 74

A.34. v4.2.0 - 2017-06-09 . 74

A.35. v4.0.0 - 2017-03-24 . 75

A.36. v2.4.4 - 2017-01-25 . 76

A.37. v2.2.0 - 2016-11-18 . 76

A.38. v2.0.0 - 2016-09-15 . 77

A.39. v2.0.0-rc.5 - 2016-08-25 . 77

A.40. v2.0.0-rc.0 - 2016-05-06 . 79

A.41. v2.0.0-alpha.47 - 2016-01-15. 80

Chapter 1. Free sample

What you’re going to read is a free sample of our Angular ebook: the starting part of the full
book, which explains its purpose and contents, gives an overview of ECMAScript 6,
TypeScript, and Web Components, describes Angular philosophy, and finally lets you write
your first application.

This sample extract does not require any preliminary knowledge.

1

https://books.ninja-squad.com/angular

Chapter 2. Introduction
So you want to be a ninja, huh? Well, you’re in good hands!

But we have a long road, you and me, with lots of things to learn :).

We’re living exciting times in Web development. There is a new Angular. A complete rewrite of the
good old AngularJS. Why a complete rewrite? Was AngularJS 1.x not enough?

I like the old AngularJS very much. In our small company, we have built several projects with it,
contributed code to the core framework, trained hundreds of developers (yes, really), and even
written a book about it (in French, but that still counts).

AngularJS is incredibly productive once you have mastered it. Despite all of this, it doesn’t prevent
us from seeing its weaknesses. AngularJS is not perfect, with some very difficult concepts to grasp,
and traps hard to avoid.

Most of all, the Web has changed since AngularJS was conceived. JavaScript has changed. New
frameworks have emerged, with great ideas, or better implementation. We are not the kind of
developers to tell you that you should use this tool instead of that one. We just happen to know
some tools very well, and know what fits the project. AngularJS was one of those tools, allowing us
to build well-tested web applications, and to build them fast. We also tried to bend it where it didn’t
fit. Don’t blame us, it happens to the best of us.

Angular has a lot of interesting points, and a vision that few other frameworks have. It has been
designed for the Web of tomorrow, with ECMAScript 6, Web Components and Mobile in mind.
When it was first announced, I was, like many, sad at first that the 2.0 version would not be a
simple update (I’m sorry if you’re just learning about it).

But I was also eager to see what solution the talented Google team would come up with.

So I started to write this ebook, pretty much after the first commits, reading the design docs,
watching the conference videos, reviewing every commit since the beginning. When I wrote my
first ebook, about AngularJS 1.x, it was already a stable and known beast. This one is very different.
It started when Angular was not even clear in the minds of its designers. Because I knew I would
learn a lot, not only about Angular but also about the concepts that would shape the future of Web
development, some of which have nothing to do with Angular. And I did. I had to dig deep about
some of these concepts, and I hope that you will enjoy the journey of learning about them, and how
they relate to Angular, as much as I did.

The ambition of this ebook is to evolve with Angular. If it turns out that Angular is the great
framework we hope, you will receive updates with the best practices and some new features as
they emerge (and with fewer typos, because, despite our countless reviews, there are probably
some left…). And I would love to hear back from you - if some chapters aren’t clear enough, if you
spot a mistake or if you have a better way for some parts.

I’m fairly confident about the code samples, though, as they are all in a real project, with several
hundred unit tests. It was the only way to write an ebook with a newborn framework, and to be
able to catch all the problems that inevitably arose with each release.

2

Even if you are not convinced by Angular in the end, I’m pretty sure you will have learnt a thing or
two along your read.

If you have bought the "Pro package" (thank you!), you’ll build a small application piece by piece
along the book. This application is called PonyRacer, and it is a website where you can bet on pony
races. You can even test the application here! Go on, I’ll wait for you.

Fun, isn’t it?

But it’s not just a fun application, it’s a complete one. You’ll have to write components, forms, tests,
use the router, call an HTTP API (that we have already built) and even do Web Sockets. It has all the
pieces you’ll need for writing a real app. Each exercise will come with a skeleton, a set of
instructions and a few tests. Once you have all the tests in success, you have completed the
exercise!

The first 6 exercises of the Pro Pack are free. The other ones are only accessible if you buy our
online training. At the end of every chapter, we will link to the exercises of the Pro Pack that are
related to the features explained in the chapter, mark the free ones with the following label: ,
and mark the other ones with the following label: .

If you did not buy the "Pro package" (but really you should), don’t worry: you’ll learn everything
that’s needed. But you will not build this awesome application with beautiful ponies in pixel art.
Your loss :)!

You will quickly see that, beyond Angular itself, we have tried to explain the core concepts the
framework uses. The first chapters don’t even talk about Angular: they are what I call the "Concept
Chapters", here to help you level up with the new and exciting things happening in our field.

Then we will slowly build our knowledge of the framework, with components, templates, pipes,
forms, http, routing, tests…

And finally we will learn about the advanced topics. But that’s another story.

Enough with the introduction, let’s start with one of the things that will definitely change the way
we code: ECMAScript 6.

 The ebook is using Angular version 16.0.1 for the examples.

Angular and versioning

This book used to be named "Become a Ninja with Angular 2". Because, originally,
Google named its framework Angular 2. But in October 2016, they reviewed their
versioning and release policy.

We now have a major release every six months. And the framework should be
called just “Angular”.

Don’t worry, these releases are not a complete rewrite with no backward
compatibility like Angular 2 was to AngularJS 1.x.

As this ebook is updated (for free) with all the future major releases, it is now

3

https://ng-ponyracer.ninja-squad.com

named "Become a Ninja with Angular" (without any number).

4

Chapter 3. A gentle introduction to
ECMAScript 2015+
If you’re reading this, we can be pretty sure you have heard of JavaScript. What we call JS is one
implementation of a standard specification, called ECMAScript. The spec version you know the
most about is version 5, that has been used these last years.

But, in 2015, a new version of the spec was released, called ECMAScript 2015, ES2015, or sometimes
ES6, as it was the sixth version of the specification. And since then, we have had a yearly release of
the specification (ES2016, ES2017, etc.), with a few new features every year. From now on, I’ll
mainly say ES2015, as it is the most popular way to reference it, or ES2015+ to reference ES2015,
ES2016, ES2017, etc. It adds A LOT of things to JavaScript, like classes, constants, arrow functions,
generators… It has so much stuff that we can’t go through all of it, as it would take the whole book.
But Angular has been designed to take advantage of the brand new version of JavaScript. And, even
if you can still use your old JavaScript, things will be more awesome if you use ES2015+. So we’re
going to spend some time in this chapter to get a grip on what ES2015+ is, and what will be useful to
us when building an Angular app.

That means we’re going to leave a lot of stuff aside, and we won’t be exhaustive on the rest, but it
will be a great starting point. If you already know ES2015+, you can skip these pages. And if you
don’t, you will learn some pretty amazing things that will be useful to you even if you end up not
using Angular in the future!

3.1. Transpilers
The sixth version of the specification reached its final state in 2015. So it’s now supported by
modern browsers, but there are still browsers in the wild that don’t support it yet, or only support
it partially. And of course, now that we have a new specification every year (ES2016, ES2017, etc.),
some browsers will always be late. You might be thinking: what’s the point of all this, if I need to be
careful on what I can use? And you’d be right, because there aren’t that many apps that can afford
to ignore older browsers. But, since virtually every JS developer who has tried ES2015+ wants to
write ES2015+ apps, the community has found a solution: a transpiler.

A transpiler takes ES2015+ source code and generates ES5 code that can run in every browser. It
even generates the source map files, which allows you to debug directly the ES2015+ source code
from the browser. Back in 2015, there were two main alternatives to transpile ES2015+ code:

• Traceur, a Google project, historically the first one but now unmaintained.

• Babeljs, a project started by a young developer, Sebastian McKenzie (17 years old at the time,
yeah, that hurts me too), with a lot of diverse contributions.

The source code of Angular itself was at first transpiled with Traceur, before switching to
TypeScript. TypeScript is an open source language developed by Microsoft. It’s a typed superset of
JavaScript that compiles to plain JavaScript, but we’ll dive into it very soon.

Let’s be honest: Babel has waaaay more steam than Traceur nowadays, so I would advise you to use
it. It is now the de-facto standard in this area.

5

https://github.com/google/traceur-compiler
https://babeljs.io/

So if you want to play with ES2015+, or set it up in one of your projects, take a look at these
transpilers, and add a build step to your process. It will take your ES2015+ source files and generate
the equivalent ES5 code. It works very well but, of course, some of the new features are quite hard
or impossible to transform in ES5, as they just did not exist. However, the current state is largely
good enough for us to use without worrying, so let’s have a look at all these shiny new things we
can do in JavaScript!

3.2. let
If you have been writing JS for some time, you know that the var declaration is tricky. In pretty
much any other language, a variable is declared where the declaration is done. But in JS, there is a
concept, called "hoisting", which actually declares a variable at the top of the function, even if you
declared it later.

So declaring a variable like name in the if block:

function getPonyFullName(pony) {
 if (pony.isChampion) {
 var name = 'Champion ' + pony.name;
 return name;
 }
 return pony.name;
}

is equivalent to declaring it at the top of the function:

function getPonyFullName(pony) {
 var name;
 if (pony.isChampion) {
 name = 'Champion ' + pony.name;
 return name;
 }
 // name is still accessible here
 return pony.name;
}

ES2015 introduces a new keyword for variable declaration, let, behaving much more like what you
would expect:

function getPonyFullName(pony) {
 if (pony.isChampion) {
 let name = 'Champion ' + pony.name;
 return name;
 }
 // name is not accessible here
 return pony.name;

6

}

The variable name is now restricted to its block. let has been introduced to replace var in the long
run, so you can pretty much drop the good old var keyword and start using let instead. The cool
thing is, it should be painless to use let, and if you can’t, you have probably spotted something
wrong with your code!

3.3. Constants
Since we are on the topic of new keywords and variables, there is another one that can be of
interest. ES2015 introduces const to declare… constants! When you declare a variable with const, it
has to be initialized and you can’t assign another value later.

const poniesInRace = 6;

poniesInRace = 7; // SyntaxError

As for variables declared with let, constants are not hoisted and are only declared at the block
level.

One small thing might surprise you: you can initialize a constant with an object and later modify
the object content.

const PONY = {};
PONY.color = 'blue'; // works

But you can’t assign another object:

const PONY = {};

PONY = {color: 'blue'}; // SyntaxError

Same thing with arrays:

const PONIES = [];
PONIES.push({ color: 'blue' }); // works

PONIES = []; // SyntaxError

7

3.4. Shorthands in object creation
Not a new keyword, but it can also catch your attention when reading ES2015 code. There is now a
shortcut for creating objects, when the object property you want to create has the same name as the
variable used as the value.

Example:

function createPony() {
 const name = 'Rainbow Dash';
 const color = 'blue';
 return { name: name, color: color };
}

can be simplified to:

function createPony() {
 const name = 'Rainbow Dash';
 const color = 'blue';
 return { name, color };
}

Similarly, when you want to define a method in the object:

function createPony() {
 return {
 run: () => {
 console.log('Run!');
 }
 };
}

you can simplify it to:

function createPony() {
 return {
 run() {
 console.log('Run!');
 }
 };
}

3.5. Destructuring assignment
This new feature can also catch your attention when reading ES2015 code. There is now a shortcut

8

for assigning variables from objects or arrays.

In ES5:

var httpOptions = { timeout: 2000, isCache: true };
// later
var httpTimeout = httpOptions.timeout;
var httpCache = httpOptions.isCache;

Now, in ES2015, you can do:

const httpOptions = { timeout: 2000, isCache: true };
// later
const { timeout: httpTimeout, isCache: httpCache } = httpOptions;

And you will have the same result. It can be a little disturbing, as the key is the property to look for
in the object and the value is the variable to assign. But it works great! Even better: if the variable
you want to assign has the same name as the property, you can simply write:

const httpOptions = { timeout: 2000, isCache: true };
// later
const { timeout, isCache } = httpOptions;
// you now have a variable named 'timeout'
// and one named 'isCache' with correct values

The cool thing is that it also works with nested objects:

const httpOptions = { timeout: 2000, cache: { age: 2 } };
// later
const {
 cache: { age }
} = httpOptions;
// you now have a variable named 'age' with value 2

And the same is possible with arrays:

const timeouts = [1000, 2000, 3000];
// later
const [shortTimeout, mediumTimeout] = timeouts;
// you now have a variable named 'shortTimeout' with value 1000
// and a variable named 'mediumTimeout' with value 2000

Of course it also works for arrays in arrays, or arrays in objects, etc.

One interesting use of this can be for multiple return values. Imagine a function randomPonyInRace

9

that returns a pony and its position in a race.

function randomPonyInRace() {
 const pony = { name: 'Rainbow Dash' };
 const position = 2;
 // ...
 return { pony, position };
}

const { position, pony } = randomPonyInRace();

The new destructuring feature assigns the position returned by the method to the position variable,
and the pony to the pony variable! And if you don’t care about the position, you can write:

function randomPonyInRace() {
 const pony = { name: 'Rainbow Dash' };
 const position = 2;
 // ...
 return { pony, position };
}

const { pony } = randomPonyInRace();

And you will only have the pony!

3.6. Default parameters and values
One of the characteristics of JavaScript is that it allows developers to call a function with any
number of arguments:

• if you pass more arguments than the number of the parameters, the extra arguments are
ignored (well, you can still use them with the special arguments variable, to be accurate).

• if you pass fewer arguments than the number of the parameters, the missing parameter will be
set to undefined.

The last case is the one that is the most relevant to us. Usually, we pass fewer arguments when the
parameters are optional, like in the following example:

function getPonies(size, page) {
 size = size || 10;
 page = page || 1;
 // ...
 server.get(size, page);
}

The optional parameters usually have a default value. The OR operator will return the right

10

operand if the left one is undefined, as will be the case if the parameter was not provided (to be
completely accurate, if it is falsy, i.e 0, false, "", etc.). Using this trick, the function getPonies can
then be called:

getPonies(20, 2);
getPonies(); // same as getPonies(10, 1);
getPonies(15); // same as getPonies(15, 1);

This worked alright, but it was not really obvious that the parameters were optional ones with
default values, without reading the function body. ES2015 introduces a more precise way to have
default parameters, directly in the function definition:

function getPonies(size = 10, page = 1) {
 // ...
 server.get(size, page);
}

Now it is perfectly clear that the size parameter will be 10 and the page parameter will be 1 if not
provided.

There is a small difference though, as now 0 or "" are valid values and will not be
replaced by the default one, as size = size || 10 would have done. It will be more
like size = size === undefined ? 10: size;.

The default value can also be a function call:

function getPonies(size = defaultSize(), page = 1) {
 // the defaultSize method will be called if size is not provided
 // ...
 server.get(size, page);
}

or even other variables, either global variables, or other parameters of the function:

function getPonies(size = defaultSize(), page = size - 1) {
 // if page is not provided, it will be set to the value
 // of the size parameter minus one.
 // ...
 server.get(size, page);
}

This mechanism for parameters can also be applied to values, for example when using a
destructuring assignment:

const { timeout = 1000 } = httpOptions;

11

// you now have a variable named 'timeout',
// with the value of 'httpOptions.timeout' if it exists
// or 1000 if not

3.7. Rest operator
ES2015 introduces a new syntax to define variable parameters in functions. As said in the previous
part, you could always pass extra arguments to a function and get them with the special arguments
variable. So you could have done something like this:

function addPonies(ponies) {
 for (var i = 0; i < arguments.length; i++) {
 poniesInRace.push(arguments[i]);
 }
}

addPonies('Rainbow Dash', 'Pinkie Pie');

But I think we can agree that it’s neither pretty nor obvious: since the ponies parameter is never
used, how do we know that we can pass several ponies?

ES2015 gives us a way better syntax, using the rest operator …:

function addPonies(...ponies) {
 for (let pony of ponies) {
 poniesInRace.push(pony);
 }
}

ponies is now a true array on which we can iterate. The for … of loop used for iteration is also a
new feature in ES2015. It makes sure that you iterate over the collection values, and not also over
its properties as for … in would do. Don’t you think our code is prettier and more obvious now?

The rest operator can also work when destructuring data:

const [winner, ...losers] = poniesInRace;
// assuming 'poniesInRace' is an array containing several ponies
// 'winner' will have the first pony,
// and 'losers' will be an array of the other ones

The rest operator is not to be confused with the spread operator which, I’ll give you that, looks
awfully similar! But the spread operator is the opposite: it takes an array and spreads it in variable
arguments. The only examples I have in mind are functions like min or max, that receive variable
arguments, and that you might want to call on an array:

12

const ponyPrices = [12, 3, 4];
const minPrice = Math.min(...ponyPrices);

3.8. Classes
One of the most emblematic new features, and one that we will vastly use when writing an Angular
app: ES2015 introduces classes to JavaScript! You can now easily use classes and inheritance in
JavaScript. You always could, using prototypal inheritance, but that was not an easy task, especially
for beginners.

Now it’s very easy, take a look:

class Pony {
 constructor(color) {
 this.color = color;
 }

 toString() {
 return `${this.color} pony`;
 // see that? It is another cool feature of ES2015, called template literals
 // we'll talk about these quickly!
 }
}

const bluePony = new Pony('blue');
console.log(bluePony.toString()); // blue pony

Class declarations, unlike function declarations, are not hoisted, so you need to declare a class
before using it. You may have noticed the special function constructor. It is the function being
called when we create a new pony, with the new operator. Here it needs a color, and we create a
new Pony instance with the color set to "blue". A class can also have methods, callable on an
instance, as the method toString() here.

It can also have static attributes and methods:

class Pony {
 static defaultSpeed() {
 return 10;
 }
}

Static methods can be called only on the class directly:

const speed = Pony.defaultSpeed();

13

A class can have getters and setters, if you want to hook onto these operations:

class Pony {
 get color() {
 console.log('get color');
 return this._color;
 }

 set color(newColor) {
 console.log(`set color ${newColor}`);
 this._color = newColor;
 }
}
const pony = new Pony();
pony.color = 'red';
// 'set color red'
console.log(pony.color);
// 'get color'
// 'red'

And, of course, if you have classes, you also have inheritance out of the box in ES2015.

class Animal {
 speed() {
 return 10;
 }
}
class Pony extends Animal {}
const pony = new Pony();
console.log(pony.speed()); // 10, as Pony inherits the parent method

Animal is called the base class, and Pony the derived class. As you can see, the derived class has the
methods of the base class. It can also override them:

class Animal {
 speed() {
 return 10;
 }
}
class Pony extends Animal {
 speed() {
 return super.speed() + 10;
 }
}
const pony = new Pony();
console.log(pony.speed()); // 20, as Pony overrides the parent method

14

As you can see, the keyword super allows calling the method of the base class, with super.speed()
for example.

The super keyword can also be used in constructors, to call the base class constructor:

class Animal {
 constructor(speed) {
 this.speed = speed;
 }
}

class Pony extends Animal {
 constructor(speed, color) {
 super(speed);
 this.color = color;
 }
}

const pony = new Pony(20, 'blue');
console.log(pony.speed); // 20

3.9. Promises
Promises are not so new, and you might know them or use them already, as they were a big part of
AngularJS 1.x. But since you will use them a lot in Angular, and even if you’re just using JS, I think
it’s important to make a stop.

Promises aim to simplify asynchronous programming. Our JS code is full of async stuff, like AJAX
requests, and usually we use callbacks to handle the result and the error. But it can get messy, with
callbacks inside callbacks, and it makes the code hard to read and to maintain. Promises are much
nicer than callbacks, as they flatten the code, and thus make it easier to understand. Let’s consider
a simple use case, where we need to fetch a user, then their rights, then update a menu when we
have these.

With callbacks:

getUser(login, function (user) {
 getRights(user, function (rights) {
 updateMenu(rights);
 });
});

Now, let’s compare it with promises:

getUser(login)
 .then(function (user) {
 return getRights(user);

15

 })
 .then(function (rights) {
 updateMenu(rights);
 })

I like this version, because it executes as you read it: I want to fetch a user, then get their rights,
then update the menu.

As you can see, a promise is a 'thenable' object, which simply means it has a then method. This
method takes two arguments: one success callback and one reject callback. The promise has three
states:

• pending: while the promise is not done, for example, our server call is not completed yet.

• fulfilled: when the promise is completed with success, for example, the server call returns an
OK HTTP status.

• rejected: when the promise has failed, for example, the server returns a 404 status.

When the promise is fulfilled, then the success callback is called, with the result as an argument. If
the promise is rejected, then the reject callback is called, with a rejected value or an error as the
argument.

So, how do you create a promise? Pretty simple, there is a new class called Promise, whose
constructor expects a function with two parameters, resolve and reject.

const getUser = function (login) {
 return new Promise(function (resolve, reject) {
 // async stuff, like fetching users from server, returning a response
 if (response.status === 200) {
 resolve(response.data);
 } else {
 reject('No user');
 }
 });
};

Once you have created the promise, you can register callbacks, using the then method. This method
can receive two parameters, the two callbacks you want to call in case of success or in case of
failure. Here we only pass a success callback, ignoring the potential error:

getUser(login)
 .then(function (user) {
 console.log(user);
 })

Once the promise is resolved, the success callback (here simply logging the user on the console) will
be called.

16

The cool part is that it flattens the code. For example, if your resolve callback is also returning a
promise, you can write:

getUser(login)
 .then(function (user) {
 return getRights(user) // getRights is returning a promise
 .then(function (rights) {
 return updateMenu(rights);
 });
 })

but more beautifully:

getUser(login)
 .then(function (user) {
 return getRights(user); // getRights is returning a promise
 })
 .then(function (rights) {
 return updateMenu(rights);
 })

Another interesting thing is the error handling, as you can use one handler per promise, or one for
all the chain.

One per promise:

getUser(login)
 .then(
 function (user) {
 return getRights(user);
 },
 function (error) {
 console.log(error); // will be called if getUser fails
 return Promise.reject(error);
 }
)
 .then(
 function (rights) {
 return updateMenu(rights);
 },
 function (error) {
 console.log(error); // will be called if getRights fails
 return Promise.reject(error);
 }
)

One for the chain:

17

getUser(login)
 .then(function (user) {
 return getRights(user);
 })
 .then(function (rights) {
 return updateMenu(rights);
 })
 .catch(function (error) {
 console.log(error); // will be called if getUser or getRights fails
 })

You should seriously look into Promises, because they are going to be the new way to write APIs,
and every library will use them. Even the standard ones: the new Fetch API does for example.

3.10. Arrow functions
One thing I like a lot in ES2015 is the new arrow function syntax, using the 'fat arrow' operator (⇒).
It is SO useful for callbacks and anonymous functions!

Let’s take our previous example with promises:

getUser(login)
 .then(function (user) {
 return getRights(user); // getRights is returning a promise
 })
 .then(function (rights) {
 return updateMenu(rights);
 })

can be written with arrow functions like this:

getUser(login)
 .then(user => getRights(user))
 .then(rights => updateMenu(rights))

How cool is it? THAT cool!

Note that the return is also implicit if there is no block: no need to write user ⇒ return
getRights(user). But if we did have a block, we would need the explicit return:

getUser(login)
 .then(user => {
 console.log(user);
 return getRights(user);
 })

18

https://fetch.spec.whatwg.org/

 .then(rights => updateMenu(rights))

And it has a special trick, a great power over normal functions: the this stays lexically bounded,
which means that these functions don’t have a new this as other functions do. Let’s take an
example, where you are iterating over an array with the map function to find the max.

In ES5:

var maxFinder = {
 max: 0,
 find: function (numbers) {
 // let's iterate
 numbers.forEach(function (element) {
 // if the element is greater, set it as the max
 if (element > this.max) {
 this.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

You would expect this to work, but it doesn’t. If you have a good eye, you may have noticed that the
forEach in the find function uses this, but the this is not bound to an object. So this.max is not the
max of the maxFinder object… Of course you can fix it easily, using an alias:

var maxFinder = {
 max: 0,
 find: function (numbers) {
 var self = this;
 numbers.forEach(function (element) {
 if (element > self.max) {
 self.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or binding the this:

19

var maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(
 function (element) {
 if (element > this.max) {
 this.max = element;
 }
 }.bind(this)
);
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

or even passing it as a second parameter of the forEach function (as it was designed for):

var maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(function (element) {
 if (element > this.max) {
 this.max = element;
 }
 }, this);
 }
};

maxFinder.find([2, 3, 4]);
// log the result
console.log(maxFinder.max);

But there is now an even more elegant solution with the arrow function syntax:

const maxFinder = {
 max: 0,
 find: function (numbers) {
 numbers.forEach(element => {
 if (element > this.max) {
 this.max = element;
 }
 });
 }
};

maxFinder.find([2, 3, 4]);

20

// log the result
console.log(maxFinder.max);

That makes the arrow functions the perfect candidates for anonymous functions in callbacks!

3.11. Async/await
We were talking about promises earlier, and it’s worth knowing that another keyword was
introduced to handle them more synchronously: await.

This is not a feature introduced in ECMAScript 2015 but in ECMAScript 2017, and to use await, your
function must be marked as async. When you use the await keyword in front of a Promise, you
pause the execution of your async function, wait for the Promise to resolve, and then resume the
execution of the async function. The returned value will be the resolved value.

So we can write our previous example using async/await like this:

async function getUserRightsAndUpdateMenu() {
 // getUser is a promise
 const user = await getUser(login);
 // getRights is a promise
 const rights = await getRights(user);
 updateMenu(rights);
}
await getUserRightsAndUpdateMenu();

And your code now looks like it is synchronous! Another cool feature of async/await is that you can
use a simple try/catch to handle errors:

async function getUserRightsAndUpdateMenu() {
 try {
 // getUser is a promise
 const user = await getUser(login);
 // getRights is a promise
 const rights = await getRights(user);
 updateMenu(rights);
 } catch (e) {
 // will be called if getUser, getRights or updateMenu fails
 console.log(e);
 }
}
await getUserRightsAndUpdateMenu();

Note that async/await is still asynchronous, although it looks like synchronous. The function
execution is paused and resumed, but just like with callbacks, this doesn’t block the thread: other
JavaScript events can be handled while the execution is paused.

21

3.12. Sets and Maps
This is a short one: you now have proper collections in ES2015. Yay \o/! We used to have dictionaries
filling the role of a map, but we can now use the class Map:

const cedric = { id: 1, name: 'Cedric' };
const users = new Map();
users.set(cedric.id, cedric); // adds a user
console.log(users.has(cedric.id)); // true
console.log(users.size); // 1
users.delete(cedric.id); // removes the user

We also have a class Set:

const cedric = { id: 1, name: 'Cedric' };
const users = new Set();
users.add(cedric); // adds a user
console.log(users.has(cedric)); // true
console.log(users.size); // 1
users.delete(cedric); // removes the user

You can iterate over a collection, with the new syntax for … of:

for (let user of users) {
 console.log(user.name);
}

You’ll see that the for … of syntax is the one the Angular team chose in order to iterate over a
collection in a template.

3.13. Template literals
Composing strings has always been painful in JavaScript, as we usually have to use concatenation:

const fullname = 'Miss ' + firstname + ' ' + lastname;

Template literals are a new small feature, where you have to use backticks (`) instead of quotes or
simple quotes, and you have a basic templating system, with multiline support:

const fullname = `Miss ${firstname} ${lastname}`;

The multiline support is especially great when your are writing HTML strings, as we will do for our
Angular components:

22

const template = `<div>
 <h1>Hello</h1>
</div>`;

One last feature is the ability to tag them. You can define a function, and apply it to a template
string. Here askQuestion adds an interrogation point at the end of the string:

const askQuestion = strings => strings + '?';
const template = askQuestion`Hello there`;

So what’s the difference with a simple function? The tag function in fact receives several
arguments:

• an array of the static parts of the string

• the values resulting from the evaluation of the expressions

For example if we have a template string containing expressions:

const person1 = 'Cedric';
const person2 = 'Agnes';
const template = `Hello ${person1}! Where is ${person2}?`;

then the tag function will receive the various static and dynamic parts. Here we have a tag function
to uppercase the names of the protagonists:

const uppercaseNames = (strings, ...values) => {
 // `strings` is an array with the static parts ['Hello ', '! Where is ', '?']
 // `values` is an array with the evaluated expressions ['Cedric', 'Agnes']
 const names = values.map(name => name.toUpperCase());
 // `names` now has ['CEDRIC', 'AGNES']
 // let's merge the `strings` and `names` arrays
 return strings.map((string, i) => `${string}${names[i] ? names[i] : ''}`).join('');
};
const result = uppercaseNames`Hello ${person1}! Where is ${person2}?`;
// returns 'Hello CEDRIC! Where is AGNES?'

Let’s now talk about one of the big changes introduced: modules.

3.14. Modules
A standard way to organize functions in namespaces and to dynamically load code in JS has always
been lacking. Node.js has been one of the leaders in this, with a thriving ecosystem of modules
using the CommonJS convention. On the browser side, there is also the AMD (Asynchronous Module
Definition) API, used by RequireJS. But none of these were a real standard, thus leading to endless
discussions on what’s best.

23

https://github.com/amdjs/amdjs-api/blob/master/AMD.md
http://requirejs.org/

ES2015 aims to create a syntax using the best from both worlds, without caring about the actual
implementation. The Ecma TC39 committee (which is responsible for evolving ES2015 and
authoring the specification of the language) wanted to have a nice and easy syntax (that’s arguably
CommonJS’s strong suit), but to support asynchronous loading (like AMD), and a few goodies like
the possibility to statically analyze the code by tools and support cyclic dependencies nicely. The
new syntax handles how you export and import things to and from modules.

This module thing is really important in Angular, as pretty much everything is defined in modules,
which you have to import when you want to use them. Let’s say I want to expose a function to bet
on a specific pony in a race and a function to start the race.

In races.service.js:

export function bet(race, pony) {
 // ...
}
export function start(race) {
 // ...
}

As you can see, this is fairly easy: the new keyword export does a straightforward job and exports
the two functions.

Now, let’s say one of our application components needs to call these functions.

In another file:

import { bet, start } from './races.service';

// later
bet(race, pony1);
start(race);

That’s what is called a named export. Here we are importing the two functions, and we have to
specify the filename containing these functions - here 'races.service'. Of course, you can import only
one method if you need, and you can even give it an alias:

import { start as startRace } from './races.service';

// later
startRace(race);

And if you want to use all the exported symbols (functions, constants, classes etc.) from the module,
you can use a wildcard '*'.

24

As you would do with other languages, use the wildcard with care, only when you really want all
the functions, or most of them. As this will be analyzed by our IDEs, we will see auto-import soon
and that will free us from the bother of importing the right things.

With a wildcard, you have to use an alias, and I kind of like it, because it makes the rest of the code
clearer:

import * as racesService from './races.service';

// later
racesService.bet(race, pony1);
racesService.start(race);

If your module exposes only one function or value or class, you don’t have to use named export,
and you can leverage the default keyword. It works great for classes for example:

// pony.js
export default class Pony {}
// races.service.js
import Pony from './pony';

Notice the lack of curly braces to import a default. You can import it with the alias you want, but to
be consistent, it’s better to call the import with the module name (except if you have multiple
modules with the same name of course, then you can choose an alias that allows you to distinguish
them). And of course, you can mix default export with named ones, but obviously with only one
default per module.

In Angular, you’re going to use a lot of these imports in your app. Each component and service will
be a class, generally isolated in their own file and exported, and then imported when needed in
other components.

3.15. Conclusion
That ends our gentle introduction to ES2015+. We skipped some other parts, but if you’re
comfortable with this chapter, you will have no problem writing your apps in ES2015+. If you want
to have a deeper understanding of this, I highly recommend Exploring JS by Axel Rauschmayer or
Understanding ES6 from Nicholas C. Zakas… Both ebooks can be read online for free, but don’t
forget to buy it to support their authors. They have done great work! Actually I’ve re-read Speaking
JS, Axel’s previous book, and I again learned a few things, so if you want to refresh your JS skills, I
definitely recommend it!

25

https://exploringjs.com/
https://leanpub.com/understandinges6
http://speakingjs.com
http://speakingjs.com

Chapter 4. Going further than ES2015+

4.1. Dynamic, static and optional types
You may have heard that Angular apps can be written in TypeScript. And you may be wondering
what TypeScript is, or what it brings to the table.

JavaScript is dynamically typed. That means you can do things like:

let pony = 'Rainbow Dash';
pony = 2;

And it works. That’s great for all sort of things, as you can pass pretty much any object to a function
and it works, as long as the object has the properties the function needs:

const pony = { name: 'Rainbow Dash', color: 'blue' };
const horse = { speed: 40, color: 'black' };
const printColor = animal => console.log(animal.color);
// works as long as the object has a `color` property

This dynamic nature allows wonderful things but it is also a pain for a few other reasons compared
to more statically-typed languages. The most obvious might be when you call an unknown function
in JS from another API, you pretty much have to read the doc (or, worse, the function code) to know
what the parameter should look like. Take a look at our previous example: the method printColor
needs a parameter with a color property. That can be hard to guess, and of course it is much worse
in day-to-day work, where we use various libraries and services developed by fellow developers.
One of Ninja Squad’s co-founders is often complaining about the lack of types in JS, and finds it
regrettable he can’t be as productive and write as good code as he would in a more statically-typed
environment. And he is not entirely wrong, even if he is sometimes ranting for the sake of it too!
Without type information, IDEs have no real clue if you’re doing something wrong, and tools can’t
help you find bugs in your code. Of course, we have tests in our apps, and Angular has always been
keen on making testing easy, but it’s nearly impossible to have a perfect test coverage.

That leads to the maintainability topic. JS code can become hard to maintain, despite tests and
documentation. Refactoring a huge JS app is no easy task, compared to what could be done in other
statically-typed languages. Maintainability is a very important topic, and types help humans and
tools to avoid mistakes when writing and maintaining code. Google has always been keen to push
new solutions in that direction: it’s easy to understand as they have some of the biggest web apps of
the world, with GMail, Google apps, Maps… So they have tried several approaches to front-end
maintainability: GWT, Google Closure, Dart… All trying to help writing big webapps.

For Angular, the Google team wanted to help us to write better JS, by adding some type information
to our code. It’s not a very new concept in JS. It was even the subject of the ECMAScript 4
specification, which was later abandoned. At first they announced AtScript, as a superset of
ES2015+ with annotations (types annotations and another kind I’ll discuss later). They also
announced the support of TypeScript, the Microsoft language, with additional type annotations.

26

And then, a few months later, the TypeScript team announced that they had worked closely with
the Google team, and the new version of the language (1.5) would have all the shiny new things
AtScript had. And the Google team announced that AtScript was officially dropped, and that
TypeScript was the new top-notch way to write Angular apps!

4.2. Enters TypeScript
I think this was a smart move for several reasons. For one, no one really wants to learn another
language extension. And TypeScript was already there, with an active community and ecosystem. I
never really used it before Angular, but I heard good things about it, from various people.
TypeScript is a Microsoft project. But it’s not the Microsoft you have in mind, from the Ballmer and
Gates years. It’s the Microsoft of the Nadella era, the one opening up to its community, and, well,
open-source. Google knows this, and it’s far better for them to contribute to an existing project,
rather than to have to bear the burden of maintaining their own. And the TypeScript framework
will gain a huge popularity boost: win-win, as your manager would say.

But the main reason to bet on TypeScript is the type system it offers. It’s an optional type system
that helps without getting in the way. In fact, after coding some time with it, you’ll probably want to
code every application with it. I do like what they have done, and we will have a look at what
TypeScript offers in the next section. At the end, you’ll have enough understanding to read any
Angular code, and you’ll be able to choose whether you want to use it or not, in your apps.

You may be wondering: why use typed code in Angular apps? Let’s take an example. Angular 1 and
2 have been built around a powerful concept named "dependency injection". You might already be
familiar with it, as it is a common design pattern used in several frameworks for different
languages and, as I said, already used in AngularJS 1.x.

4.3. A practical example with DI
To sum up what dependency injection is, think about a component of the app, let’s say RaceList,
needing to access the races list that the service RaceService can give. You would write RaceList like
this:

class RaceList {
 constructor() {
 this.raceService = new RaceService();
 // let's say that list() returns a promise
 this.raceService
 .list()
 // we store the races returned into a member of `RaceList`
 .then(races => (this.races = races));
 // arrow functions, FTW!
 }
}

But it has several flaws. One of them is the testability: it is now very hard to replace the raceService
by a fake (mock) one, to test our component.

27

If we use the Dependency Injection (DI) pattern, we delegate the creation of the RaceService to the
framework, and we simply ask for an instance. The framework is now in charge of the creation of
the dependency, and, well, injects it:

class RaceList {
 constructor(raceService) {
 this.raceService = raceService;
 this.raceService.list().then(races => (this.races = races));
 }
}

Now, when we test this class, we can easily pass a fake service to the constructor:

// in a test
const fakeService = {
 list: () => {
 // returns a fake promise
 }
};
const raceList = new RaceList(fakeService);
// now we are sure that the race list
// is the one we want for the test

But how does the framework know what to inject in the constructor? Good question! AngularJS 1.x
relied on the parameter’s names, but it had a severe limitation, because minification of your code
would have changed the param name… You could use the array syntax to fix this, or add a
metadata to the class:

RaceList.$inject = ['RaceService'];

We had to add some metadata for the framework to understand what classes needed to be injected
with. And that’s exactly what type annotations give: a metadata giving the framework a hint it
needs to do the right injection. In Angular, using TypeScript, we can write our RaceList component
like:

class RaceList {
 raceService: RaceService;
 races: Array<string> = [];

 constructor(raceService: RaceService) {
 // the interesting part is `: RaceService`
 this.raceService = raceService;
 this.raceService.list().then(races => (this.races = races));
 }
}

28

Now the injection can be done!

That’s why we’re going to spend some time learning TypeScript (TS). Angular is clearly built to
leverage this language, so we will have the easiest time writing our apps using it. And the Angular
team really hopes to submit the type system to the standard committee, so maybe one day we’ll
have types in JS, and all this will be usual.

Let’s dive in!

29

Chapter 5. Diving into TypeScript
TypeScript has been around since 2012. It’s a superset of JavaScript, adding a few things to ES5. The
most important one is the type system, giving TypeScript its name. From version 1.5, released in
2015, the library is trying to be a superset of ES2015+, including all the shiny features we saw in the
previous chapter, and a few new things as well, like decorators. Writing TypeScript feels very much
like writing JavaScript. By convention, TypeScript files are named with a .ts extension, and they
will need to be compiled to standard JavaScript, usually at build time, using the TypeScript
compiler. The generated code is very readable.

npm install -g typescript
tsc test.ts

But let’s start with the beginning.

5.1. Types as in TypeScript
The general syntax to add type info in TypeScript is rather straightforward:

let variable: type;

The types are easy to remember:

const ponyNumber: number = 0;
const ponyName: string = 'Rainbow Dash';

In such cases, the types are optional because the TS compiler can guess them (it’s called "type
inference") from the values.

The type can also come from your app, as with the following class Pony:

const pony: Pony = new Pony();

30

TypeScript also supports what some languages call "generics", for example for an array:

const ponies: Array<Pony> = [new Pony()];

The array can only contain ponies, and the generic notation, using <>, indicates this. You may be
wondering what the point of doing this is. Adding types information will help the compiler catch
possible mistakes:

ponies.push('hello'); // error TS2345
// Argument of type 'string' is not assignable to parameter of type 'Pony'.

So, if you need a variable to have multiple types, does it mean you’re screwed? No, because TS has a
special type, called any.

let changing: any = 2;
changing = true; // no problem

It’s really useful when you don’t know the type of a value, either because it’s from a dynamic
content or from a library you’re using.

If your variable can only be of type number or boolean, you can use a union type:

let changing: number | boolean = 2;
changing = true; // no problem

5.2. Enums
TypeScript also offers enum. For example, a race in our app can be either ready, started or done.

enum RaceStatus {
 Ready,
 Started,
 Done
}

const race = new Race();
race.status = RaceStatus.Ready;

The enum is in fact a numeric value, starting at 0. You can set the value you want, though:

enum Medal {
 Gold = 1,

31

 Silver,
 Bronze
}

Since TypeScript 2.4, you can even specify a string value:

enum Position {
 First = 'First',
 Second = 'Second',
 Other = 'Other'
}

To be honest though, we don’t use enums a lot in our projects: we use union types. They are simpler
and cover roughly the same use-cases:

let color: 'blue' | 'red' | 'green';
// we can only give one of these values to `color`
color = 'blue';

TypeScript even allows you to create your own types, so you could do something like:

type Color = 'blue' | 'red' | 'green';
const ponyColor: Color = 'blue';

5.3. Return types
You can also set the return type of a function:

function startRace(race: Race): Race {
 race.status = RaceStatus.Started;
 return race;
}

If the function returns nothing, you can show it using void:

function startRace(race: Race): void {
 race.status = RaceStatus.Started;
}

5.4. Interfaces
That’s a good first step. But as I said earlier, JavaScript is great for its dynamic nature. A function
will work if it receives an object with the correct property:

32

function addPointsToScore(player, points) {
 player.score += points;
}

This function can be applied to any object with a score property. How do you translate this in
TypeScript? It’s easy: you define an interface, which is like the "shape" of the object.

function addPointsToScore(player: { score: number }, points: number): void {
 player.score += points;
}

It means that the parameter must have a property called score of the type number. You can name
these interfaces, of course:

interface HasScore {
 score: number;
}

function addPointsToScore(player: HasScore, points: number): void {
 player.score += points;
}

You’ll see that we often use interfaces throughout the book to represent our entities. We use
interfaces for our models in our other projects as well. We usually append a Model suffix to make it
clear. It’s then very easy to create a new entity:

interface PonyModel {
 name: string;
 speed: number;
}
const pony: PonyModel = { name: 'Light Shoe', speed: 56 };

5.5. Optional arguments
Another treat of JavaScript is that arguments are optional. You can omit them, and they will become
undefined. But if you define a function with typed parameter in TypeScript, the compiler will shout
at you if you forget them:

addPointsToScore(player); // error TS2346
// Supplied parameters do not match any signature of call target.

To show that a parameter is optional in a function (or a property in an interface), you can add ?

33

after the parameter. Here, the points parameter could be optional:

function addPointsToScore(player: HasScore, points?: number): void {
 points = points || 0;
 player.score += points;
}

5.6. Functions as property
You may also be interested in describing a parameter that must have a specific function instead of a
property. The interface definition will be:

interface CanRun {
 run(meters: number): void;
}

function startRunning(pony: CanRun): void {
 pony.run(10);
}

const ponyOne = {
 run: (meters: number) => logger.log(`pony runs ${meters}m`)
};
startRunning(ponyOne);

5.7. Classes
A class can implement an interface. For us, the Pony class should be able to run, so we can write:

class Pony implements CanRun {
 run(meters: number): void {
 logger.log(`pony runs ${meters}m`);
 }
}

The compiler will force us to implement a run method in the class. If we implement it badly, by
expecting a string instead of a number for example, the compiler will yell:

class IllegalPony implements CanRun {
 run(meters: string) {
 console.log(`pony runs ${meters}m`);
 }
}
// error TS2420: Class 'IllegalPony' incorrectly implements interface 'CanRun'.

34

// Types of property 'run' are incompatible.

You can also implement several interfaces if you want:

class HungryPony implements CanRun, CanEat {
 run(meters: number): void {
 logger.log(`pony runs ${meters}m`);
 }

 eat(): void {
 logger.log(`pony eats`);
 }
}

And an interface can extend one or several others:

interface Animal extends CanRun, CanEat {}

class Pony implements Animal {
 // ...
}

When you’re defining a class in TypeScript, you can have properties and methods in your class. You
may realize that properties in classes are not a standard ES2015+ feature. It is only possible in
TypeScript.

class SpeedyPony {
 speed = 10;

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);
 }
}

Everything is public by default, but you can use the private keyword to hide a property or a
method. If you add private or public to a constructor parameter, it is a shortcut to create and
initialize a private or public member:

class NamedPony {
 constructor(public name: string, private speed: number) {}

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);
 }
}

35

const pony = new NamedPony('Rainbow Dash', 10);
// defines a public property name with 'Rainbow Dash'
// and a private one speed with 10

Which is the same as the more verbose:

class NamedPonyWithoutShortcut {
 public name: string;
 private speed: number;

 constructor(name: string, speed: number) {
 this.name = name;
 this.speed = speed;
 }

 run(): void {
 logger.log(`pony runs at ${this.speed}m/s`);
 }
}

These shortcuts are really useful and we’ll rely on them a lot in Angular!

5.8. Working with other libraries
When working with external libraries written in JS, you may think we are doomed because we
don’t know what types of parameter the function in that library will expect. That’s one of the cool
things with the TypeScript community: its members have defined interfaces for the types and
functions exposed by the popular JavaScript libraries!

The files containing these interfaces have a special .d.ts extension. They contain a list of the
library’s public functions. A good place to look for these files is DefinitelyTyped. For example, if you
want to use TS in your AngularJS 1.x apps, you can download the proper file from the repo directly
with NPM:

npm install --save-dev @types/angular

or download it manually. Then include the file at the top of your code, and enjoy the compilation
checks:

/// <reference path="angular.d.ts" />
angular.module(10, []); // the module name should be a string
// so when I compile, I get:
// Argument of type 'number' is not assignable to parameter of type 'string'.

/// <reference path="angular.d.ts" /> is a special comment recognized by TS, telling the compiler

36

https://github.com/DefinitelyTyped/DefinitelyTyped

to look for the interface angular.d.ts. Now, if you misuse an AngularJS method, the compiler will
complain, and you can fix it on the spot, without having to manually run your app!

Even cooler, since TypeScript 1.6, the compiler will auto-discover the type definitions of an NPM
library if they are packaged with the library itself. More and more projects are adopting this
approach, and so is Angular. So you don’t even have to worry about including the interfaces in your
Angular project: the TS compiler will figure it out by itself if you are using NPM to manage your
dependencies!

5.9. Decorators
This feature was added in TypeScript 1.5, notably to help support Angular. Indeed, as we will
shortly see, Angular components can be described using decorators. You may not have heard about
decorators, as not every language has them. A decorator is a way to do some meta-programming.
They are fairly similar to annotations which are mainly used in Java, C# and Python, and maybe
other languages I don’t know. Depending on the language, you add an annotation to a method, an
attribute, or a class. Generally, annotations are not really used by the language itself, but mainly by
frameworks and libraries.

Decorators are really powerful: they can modify their target (method, classes, etc.), and for example
alter the parameters of the call, tamper with the result, call other methods when the target is called
or add metadata for a framework (which is what Angular decorators do). Until now, it was not
something that was possible in JavaScript. But the language is evolving and there is now an official
proposal for decorators, which may be standardized one day in the future (possibly in ES7/ES2016).
Note that the TypeScript implementation goes slightly further than the proposed standard.

In Angular, we will use the decorators provided by the framework. Their role is fairly basic: they
add some metadata to our classes, attributes or parameters to say things like "this class is a
component", "this is an optional dependency", "this is a custom property", etc. You are not required
to use them, as you can add the metadata manually (if you want to stick to ES5 for example), but the
code will definitely be more elegant using decorators, as provided by TypeScript.

In TypeScript, decorators start with an @, and can be applied to a class, a class property, a function
or a function parameter. They can’t be applied to a constructor, but can be applied to its
parameters.

To have a better grasp on this, let’s try to build a simple decorator, @Log(), that will log something
every time a method is called.

It will be used like this:

class RaceService {
 @Log()
 getRaces() {
 // call API
 }

 @Log()
 getRace(raceId: number) {

37

 // call API
 }
}

To define it, we have to write a method returning a function like this:

const Log = () => {
 return (target: any, name: string, descriptor: any) => {
 logger.log(`call to ${name}`);
 return descriptor;
 };
};

Depending on what you want to apply your decorator to, the function will not have exactly the
same arguments. Here we have a method decorator that takes 3 parameters:

• target: the method targeted by our decorator

• name: the name of the targeted method

• descriptor: a descriptor of the targeted method (is the method enumerable, writable, etc.)

Here we simply log the method name, but you could do pretty much whatever you want: interfere
with the parameters, the result, calling another function, etc.

So, in our simple example, every time the getRace() or getRaces() methods are called, we’ll see a
trace in the browser logs:

raceService.getRaces();
// logs: call to getRaces
raceService.getRace(1);
// logs: call to getRace

As a user, let’s look at what a decorator in Angular looks like:

@Component({ selector: 'ns-home', template: 'home' })
class HomeComponent {
 constructor(@Optional() hello: HelloService) {
 logger.log(hello);
 }
}

The @Component decorator is added to the class Home. When Angular loads our app, it will find the
class Home and will understand that it is a component, based on the metadata the decorator will add.
Cool, huh? As you can see, a decorator can also receive parameters, here a configuration object.

I just wanted to introduce the raw concept of decorators; we’ll look into every decorator available
in Angular throughout the book.

38

So my advice would be to give TypeScript a try! All my examples from here will be in TypeScript, as
Angular and all the tooling around are really designed for it.

39

Chapter 6. Advanced TypeScript
If you’re just starting to learn TypeScript, you can safely skip this chapter for now and come back
later. This chapter is here to showcase some more advanced usages of TypeScript. They’ll only
make sense if you already have some familiarity with the language

6.1. readonly
You can use the readonly keyword to mark the property of a class or interface as… read only! That
way, the compiler will refuse to compile any code trying to assign a new value to the property:

interface Config {
 readonly timeout: number;
}

const config: Config = { timeout: 2000 };
// `config.timeout` is now readonly and can't be reassigned

6.2. keyof
The keyof keyword can be used to get a type representing the union of the names of the properties
of another type. For example, you have a PonyModel interface:

interface PonyModel {
 name: string;
 color: string;
 speed: number;
}

You want to build a function that returns the value of a property. You could implement a naive
version:

function getProperty(obj: any, key: string): any {
 return obj[key];
}

const pony: PonyModel = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
const nameValue = getProperty(pony, 'name');

Two problems here:

40

• you can give any value to the key parameter, even keys that don’t exist on PonyModel.

• the return type being any, you are losing a lot of type information.

This is where keyof can shine. keyof allows you to list all the keys of a type:

type PonyModelKey = keyof PonyModel;
// this is the same as `'name'|'speed'|'color'`
let property: PonyModelKey = 'name'; // works
property = 'speed'; // works
// key = 'other' would not compile

So we can use this type to make getProperty safer, by declaring that:

• the first parameter is of type T

• the second parameter is of type K, which is a key of T

function getProperty<T, K extends keyof T>(obj: T, key: K): T[K] {
 return obj[key];
}

const pony: PonyModel = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
// TypeScript infers that `nameValue` is of type `string`!
const nameValue = getProperty(pony, 'name');

We killed two birds with one stone here:

• key can now only be an existing property of PonyModel

• the return value will be inferred by TypeScript (which is pretty awesome!)

Now let’s see how we can leverage keyof to do even more.

6.3. Mapped type
Let’s say you want to create a type that has exactly the same properties as PonyModel, but you want
every property to be optional. You can of course define it manually:

interface PartialPonyModel {
 name?: string;
 color?: string;
 speed?: number;
}

41

const pony: PartialPonyModel = {
 name: 'Rainbow Dash'
};

But you can do something more generic with a mapped type:

type Partial<T> = {
 [P in keyof T]?: T[P];
};

const pony: Partial<PonyModel> = {
 name: 'Rainbow Dash'
};

The Partial type is a transformation that applies the ? modifier to every property of a type! In fact,
you don’t have to define the type Partial yourself, because since version 2.1, it’s part of the
language itself, and it’s declared exactly like in the above example.

TypeScript offers other mapped types out of the box.

6.3.1. Readonly

Readonly makes all the properties of an object readonly:

const pony: Readonly<PonyModel> = {
 name: 'Rainbow Dash',
 color: 'blue',
 speed: 45
};
// all properties are `readonly`

6.3.2. Pick

Pick helps you build a type with only some of the original properties:

const pony: Pick<PonyModel, 'name' | 'color'> = {
 name: 'Rainbow Dash',
 color: 'blue'
};
// `pony` can't have a `speed` property

6.3.3. Record

Record helps you build a type with the same properties as another type, but with a different type:

interface FormValue {

42

 value: string;
 valid: boolean;
}

const pony: Record<keyof PonyModel, FormValue> = {
 name: { value: 'Rainbow Dash', valid: true },
 color: { value: 'blue', valid: true },
 speed: { value: '45', valid: true }
};

There are even more than that, but these are the most useful.

6.4. Union types and type guards
Union types are really handy. Let’s say your application has authenticated users and anonymous
users, and sometimes you need to do a different action depending on that. You can model this as:

interface User {
 type: 'authenticated' | 'anonymous';
 name: string;
 // other fields
}

interface AuthenticatedUser extends User {
 type: 'authenticated';
 loggedSince: number;
}

interface AnonymousUser extends User {
 type: 'anonymous';
 visitingSince: number;
}

function onWebsiteSince(user: User): number {
 if (user.type === 'authenticated') {
 // this is a LoggedUser
 return (user as AuthenticatedUser).loggedSince;
 } else if (user.type === 'anonymous') {
 // this is an AnonymousUser
 return (user as AnonymousUser).visitingSince;
 }
 // TS doesn't know every possibility was covered
 // so we have to return something here
 return 0;
}

I don’t know about you, but I don’t like these as … explicit casts. Maybe we can do better?

One possibility is to use a type guard, a special function whose sole purpose is to help the

43

https://www.typescriptlang.org/docs/handbook/utility-types.html

TypeScript compiler.

function isAuthenticated(user: User): user is AuthenticatedUser {
 return user.type === 'authenticated';
}

function isAnonymous(user: User): user is AnonymousUser {
 return user.type === 'anonymous';
}

function onWebsiteSince(user: User): number {
 if (isAuthenticated(user)) {
 // this is inferred as a LoggedUser
 return user.loggedSince;
 } else if (isAnonymous(user)) {
 // this is inferred as an AnonymousUser
 return user.visitingSince;
 }
 // TS still doesn't know every possibility was covered
 // so we have to return something here
 return 0;
}

This is better! But we still need to return a default value, even if we covered all the possibilities.

We can slightly improve the situation if we drop the type guards and use a union type instead.

interface BaseUser {
 name: string;
 // other fields
}

interface AuthenticatedUser extends BaseUser {
 type: 'authenticated';
 loggedSince: number;
}

interface AnonymousUser extends BaseUser {
 type: 'anonymous';
 visitingSince: number;
}

type User = AuthenticatedUser | AnonymousUser;

function onWebsiteSince(user: User): number {
 if (user.type === 'authenticated') {
 // this is inferred as a LoggedUser
 return user.loggedSince;
 } else {

44

 // this is narrowed as an AnonymousUser
 // without even testing the type!
 return user.visitingSince;
 }
 // no need to return a default value
 // as TS knows that we covered every possibility!
}

This is even better, as TypeScript automatically narrows the type in the else branch.

Sometimes you know that the model will grow in the future, and that more cases will need to be
handled. For example if you introduce an AdminUser. In that case, you can use a switch. A switch
statement will break if one of the cases is not handled. So introducing our AdminUser, or another
type of user later, would automatically add compilation errors in every place you need to handle it!

interface AdminUser extends BaseUser {
 type: 'admin';
 adminSince: number;
}

type User = AuthenticatedUser | AnonymousUser | AdminUser;

function onWebsiteSince(user: User): number {
 switch (user.type) {
 case 'authenticated':
 return user.loggedSince;
 case 'anonymous':
 return user.visitingSince;
 case 'admin':
 // without this case, we could not even compile the code
 // as TS would complain that all possible paths are not returning a value
 return user.adminSince;
 }
}

I hope these patterns will help you. Now let’s focus on Web Components.

45

Chapter 7. The wonderful land of Web
Components
Before going further, I’d like to make a brief stop to talk about Web Components. You don’t have to
know about Web Components to write Angular code. But I think it’s a good thing to have an
overview of what they are, because some choices in Angular have been made to facilitate the
integration with Web Components, or to make the components we will build similar to Web
Components. Feel free to skip this part if you have no interest in this topic; however, I do believe
you’ll learn a thing or two that will be useful for the rest of the road.

7.1. A brave new world
Components are an old fantasy in development. Something you can grab off the shelves and drop
into your app, something that would work right away and bring a needed functionality to your
users.

My friends, this time has come.

Well, maybe. At least, there is the start of something.

That’s not completely new. We have had components in web development for quite some time, but
they usually require some kind of dependency, like jQuery, Dojo, Prototype, AngularJS, etc. Not
necessarily libraries you wanted to add to your app.

Web Components attempt to solve this problem: let’s have reusable and encapsulated components.

They rely on a set of emerging standards that browsers don’t perfectly support yet. But, still, it’s an
interesting topic, even if there’s a chance we’ll have to wait a few years to use them fully, or even if
the concept never takes off.

This emerging standard is defined in 3 specifications:

• Custom elements

• Shadow DOM

• Template

Note that the samples are most likely to work in a recent Chrome or Firefox browser.

46

7.2. Custom elements
Custom elements are a new standard allowing developers to create their own DOM elements,
making something like <ns-pony></ns-pony> a perfectly valid HTML element. The specification
defines how to declare such elements, how to make them extend existing elements, how to define
your API, etc.

Declaring a custom element is done using customElements.define:

class PonyComponent extends HTMLElement {
 constructor() {
 super();
 console.log("I'm a pony!");
 }

}

customElements.define('ns-pony', PonyComponent);

And you can then use it:

<ns-pony></ns-pony>

Note that the name must contain a dash, so that the browser knows it is a custom element. Of
course, your custom element can have properties and methods, and it also has lifecycle callbacks, to
be able to execute code when the component is inserted or removed, or when one of its attributes
changes. It can also have a template of its own. Maybe the ns-pony displays an image of the pony or
just its name:

class PonyComponent extends HTMLElement {
 constructor() {
 super();
 console.log("I'm a pony!");
 }

 /**
 * This is called when the component is inserted
 */
 connectedCallback() {
 this.innerHTML = '<h1>General Soda</h1>';
 }

}

If you try to look at the DOM, you’ll see <ns-pony><h1>General Soda</h1></ns-pony>. But that means

47

the CSS and JavaScript logic of your app can have undesired effects on your component. So, usually,
the template is hidden and encapsulated in something called Shadow DOM, and you’ll only see <ns-
pony></ns-pony> if you inspect the DOM, despite the fact that the browser displays the pony’s name.

7.3. Shadow DOM
With a mysterious name like this, you expect something with great powers. And surely it is. The
Shadow DOM is a way to encapsulate the DOM of our component. This encapsulation means that
the stylesheet and JavaScript logic of your app will not apply on the component and ruin it
inadvertently. It gives us the perfect tool to hide the internals of a component, and be sure nothing
leaks from the component to the app, or vice-versa.

Going back to our previous example:

class PonyComponent extends HTMLElement {
 constructor() {
 super();
 const shadow = this.attachShadow({ mode: 'open' });
 const title = document.createElement('h1');
 title.textContent = 'General Soda';
 shadow.appendChild(title);
 }
}

If you try to inspect it now you should see:

<ns-pony>
 #shadow-root (open)
 <h1>General Soda</h1>
</ns-pony>

Now, even if you try to add some style to the h1 elements, the visual aspect of the component won’t
change at all: that’s because the Shadow DOM acts like a barrier.

Until now, we just used a string as a template of our web component. But that’s usually not the way
you do that. Instead, the best practice is to use the <template> element.

7.4. Template
A template specified in a <template> element is not displayed in your browser. Its main goal is to be
cloned in an element at some point. What you declare inside will be inert: scripts don’t run, images
don’t load, etc. Its content can’t be queried by the rest of the page using usual methods like
getElementById() and it can be safely placed anywhere in your page.

To use a template, it needs to be cloned:

48

<template id="pony-template">
 <style>
 h1 {
 color: orange;
 }
 </style>
 <h1>General Soda</h1>
</template>

class PonyComponent extends HTMLElement {
 constructor() {
 super();
 const template = document.querySelector('#pony-template');
 const clonedTemplate = document.importNode(template.content, true);
 const shadow = this.attachShadow({ mode: 'open' });
 shadow.appendChild(clonedTemplate);
 }
}

7.5. Frameworks on top of Web Components
All these things put together make the Web Components. I’m far from being an expert on this topic,
and there are all sorts of twisted traps on this road.

As Web Components are not fully supported by every browser, there is a polyfill you can include in
your app to make sure it will work. The polyfill is called web-component.js, and it’s worth noting
that it is a joint effort from Google, Mozilla and Microsoft among others.

On top of this polyfill, a few libraries have seen the light. All aim to facilitate working with Web
Components, and often come with some ready-to-use Web Components.

Among the most notable initiatives, you find:

• Polymer, the first attempt from Google

• LitElement, a more recent project from the Polymer team ;

• X-tag from Mozilla and Microsoft

• Stencil.

I won’t go into the details, but you can easily use an already existing component. Let’s say you want
a Google Map in your app:

<!-- Polyfill Web Components support for older browsers -->
<script src="webcomponents.js"></script>

<!-- Import element -->
<script src="google-map.js"></script>

49

https://github.com/WebComponents/webcomponentsjs
https://www.polymer-project.org/
https://lit-element.polymer-project.org/
http://x-tag.github.io/
https://stenciljs.com/

<!-- Use element -->
<body>
 <google-map latitude="45.780" longitude="4.842"></google-map>
</body>

There are a LOT of components out there. You can have an overview on
https://www.webcomponents.org/.

You can do a lot of cool things with LitElement and other similar frameworks, like two-way data
binding, default values for attributes, emit custom events, react to attribute changes, repeat
elements if we give a collection to a component, etc.

That’s obviously far too short a chapter to tell you everything there is to say on Web Components,
but you’ll see that some of the concepts are going to pop out along your read. And you’ll definitely
see that the Google team designed Angular to make it easy to use Web Components with our
Angular components. It is even possible to export our own Angular components as Web
Components, with the help of Angular Elements.

50

https://www.webcomponents.org/
https://angular.io/guide/elements

Chapter 8. Grasping Angular’s philosophy
To write an Angular application, you have to grasp a few things on the framework’s philosophy.

First and foremost, Angular is component-oriented. You will write tiny components and, together,
they will constitute a whole application. A component is a group of HTML elements in a template,
dedicated to a particular task. For this, you will usually also need to have some logic linked to that
template, to populate data, and react to events for example. For the veterans of AngularJS 1.x, it’s a
bit like a 'template/controller' duo, or a directive.

This component orientation is something that is becoming widely shared across front-end
frameworks: React, the cool kid from Facebook, has been doing it that way from the beginning;
Ember and AngularJS have their way of doing something similar; and others like Svelte or Vue.js
are betting on building small components too.

51

https://reactjs.org/
https://emberjs.com/
https://angularjs.org
https://svelte.dev/
https://vuejs.org/

Angular is not alone in this, but it is among the first (it might actually be the first?) to really care
about the integration of Web Components (the standard ones). But let’s forget about this for now, as
it is a more advanced topic.

Your components will be arranged in a hierarchical way, like the DOM is. A root component will
have child components, each of them will also have children, etc. If you want to display a pony race
(who wouldn’t?), you’ll have something like an app (Ponyracer), displaying a menu (Menu) with the
logged in user (User) and a child view (Race), displaying, of course, the ponies (Pony) in the races:

52

Ponyracer

Menu Race

User Pony Pony Pony

Writing components will be your everyday work, so let’s see what it looks like. The Angular team
wanted to harness another goodness of today’s web development: ES2015+. So you can write your
components in ES5 (but that’s not very cool) or in ES2015+ (way cooler!). But that was not enough
for them. They wanted to use a feature that is not a standard (yet): decorators. So they worked
closely with the transpiler teams (Traceur and Babel) and the TypeScript team at Microsoft, to
enable us to use decorators in our Angular apps. A few decorators are available, allowing us to
easily declare a component for example. I hope you already know all of that, as I just spent two
chapters on these things!

For example, if we simplify, the Race component could look like this:

import { Component } from '@angular/core';
import { RacesService } from './services';
import { NgFor } from '@angular/common';
import { PonyComponent } from './components';

@Component({
 selector: 'ns-race',
 templateUrl: './race.component.html',
 standalone: true,
 imports: [NgFor, PonyComponent]
})
export class RaceComponent {
 race: any;

 constructor(racesService: RacesService) {
 racesService.get().then(race => (this.race = race));
 }

53

}

And the template looks like this:

<div>
 <h2>{{ race.name }}</h2>
 <div>{{ race.status }}</div>
 <div *ngFor="let pony of race.ponies">
 <ns-pony [pony]="pony"></ns-pony>
 </div>
</div>

If you already know AngularJS 1.x, the template should look familiar, with the same expression in
curly braces {{ }}, which will be evaluated and replaced by the corresponding value. Some things
have changed though: no more ng-repeat for example. I don’t want to go too deep for now, merely
just give you a feel of what the code looks like.

A component is a very isolated piece of your app. Your app is a component like the others.

You will group components in one or several coherent entities, called modules (Angular Modules,
not ES2015 Modules), or learn how to avoid them by making your components standalone.

You can also take available libraries of components from the community and just use them in your
app, and be able to enjoy their features.

Such libraries can offer UI components, or drag and drop capability, or validation for your forms, or
whatever you can think of.

In the next chapters, we are going to explore how to get started, how to build a small component,
your first application and the templating syntax.

There is another concept that is at the core, and that is Dependency injection (often called by its
little name, DI). It is a very powerful pattern, and you will quickly get used to it after reading the
dedicated chapter. It is especially useful to test your application, and I love doing tests, watching the
progress bar go all green in my IDE. It makes me feel I’m doing a good job. So there will be an entire
chapter on testing everything: your components, your services, your UI…

Angular still has the magic feeling it had in v1, where changes were automatically detected by the
framework and applied to the model and the views. But it is done in a very different way than it
was then: the change detection now uses a concept called zones. We will look into this, of course.

Angular is also a complete framework which provides a lot of help for performing common tasks in
web development. Writing forms, calling a HTTP backend, routing, interacting with other libraries,
animations, you name it: you’re covered.

Well, that’s a lot of things to learn! We should start with the beginning: bootstrap an app and write
our first component.

54

Chapter 9. From zero to something
Let’s start by creating our first Angular app and our first component, with a minimum of tooling.

9.1. Node.js and NPM
Pretty much all the modern JavaScript tools are built for Node.js and NPM these days. You’ll have to
install Node.js and NPM on your system. The best way to do that depends on your operating system
- you can find more information on the official website. Make sure you have a recent enough
version of Node.js (by executing node --version).

9.2. Angular CLI
You could setup everything by yourself, starting with a TypeScript project, then install every
dependency needed, etc.

But in a real project, you’ll probably have to set up several other things too, like:

• some tests to check if we’re not breaking things

• maybe a linter to check your code

• maybe a CSS preprocessor

• a build tool, to orchestrate the various tasks (compile, test, package, etc.)

But it’s a bit cumbersome to setup everything yourself, especially when there are sooooo many
tools to learn first.

These past few years, a lot of small project generators have seen the light, pretty much all using the
great Yeoman. It used to be the case for AngularJS 1.x, and there were a few attempts for Angular
from the community.

But this time, the Google team has been working on this issue, and they have come up with
something: Angular CLI.

Angular CLI is a command line utility to easily quick start a project, already configured with
Webpack as a build tool (the popular kid these years), tests, packaging, etc.

The idea is not new, and is in fact borrowed from another popular framework: EmberJS and its

55

https://nodejs.org/
http://yeoman.io/
https://github.com/angular/angular-cli

popularly acclaimed ember-cli.

The tool is under continuous development, with a dedicated Google team working on it and making
it better and better. It is now the recommended and de facto standard way of creating and building
Angular apps. So let’s give it a try, and discover the ton of cool stuff packed into it!

If you want, you can follow our online exercise Getting Started ! It’s free and
part of our Pro Pack, where you’ll learn how to build a complete application step
by step. The first exercise is about getting everything up and running with Angular
CLI, and goes further than what we see in the chapter.

First let’s install Angular CLI, and generate a new application with the ng new command. If you want
to use exactly the same CLI version than we are (16.0.1), you can use npm install -g
@angular/cli@16.0.1 instead.

npm install -g @angular/cli

TODO: change the script below to generate a standalone application

ng new ponyracer --prefix ns --defaults --standalone

This will create a project skeleton in a new directory called ponyracer. From this directory, you can
start your app with:

ng serve

This will start a small HTTP server locally, with a hot reload configuration. It means that every time
you modify and save a file, the server will rebuild the app, and the browser will reload it
immediately.

Tada! You have your first application up and running! Ἰ�

Maybe you’re wondering why we passed the flag --standalone to the ng new
command. In Angular 15, the framework introduced a new feature called
standalone components. Until then, components had to be declared in Angular
modules, which are quite a complex concept to grasp and use correctly, especially
when starting with Angular. Using standalone components allows us to avoid
having to create Angular modules and makes many things simpler, especially for
beginners. We think standalone components are the way of the future, so we chose
to use that option. We will explain Angular modules in a later chapter though,
because you will still have to understand their purpose and use existing modules
in your day to day work, but for now, you don’t need to worry too much about
them.

56

https://cli.emberjs.com/release/
https://angular-exercises.ninja-squad.com/exercises/0/getting-started

9.3. Application structure
Let’s dive for a few seconds into the generated code.

Open the project in your preferred IDE. You can use pretty much anything you want, but you
should activate the TypeScript support for maximum comfort. Pick your favorite: Webstorm, Visual
Studio Code… All of them have great support for TypeScript.

If your IDE supports it, code completion should work as the Angular dependencies
have their own d.ts files in the node_modules directory, and TypeScript is able to
detect them. You can even navigate to the type definitions if you want to.
TypeScript will bring its type-checking to the table, so you’ll see what mistakes you
make as you type. As we are using source maps, you can see the TS code directly
from your browser, and even debug your app by setting breakpoints in the
TypeScript code.

You should see a bunch of configuration files in the root directory: welcome to Modern JavaScript!

The first one you may recognize is the package.json file: that’s where the dependencies of the
application are defined. You can have a look inside, it should now contain the following
dependencies:

• the different @angular packages.

• rxjs, a really cool library for reactive programming. We have a dedicated chapter on this topic
and about RxJS in particular.

• zone.js, doing the heavy lifting for detecting the changes (we’ll dive into this later also).

• some dependencies for developing the application, like the CLI, TypeScript, some test librairies,
some typings…

TypeScript itself has a configuration file tsconfig.json (and another one called tsconfig.app.json),
which stores the compilation options. As we saw in the previous chapters, we are using TypeScript
with decorators (hence the two options about decorators). The sourceMap option allows you to
generate source maps, i.e. files that contain a mapping between the generated JavaScript code and
the original TypeScript code. Those source maps are used by the browser to let you debug the
JavaScript code it executes by stepping through the original TypeScript code that you have written.

TypeScript projects often also use ESLint, a linter used to check your code against the best practices.
ESLint has its own options, stored in .eslintrc.json, where you add/remove some of its rules.

Angular CLI itself has a configuration file angular.json if you want to override some of its defaults.

This ebook is using Angular version 16.0.1 for the examples. Angular CLI will
probably install the most recent version, which might not be exactly the same. If
you want to use the same version as we are, replace the version in the
package.json by 16.0.1 for each Angular package. That might save you a few
headaches! Or, even better, follow our free online exercise Getting Started !
which is always up-to-date and battle-tested!

57

https://github.com/ReactiveX/RxJS
https://angular-exercises.ninja-squad.com/exercises/0/getting-started

Now that we have been over the configuration, let’s see the application code.

9.4. Our first component
As we saw in the previous section, a component is a combination of a view (the template) and some
logic (our TS class). The CLI has already created one for us: src/app/app.component.ts. Let’s check it
out:

import { Component } from '@angular/core';

@Component({
 selector: 'ns-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'ponyracer';
}

Our application itself is a simple component. To tell Angular that it is a component, we use the
@Component decorator. And to be able to use this decorator, we have to import it as you can see at the
top of the file.

When you write new components, don’t forget to import the Component decorator. You may forget to
do so at the beginning, but it won’t last, as the compiler will yell at you! ;)

You’ll see that most of the things we need are in the @angular/core module, but that’s not always the
case. For example, when dealing with HTTP, we’ll use imports from @angular/http; or, if we use the
router, we’ll import from @angular/router, etc.

import { Component } from '@angular/core';

@Component({
})
export class AppComponent {
 title = 'ponyracer';
}

The @Component decorator is expecting a configuration object. We’ll see later in detail what you can
configure here, but for now let’s start with the selector property. It will tell Angular what to look
for in our HTML pages. Every time Angular finds an element in our HTML which matches the
selector of the component, it will create an instance of the component, and replace the content of
the element by the template of the component.

import { Component } from '@angular/core';

@Component({

58

 selector: 'ns-root',
})
export class AppComponent {
 title = 'ponyracer';
}

So, here, every time our HTML contains an element like <ns-root></ns-root>, Angular will
instantiate a new instance of our AppComponent class.

There is a clear naming convention established, and applied by Angular CLI.
Component classes end with Component, and they are defined in a file ending with
.component.ts. Angular also recommends using a prefix in component selectors, to
avoid name clashes with external components. For example, since our company is
named Ninja Squad, we chose to use the prefix ns. Our pony component selector is
thus named ns-pony. You can configure Angular CLI so that it prepends this prefix
to every generated component. If you remember, when we created the project
with ng new, we passed the option --prefix ns. That’s what this option does: it
configures the project to have components generated with the ns prefix.

A component must also have a template. We can have an inline template or externalize it in
another file, like the CLI does:

import { Component } from '@angular/core';

@Component({
 selector: 'ns-root',
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'ponyracer';
}

The corresponding HTML is defined in app.component.html, with a bunch of static elements, except
the first h1:

{{ title }} app is running!

Finally, you can see that the component has two additional options: standalone and imports.

import { Component } from '@angular/core';
import { CommonModule } from '@angular/common';

@Component({
 selector: 'ns-root',
 standalone: true,

59

 imports: [CommonModule],
 templateUrl: './app.component.html',
 styleUrls: ['./app.component.css']
})
export class AppComponent {
 title = 'ponyracer';
}

The standalone: true property is what makes our component standalone. This means that the
component doesn’t need to be declared in an Angular module in order to be usable.

The other property, imports: [CommonModule] is not always strictly required. Its goal is to tell Angular
which other components, pipes and directives can be used inside the template of our component.
Most of the components that we create use pipes and directives provided by Angular. These very
commonly used pipes and directives are declared in an Angular module named CommonModule.
Importing CommonModule in the configuration of our component thus makes it possible to use them in
its template.

We were talking about ES2015+ and TS modules in the first chapters, which define imports and
exports. The TypeScript compiler, when it sees an interface such as Race being used in the
TypeScript source code, must know where to find the definition of this interface Race. That’s why
you need to import it.

The imports property of the @Component decorator serves a similar purpose: if Angular were to find
an element <ns-race> in the template of AppComponent, it would need to know where and how the
corresponding RaceComponent is defined. To let it know where it can find its definition, you would
need to add the RaceComponent to the imports of the AppComponent decorator.

9.5. Bootstrapping the app
Finally, we need to start our app, using the bootstrapApplication function. Angular CLI will by
default generate a separate file containing this bootstrap logic: main.ts:

import { bootstrapApplication } from '@angular/platform-browser';
import { appConfig } from './app/app.config';
import { AppComponent } from './app/app.component';

bootstrapApplication(AppComponent, appConfig)
 .catch((err) => console.error(err));

As you can see, what it expects is the root component of the application: AppComponent.

Yay! But wait a second. We need an HTML file to serve to our users, right?

The CLI created an index.html file for us, which is the single page of our application. You might
wonder how it could possibly work, since it doesn’t contain any script element.

When you run ng serve, the CLI calls the TypeScript compiler. The compiler outputs JavaScript files.

60

The CLI then bundles them and adds the necessary script elements to the index.html file (using
Webpack behind the scenes).

Hopefully, you now have a better understanding of the various parts of this first Angular
application. It’s not really a dynamic app yet, and we could have done the same in one second in a
static HTML page, I’ll give you that. So let’s jump to the next sections, and learn all about
dependency injection and templating.

61

https://webpack.github.io/

Chapter 10. End of the free sample

That’s it! I hope that you enjoy this reading. If you want more of it (and you should), go buy it
on the ebook website! :)

62

https://books.ninja-squad.com/angular

Appendix A: Changelog
Here are all the major changes since the first version. It should help you to see what changed since
your last read!

By buying this ebook, you’ll get all the following updates for free. Go to https://books.ninja-
squad.com/claim to obtain the latest version of this ebook.

Current versions:

• Angular: 16.0.1

• Angular CLI: 16.0.1

A.1. Changes since last release - 2023-05-03
Building components and directives

• Introduce required inputs, as added in Angular v16 (2023-05-03)

Router

• Add a section about withComponentInputBinding to get router parameters and data as component
inputs, as introduced in Angular v16 (2023-05-03)

Advanced observables

• Use the takeUntilDestroyed RxJS operator introduced in Angular v16 (2023-05-03)

A.2. v15.2.0 - 2023-02-23
Router

• As Angular v15.2 deprecates class-based resolvers and guards, we now use functional resolvers
and guards in all examples. (2023-02-23)

A.3. v15.1.0 - 2023-01-11
Dependency Injection

• Use a better example for DI configuration, with a logging service that logs to the console in
development and calls an API in production. (2023-01-05)

• Add a section about the inject() function. (2022-12-01)

Router

• Remove the section about the CanLoad guard as it is now deprecated (use CanMatch instead). (2023-

01-11)

63

https://books.ninja-squad.com/claim
https://books.ninja-squad.com/claim

Standalone components

• Add a section about HTTP with provideHttpClient and functional interceptors. (2022-11-30)

Going to production

• Explains how to use ng generate environments. (2023-01-11)

A.4. v15.0.0 - 2022-11-16
Dependency Injection

• Remove the providedIn: NgModule syntax now that it is deprecated in Angular v15 (2022-11-16)

Router

• The router automatically unwraps default module exports in lazy-loading routes in Angular v15
(2022-11-16)

• Showcases an example of a functional resolver (2022-11-14)

• Showcases an example of functional guard (2022-11-14)

Standalone components

• Use the NgFor alias introduced in Angular v15 for the NgForOf directive (2022-11-16)

• The router now automatically unwraps default component exports in lazy-loading routes (2022-

11-16)

Going to production

• Replace the explanation of enableProdMode by a section about production mode and mention the
ngDevMode variable. (2022-11-16)

• We now explain how to use fileReplacements as it is no longer included by default in CLI v15.
(2022-11-16)

A.5. v14.2.0 - 2022-08-26
Standalone components

• Mention provideRouter(routes) (2022-08-26)

Performances

• Mention the experimental NgOptimizedImage directive introduced in v14.2 (2022-08-26)

A.6. v14.1.0 - 2022-07-21
Router

64

• Add a section on the new CanMatch guard introduced in v14.1 (2022-07-21)

A.7. v14.0.0 - 2022-06-03
Forms

• Add a section about FormArray and FormRecord (2022-06-03)

• Add a section about typed forms (2022-06-03)

• We nows use and explain the new "strictly typed forms API" Ὠ� (2022-06-03)

Standalone components

• New chapter about standalone APIs! (2022-06-03)

Performances

• Better example of NgZone.runOutsideAngular usage (2022-05-11)

A.8. v13.3.0 - 2022-03-16

A.9. v13.2.0 - 2022-01-27
Forms

• The forms chapter has a new section about control value accessors, explaining how to create
custom form controls (2021-12-14)

Advanced components and directives

• The advanced components chapter has a new section about ng-template, explaining how to
create customizable components using conditional, contextual content projection (2021-12-17)

Going to production

• Section about the new extendedDiagnostics option introduced in v13.2 (2022-01-27)

A.10. v13.1.0 - 2021-12-10

A.11. v13.0.0 - 2021-11-04
The templating syntax

• Remove the canonical bind-, on-, ref- syntax that has been deprecated in Angular v13 (2021-11-04)

Going to production

• Remove the section about differential loading as it has been removed in Angular v13 (2021-11-04)

• Remove the fullTemplateTypeCheck explanation, as it is deprecated in Angular v13, and only

65

keep its remplacement strictTemplates. (2021-11-04)

A.12. v12.2.0 - 2021-08-05
Global

• Add links to our quizzes! (2021-07-29)

Reactive Programming

• RxJS v7.2 allows to import operators directly from rxjs, so all imports have been simplified.
(2021-08-05)

A.13. v12.1.0 - 2021-06-25

A.14. v12.0.0 - 2021-05-13
Global

• All examples now use strict null checks. (2021-05-13)

From zero to something

• The ebook now uses ESLint as its linter. (2021-05-13)

Testing your app

• The e2e tests section now introduces Cypress (2021-05-13)

Send and receive data with Http

• Section about the new HttpContext introduced in Angular v12. (2021-05-13)

• The HTTP examples now use the human-readable HttpStatusCode enum. (2021-05-13)

Going to production

• The CLI uses the production configuration by default for ng build since v12, and the --prod flag
is deprecated. (2021-05-13)

A.15. v11.2.0 - 2021-02-12

A.16. v11.1.0 - 2021-01-21

A.17. v11.0.0 - 2020-11-12
Internationalization

• ng xi18n has been renamed ng extract-i18n in CLI v11 (2020-11-12)

66

A.18. v10.2.0 - 2020-10-22
Internationalization

• xi18N now extracts messages from the $localize calls in TypeScript code (2020-09-10)

A.19. v10.1.0 - 2020-09-03
Testing your app

• async has been deprecated and renamed waitForAsync (2020-09-01)

Internationalization

• Import the global variants of the locale data. It’s simpler, supports all formatting options, and
doesn’t trigger an optimization bailout warning when building the app with the CLI. (2020-07-01)

A.20. v10.0.0 - 2020-06-25
Global

• Bump to ng 10.0.0 (2020-06-25)

The wonderful world of Web Components

• Use customElements.define instead of the deprecated document.registerElement. (2020-06-17)

Reactive Programming

• Pass an object as argument to the Observable.subscribe() method when an error or a
completion must be handled, instead of 2 or 3 functions, because passing several functions will
be deprecated in RxJS 7. (2020-06-05)

A.21. v9.1.0 - 2020-03-26
Global

• Bump to ng 9.1.0 (2020-03-26)

From zero to something

• Bump to cli 9.1.0 (2020-03-26)

A.22. v9.0.0 - 2020-02-07
Global

• Bump to ng 9.0.0 (2020-02-07)

• Bump to ng 9.0.0-next.5 (2020-02-06)

67

A gentle introduction to ECMAScript 2015+

• Add a section about tagged template strings. (2019-08-02)

Diving into TypeScript

• Showcase interface usage for modeling entities (2019-08-10)

• Improve the enum section with examples of how to use union types (2019-08-10)

Advanced TypeScript

• Introduce a new chapter about advanced TypeScript patterns, like keyof, mapped types, type
guards, and other things! (2019-08-10)

From zero to something

• Bump to cli 9.0.1 (2020-02-07)

• Bump to cli 9.0.0-next.3 (2020-02-06)

• Bump to cli 8.3.2 (2019-08-30)

• Bump to cli 8.3.0 (2019-08-22)

Testing your app

• Use TestBed.inject instead of the deprecated TestBed.get in ng 9.0.0 (2020-02-06)

Internationalization

• Explains how to configure the default currency code (2020-02-07)

• Introduce @angular/localize usage in ng 9.0.0 (2020-02-07)

Going to production

• Mention the multiple configurations support introduced in CLI v9.0 (2020-02-07)

• Explain the fullTemplateTypeCheck and strictTemplates options (2020-02-07)

A.23. v8.2.0 - 2019-08-01
Global

• Bump to ng 8.2.0 (2019-08-01)

From zero to something

• Bump to cli 8.2.0 (2019-08-01)

Testing your app

• Use a more strictly typed createSpyObj syntax. (2019-07-31)

68

A.24. v8.1.0 - 2019-07-02
Global

• Bump to ng 8.1.0 (2019-07-02)

The wonderful world of Web Components

• Mention more recent alternatives to Polymer, remove the dead HTML import spec and mention
Angular Elements (2019-06-01)

From zero to something

• Bump to cli 8.1.0 (2019-07-02)

A.25. v8.0.0 - 2019-05-29
Global

• Bump to ng 8.0.0 (2019-05-29)

A gentle introduction to ECMAScript 2015+

• How to use async/await with promises (2019-05-19)

From zero to something

• Bump to cli 8.0.0 (2019-05-29)

• Bump cli to 7.3.0 (2019-02-28)

Testing your app

• Showcase the awesome ngx-speculoos library for cleaner unit tests (2019-05-20)

Forms

• Showcase the awesome ngx-valdemort library for better validation error messages (2019-05-19)

Router

• Use import for lazy-loading routes as introduced by ng 8.0.0 (2019-05-20)

Angular compiler

• Update the AoT explanation and generated code for Angular 8.0.0 (Ivy) (2019-05-20)

Advanced components and directives

• Add and explain the static flag for ViewChild and ContentChild introduced by Angular 8.0.0
(2019-05-27)

Going to production

69

• Differential loading using browserslist as introduced by the cli 8.0.0. (2019-05-20)

A.26. v7.2.0 - 2019-01-09
Global

• Bump to ng 7.2.0 (2019-01-07)

• Bump to ng 7.2.0-rc.0 (2019-01-03)

• Bump to ng 7.2.0-beta.2 (2018-12-14)

From zero to something

• Bump to cli 7.2.0 (2019-01-09)

• Bump to cli 7.2.0-rc.0 (2019-01-07)

• Bump to cli 7.2.0-beta.2 (2019-01-07)

A.27. v7.1.0 - 2018-11-27
Global

• Bump to ng 7.1.0 (2018-11-22)

• Bump to ng 7.1.0-rc.0 (2018-11-20)

• Bump to ng 7.0.2 (2018-11-05)

From zero to something

• Bump to cli 7.1.0 (2018-11-27)

• Bump to cli 7.0.4 (2018-11-05)

Router

• Use UrlTree in CanActivate guard, as introduced by 7.1 (2018-11-22)

A.28. v7.0.0 - 2018-10-25
Global

• Bump to ng 7.0.0 (2018-10-18)

• Bump to ng 7.0.0-rc.1 (2018-10-18)

• Bump to ng 7.0.0-rc.0 (2018-10-18)

• Bump to ng 7.0.0-beta.6 (2018-10-18)

• Bump to ng 7.0.0-beta.4 (2018-10-18)

• Bump to ng 7.0.0-beta.0 (2018-10-18)

70

From zero to something

• Bump to cli 7.0.2 (2018-10-24)

• Bump to cli 7.0.1 (2018-10-18)

• Bump to cli 6.2.1 (2018-09-07)

• Bump to cli 6.2.0-rc.0 (2018-09-07)

Performances

• Adds a performances chapter! (2018-08-30)

Going to production

• Adds a new chapter about Going to production! (2018-10-25)

A.29. v6.1.0 - 2018-07-26
Global

• Bump to ng 6.1.0 (2018-07-26)

• Bump to ng 6.1.0-rx.0 (2018-07-26)

• Bump to ng 6.1.0-beta.1 (2018-07-26)

• Bump to ng 6.0.7 (2018-07-06)

From zero to something

• Bump to cli 6.1.0 (2018-07-26)

• Bump to cli 6.0.8 (2018-07-06)

• Bump cli to 6.0.7 (2018-05-30)

Pipes

• Add the keyvalue pipe introduced in Angular 6.1 (2018-07-26)

• Show usage of formatting functions available since Angular 6.0 (2018-06-15)

Styling components and encapsulation

• New ShadowDom encapsulation option with Shadow DOM v1 support (the old and soon deprecated
Native option uses Shadow DOM v0) (2018-07-26)

Send and receive data with Http

• HTTP tests now use verify every time (2018-07-06)

Router

• Adds the Scroll event and scrollPositionRestoration option introduced in 6.1 (2018-07-26)

71

Advanced observables

• Use shareReplay instead of publishReplay and refCount (2018-07-20)

Internationalization

• Update for CLI 6.0 and use a dedicated configuration (2018-05-09)

A.30. v6.0.0 - 2018-05-04
Global

• Bump to ng 6.0.0 (2018-05-04)

• Bump to ng 6.0.0-rc.4 (2018-04-13)

• Bump to ng 6.0.0-rc0 (2018-04-05)

• Bump to ng 6.0.0-beta.7 (2018-04-05)

• Bump to ng 6.0.0-beta.6 (2018-04-05)

• Bump to ng 6.0.0-beta.1 (2018-04-05)

The wonderful world of Web Components

• Replace customelements.io by webcomponents.org (2018-01-19)

From zero to something

• Bump to cli 6.0.0 (2018-05-04)

• The chapter now uses Angular CLI from the start! (2018-03-19)

Dependency Injection

• Use providedIn to register services, as recommended for Angular 6.0 (2018-04-15)

• Updates the dependency injection via token section with a better example (2018-03-19)

Reactive Programming

• We now use the pipeable operators introduced in RxJS 5.5 (2018-01-28)

Services

• Use providedIn to register the service, as recommended for Angular 6.0 (2018-04-15)

Testing your app

• Simplify service unit tests now that they use providedIn from ng 6.0 (2018-04-15)

Advanced components and directives

• Angular 6.0+ allows to type ElementRef<T> (2018-04-05)

72

Advanced observables

• We now use the imports introduced in RxJS 6.0 (import { Observable, of } from 'rxjs') (2018-04-

05)

• We now use the pipeable operators introduced with RxJS 5.5 (2018-01-28)

A.31. v5.2.0 - 2018-01-10
Global

• Bump to ng 5.2.0 (2018-01-10)

• Bump to ng 5.1.0 (2017-12-07)

Building components and directives

• Better lifecycle explanation (2017-12-13)

Forms

• Reintroduce the min and max validators from version 4.2.0, even if they are not available as
directives. (2017-12-13)

Send and receive data with Http

• Remove remaining mentions to the deprecated HttpModule and Http (2017-12-08)

A.32. v5.0.0 - 2017-11-02
Global

• Bump to ng 5.0.0 (2017-11-02)

• Bump to ng 5.0.0-rc.5 (2017-11-02)

• Bump to ng 5.0.0-rc.3 (2017-11-02)

• Bump to ng 5.0.0-rc.2 (2017-11-02)

• Bump to ng 5.0.0-rc.0 (2017-11-02)

• Bump to ng 5.0.0-beta.6 (2017-11-02)

• Bump to ng 5.0.0-beta.5 (2017-11-02)

• Bump to ng 5.0.0-beta.4 (2017-11-02)

• Bump to ng 5.0.0-beta.1 (2017-11-02)

• Bump to ng 4.4.1 (2017-09-16)

Pipes

• Use the new i18n pipes introduced in ng 5.0.0 (2017-11-02)

Forms

73

• Add a section on the updateOn: 'blur' option for controls and groups introduced in 5.0 (2017-11-

02)

• Remove the section about combining template-based and code-based approaches (2017-09-01)

Send and receive data with Http

• Use object literals for headers and params for the new http client, introduced in 5.0.0 (2017-11-02)

Router

• Adds ng 5.0 ChildActivationStart/ChildActivationEnd to the router events (2017-11-02)

Internationalization

• Remove deprecated i18n comment with ng 5.0.0 (2017-11-02)

• Show how to load the locale data as required in ng 5.0.0 and uses the new i18n pipes (2017-11-02)

• Placeholders now displays the interpolation in translation files to help translators (2017-11-02)

A.33. v4.3.0 - 2017-07-16
Global

• Bump to ng 4.3.0 (2017-07-16)

• Bump to ng 4.2.3 (2017-06-17)

Forms

• Remove min/max validators mention, as they have been removed temporarily in ng 4.2.3 (2017-

06-17)

Send and receive data with Http

• Updates the chapter to use the new HttpClientModule introduced in ng 4.3.0. (2017-07-16)

Router

• List the new router events introduced in 4.3.0 (2017-07-16)

Advanced components and directives

• Add a section about HostBinding (2017-06-29)

• Add a section about HostListener (2017-06-29)

• New chapter on advanced components, with ViewChild, ContentChild and ng-content! (2017-06-29)

A.34. v4.2.0 - 2017-06-09
Global

• Bump to ng 4.2.0 (2017-06-09)

74

• Bump to ng 4.1.0 (2017-04-28)

Forms

• Introduce the min and max validators from version 4.2.0 (2017-06-09)

Router

• New chapter on advanced router usage: protected routes with guards, nested routes, resolvers
and lazy-loading! (2017-04-28)

Angular compiler

• Adds a chapter about the Angular compiler and the differences between JiT and AoT. (2017-05-02)

A.35. v4.0.0 - 2017-03-24
Global

• Ἰ� Bump to stable release 4.0.0 Ἰ� (2017-03-24)

• Bump to 4.0.0-rc.6 (2017-03-23)

• Bump to 4.0.0-rc.5 (2017-03-23)

• Bump to 4.0.0-rc.4 (2017-03-23)

• Bump to 4.0.0-rc.3 (2017-03-23)

• Bump to 4.0.0-rc.1 (2017-03-23)

• Bump to 4.0.0-beta.8 (2017-03-23)

• Bump to ng 4.0.0-beta.7 and TS 2.1+ is now required (2017-03-23)

• Bump to 4.0.0-beta.5 (2017-03-23)

• Bump to 4.0.0-beta.0 (2017-03-23)

• Each chapter now has a link to the corresponding exercise of our Pro Pack Chapters are slightly
re-ordered to match the exercises order. (2017-03-22)

The templating syntax

• Use as, introduced in 4.0.0, instead of let for variables in templates (2017-03-23)

• The template tag is now deprecated in favor of ng-template in 4.0 (2017-03-23)

• Introduces the else syntax from version 4.0.0 (2017-03-23)

Dependency Injection

• Fix the Babel 6 config for dependency injection without TypeScript (2017-02-17)

Pipes

• Introduce the as syntax to store a NgIf or NgFor result, which can be useful with some pipes like
slice or async. (2017-03-23)

75

https://angular-exercises.ninja-squad.com

• Adds titlecase pipe introduced in 4.0.0 (2017-03-23)

Services

• New Meta service in 4.0.0 to get/set meta tags (2017-03-23)

Testing your app

• overrideTemplate has been added in 4.0.0 (2017-03-23)

Forms

• Introduce the email validator from version 4.0.0 (2017-03-23)

Send and receive data with Http

• Use params instead of the deprecated search in 4.0.0 (2017-03-23)

Router

• Use paramMap introduced in 4.0 instead of params (2017-03-23)

Advanced observables

• Shows the as syntax introduced in 4.0.0 as an alternative for the mulitple async pipe
subscriptions problem (2017-03-23)

Internationalization

• Add a new chapter on internationalization (i18n) (2017-03-23)

A.36. v2.4.4 - 2017-01-25
Global

• Bump to 2.4.4 (2017-01-25)

• The big rename: "Angular 2" is now known as "Angular" (2017-01-13)

• Bump to 2.4.0 (2016-12-21)

Forms

• Fix the NgModel explanation (2017-01-09)

• Validators.compose() is no longer necessary, we can apply several validators by just passing an
array. (2016-12-01)

A.37. v2.2.0 - 2016-11-18
Global

• Bump to 2.2.0 (2016-11-18)

76

• Bump to 2.1.0 (2016-10-17)

• Remove typings and use npm install @types/… (2016-10-17)

• Use const instead of let and TypeScript type inference whenever possible (2016-10-01)

• Bump to 2.0.1 (2016-09-24)

Testing your app

• Use TestBed.get instead of inject in tests (2016-09-30)

Forms

• Add an async validator example (2016-11-18)

• Remove the useless (2.2+) .control in templates like username.control.hasError('required').
(2016-11-18)

Router

• routerLinkActive can be exported (2.2+). (2016-11-18)

• We don’t need to unsubscribe from the router params in the ngOnDestroy method. (2016-10-07)

Advanced observables

• New chapter on Advanced Observables! (2016-11-03)

A.38. v2.0.0 - 2016-09-15
Global

• Ἰ� Bump to stable release 2.0.0 Ἰ� (2016-09-15)

• Bump to rc.7 (2016-09-14)

• Bump to rc.6 (2016-09-05)

From zero to something

• Update the SystemJS config for rc.6 and bump the RxJS version (2016-09-05)

Pipes

• Remove the section about the replace pipe, removed in rc.6 (2016-09-05)

A.39. v2.0.0-rc.5 - 2016-08-25
Global

• Bump to rc.5 (2016-08-23)

• Bump to rc.4 (2016-07-08)

• Bump to rc.3 (2016-06-28)

77

• Bump to rc.2 (2016-06-16)

• Bump to rc.1 (2016-06-08)

• Code examples now follow the official style guide (2016-06-08)

From zero to something

• Small introduction to NgModule when you start your app from scratch (2016-08-12)

The templating syntax

• Replace the deprecated ngSwitchWhen with ngSwitchCase (2016-06-16)

Dependency Injection

• Introduce modules and their role in DI. Changed the example to use a custom service instead of
Http. (2016-08-15)

• Remove deprecated provide() method and use {provide: …} instead (2016-06-09)

Pipes

• Date pipe is now fixed in rc.2, no more problem with Intl API (2016-06-16)

Styling components and encapsulation

• New chapter on styling components and the different encapsulation strategies! (2016-06-08)

Services

• Add the service to the module’s providers (2016-08-21)

Testing your app

• Tests now use the TestBed API instead of the deprecated TestComponentBuilder one. (2016-08-15)

• Angular 2 does not provide Jasmine wrappers and custom matchers for unit tests in rc.4
anymore (2016-07-08)

Forms

• Forms now use the new form API (FormsModule and ReactiveFormsModule). (2016-08-22)

• Warn about forms module being rewritten (and deprecated) (2016-06-16)

Send and receive data with Http

• Add the HttpModule import (2016-08-21)

• http.post() now autodetects the body type, removing the need of using JSON.stringify and
setting the ContentType (2016-06-16)

Router

• Introduce RouterModule (2016-08-21)

78

• Update the router to the API v3! (2016-07-08)

• Warn about router module being rewritten (and deprecated) (2016-06-16)

Changelog

• Mention free updates and web page for obtaining latest version (2016-07-25)

A.40. v2.0.0-rc.0 - 2016-05-06
Global

• Bump to rc.0. All packages have changed! (2016-05-03)

• Bump to beta.17 (2016-05-03)

• Bump to beta.15 (2016-04-16)

• Bump to beta.14 (2016-04-11)

• Bump to beta.11 (2016-03-19)

• Bump to beta.9 (2016-03-11)

• Bump to beta.8 (2016-03-10)

• Bump to beta.7 (2016-03-04)

• Display the Angular 2 version used in the intro and in the chapter "Zero to something". (2016-03-

04)

• Bump to beta.6 (beta.4 and beta.5 were broken) (2016-03-04)

• Bump to beta.3 (2016-03-04)

• Bump to beta.2 (2016-03-04)

Diving into TypeScript

• Use typings instead of tsd. (2016-03-04)

The templating syntax

• *ngFor now also exports a first variable (2016-04-16)

Dependency Injection

• Better explanation of hierarchical injectors (2016-03-04)

Pipes

• A replace pipe has been introduced (2016-04-16)

Reactive Programming

• Observables are not scheduled for ES7 anymore (2016-03-04)

Building components and directives

79

• Explain how to remove the compilation warning when using @Input and a setter at the same
time (2016-03-04)

• Add an explanation on isFirstChange for ngOnChanges (2016-03-04)

Testing your app

• injectAsync is now deprecated and replaced by async (2016-05-03)

• Add an example on how to test an event emitter (2016-03-04)

Forms

• A pattern validator has been introduced to make sure that the input matches a regexp (2016-04-16)

• Add a mnemonic tip to rememeber the [()] syntax: the banana box! (2016-03-04)

• Examples use module.id to have a relative templateUrl (2016-03-04)

• Fix error ng-no-form → ngNoForm (2016-03-04)

• Fix errors (ngModel) → (ngModelChange), is-old-enough → isOldEnough (2016-03-04)

Send and receive data with Http

• Use JSON.stringify before sending data with a POST (2016-03-04)

• Add a mention to JSONP_PROVIDERS (2016-03-04)

Router

• Introduce the new router (previous one is deprecated), and how to use parameters in URLs!
(2016-05-06)

• RouterOutlet inserts the template of the component just after itself and not inside itself (2016-03-

04)

Zones and the Angular magic

• New chapter! Let’s talk about how Angular 2 works under the hood! First part is about how
AngularJS 1.x used to work, and then we’ll see how Angular 2 differs, and uses a new concept
called zones. (2016-05-03)

A.41. v2.0.0-alpha.47 - 2016-01-15
Global

• First public release of the ebook! (2016-01-15)

80

	Become a ninja with Angular (free sample)
	Table of Contents
	Chapter 1. Free sample
	Chapter 2. Introduction
	Chapter 3. A gentle introduction to ECMAScript 2015+
	3.1. Transpilers
	3.2. let
	3.3. Constants
	3.4. Shorthands in object creation
	3.5. Destructuring assignment
	3.6. Default parameters and values
	3.7. Rest operator
	3.8. Classes
	3.9. Promises
	3.10. Arrow functions
	3.11. Async/await
	3.12. Sets and Maps
	3.13. Template literals
	3.14. Modules
	3.15. Conclusion

	Chapter 4. Going further than ES2015+
	4.1. Dynamic, static and optional types
	4.2. Enters TypeScript
	4.3. A practical example with DI

	Chapter 5. Diving into TypeScript
	5.1. Types as in TypeScript
	5.2. Enums
	5.3. Return types
	5.4. Interfaces
	5.5. Optional arguments
	5.6. Functions as property
	5.7. Classes
	5.8. Working with other libraries
	5.9. Decorators

	Chapter 6. Advanced TypeScript
	6.1. readonly
	6.2. keyof
	6.3. Mapped type
	6.4. Union types and type guards

	Chapter 7. The wonderful land of Web Components
	7.1. A brave new world
	7.2. Custom elements
	7.3. Shadow DOM
	7.4. Template
	7.5. Frameworks on top of Web Components

	Chapter 8. Grasping Angular’s philosophy
	Chapter 9. From zero to something
	9.1. Node.js and NPM
	9.2. Angular CLI
	9.3. Application structure
	9.4. Our first component
	9.5. Bootstrapping the app

	Chapter 10. End of the free sample
	Appendix A: Changelog
	A.1. Changes since last release - 2023-05-03
	A.2. v15.2.0 - 2023-02-23
	A.3. v15.1.0 - 2023-01-11
	A.4. v15.0.0 - 2022-11-16
	A.5. v14.2.0 - 2022-08-26
	A.6. v14.1.0 - 2022-07-21
	A.7. v14.0.0 - 2022-06-03
	A.8. v13.3.0 - 2022-03-16
	A.9. v13.2.0 - 2022-01-27
	A.10. v13.1.0 - 2021-12-10
	A.11. v13.0.0 - 2021-11-04
	A.12. v12.2.0 - 2021-08-05
	A.13. v12.1.0 - 2021-06-25
	A.14. v12.0.0 - 2021-05-13
	A.15. v11.2.0 - 2021-02-12
	A.16. v11.1.0 - 2021-01-21
	A.17. v11.0.0 - 2020-11-12
	A.18. v10.2.0 - 2020-10-22
	A.19. v10.1.0 - 2020-09-03
	A.20. v10.0.0 - 2020-06-25
	A.21. v9.1.0 - 2020-03-26
	A.22. v9.0.0 - 2020-02-07
	A.23. v8.2.0 - 2019-08-01
	A.24. v8.1.0 - 2019-07-02
	A.25. v8.0.0 - 2019-05-29
	A.26. v7.2.0 - 2019-01-09
	A.27. v7.1.0 - 2018-11-27
	A.28. v7.0.0 - 2018-10-25
	A.29. v6.1.0 - 2018-07-26
	A.30. v6.0.0 - 2018-05-04
	A.31. v5.2.0 - 2018-01-10
	A.32. v5.0.0 - 2017-11-02
	A.33. v4.3.0 - 2017-07-16
	A.34. v4.2.0 - 2017-06-09
	A.35. v4.0.0 - 2017-03-24
	A.36. v2.4.4 - 2017-01-25
	A.37. v2.2.0 - 2016-11-18
	A.38. v2.0.0 - 2016-09-15
	A.39. v2.0.0-rc.5 - 2016-08-25
	A.40. v2.0.0-rc.0 - 2016-05-06
	A.41. v2.0.0-alpha.47 - 2016-01-15

