Temozolomide

Temozolomide
Clinical data
Trade names Temodar, Temodal, Temcad
AHFS/Drugs.com Monograph
MedlinePlus a601250
License data
Pregnancy
category
  • US: D (Evidence of risk)
Routes of
administration
Oral, intravenous
ATC code L01AX03 (WHO)
Legal status
Legal status
Pharmacokinetic data
Protein binding 15%
Metabolism spontaneously hydrolyzed at physiologic pH to the active species, 3-methyl-(triazen-1-yl)imidazole-4-carboxamide (MTIC) and to temozolomide acid metabolite
Biological half-life 1.8 hours
Identifiers
CAS Number 85622-93-1 YesY
PubChem (CID) 5394
IUPHAR/BPS 7301
DrugBank DB00853 YesY
ChemSpider 5201 YesY
UNII YF1K15M17Y YesY
KEGG D06067 YesY
ChEBI CHEBI:72564 N
ChEMBL CHEMBL810 YesY
ECHA InfoCard 100.158.652
Chemical and physical data
Formula C6H6N6O2
Molar mass 194.151 g/mol
3D model (Jmol) Interactive image
Melting point 212 °C (414 °F) (decomp.)
 NYesY (what is this?)  (verify)

Temozolomide (TMZ; brand names Temodar and Temodal and Temcad) is an oral chemotherapy drug. It is an alkylating agent used as a treatment of some brain cancers; as a second-line treatment for astrocytoma and a first-line treatment for glioblastoma multiforme.[1][2]

Indications

Side-effects

The most common side effect is bone marrow suppression. The most common non-hematological adverse effects associated with temozolomide are nausea and vomiting, which are either self-limiting or readily controlled with standard antiemetic therapy. These latter effects are usually mild to moderate (grade 1 to 2). The incidence of severe nausea and vomiting is around 4% each. Patients who have pre-existing or a history of severe vomiting may require antiemetic therapy before initiating temozolomide treatment. Temozolomide should be administered in the fasting state, at least one hour before a meal. (Capsules must not be opened or chewed, but swallowed whole with a glass of water.) Antiemetic therapy may be administered before, or following, administration of temozolomide. Temozolomide is contraindicated in patients with hypersensitivity to its components or to dacarbazine. The use of temozolomide is not recommended in patients with severe myelosuppression.

Temozolomide is genotoxic, teratogenic and fetotoxic and should not be used during pregnancy. Lactating women should discontinue nursing while receiving the drug because of the risk of secretion into breast milk. One study indicated that women that have taken temozolomide without concomitant fertility preservation measures achieve pregnancy to a lesser rate later in life, but the study was too small to show statistical significance in the hypothesis that temozolomide would confer a risk of female infertility.[3] In male patients, temozolomide can have genotoxic effects. Men are advised not to father a child during or up to six months after treatment and to seek advice on cryoconservation of sperm prior to treatment, because of the possibility of irreversible infertility due to temozolomide therapy.

Very rarely temozolomide can cause acute respiratory failure or liver damage.

Mechanism of action

The therapeutic benefit of temozolomide depends on its ability to alkylate/methylate DNA, which most often occurs at the N-7 or O-6 positions of guanine residues. This methylation damages the DNA and triggers the death of tumor cells. However, some tumor cells are able to repair this type of DNA damage, and therefore diminish the therapeutic efficacy of temozolomide, by expressing a protein O6-alkylguanine DNA alkyltransferase (AGT) encoded in humans by the O-6-methylguanine-DNA methyltransferase (MGMT) gene.[4] In some tumors, epigenetic silencing of the MGMT gene prevents the synthesis of this enzyme, and as a consequence such tumors are more sensitive to killing by temozolomide.[5] Conversely, the presence of AGT protein in brain tumors predicts poor response to temozolomide and these patients receive little benefit from chemotherapy with temozolomide.[6]

Chemical properties

Temozolomide is a prodrug and an imidazotetrazine derivative of the alkylating agent dacarbazine.[7]

History

The agent was developed by Malcolm Stevens and his team at Aston University in Birmingham.[7][8][9] It has been available in the US since August 1999, and in other countries since the early 2000s.[7]

Research

Laboratory studies and clinical trials have started investigating the possibility of increasing the anticancer potency of temozolomide by combining it with other pharmacologic agents. For example, clinical trials have indicated that the addition of chloroquine might be beneficial for the treatment of glioma patients.[10] Laboratory studies found that temozolomide killed brain tumor cells more efficiently when epigallocatechin gallate (EGCG), a component of green tea, was added; however, the efficacy of this effect has not yet been confirmed in brain-tumor patients.[11] Preclinical studies reported in 2010 on investigations into the use of the novel oxygen diffusion-enhancing compound trans sodium crocetinate (TSC) when combined with temozolomide and radiation therapy[12] and a clinical trial was underway as of August 2015.[13]

While the above-mentioned approaches have investigated whether the combination of temozolomide with other agents might improve therapeutic outcome, efforts have also started to study whether altering the temozolomide molecule itself can increase its activity. One such approach permanently fused perillyl alcohol, a natural compound with demonstrated therapeutic activity in brain cancer patients,[14] to the temozolomide molecule. The resultant novel compound, called NEO212 or TMZ-POH, revealed anticancer activity that was significantly greater than that of either of its two parent molecules, temozolomide and perillyl alcohol. Although as of 2016, NEO212 has not been tested in humans, it has shown superior cancer therapeutic activity in animal models of glioma,[15] melanoma,[16] and brain metastasis of triple-negative breast cancer.[17]

Because tumor cells that express the MGMT gene are more resistant to the effects of temozolomide, researchers investigated whether the inclusion of O6-benzylguanine (O6-BG), an AGT inhibitor, could overcome this resistance and improve the drug's therapeutic effectiveness. In the laboratory, this combination indeed showed increased temozolomide activity in tumor-cell culture in vitro and in animal models in vivo.[18] However, a recently completed phase-II clinical trial with brain-tumor patients yielded mixed outcomes; while there was some improved therapeutic activity when O6-BG and temozolomide were given to patients with temozolomide-resistant anaplastic glioma, there seemed to be no significant restoration of temozolomide sensitivity in patients with temozolomide-resistant glioblastoma multiforme.[19]

Some efforts focus on engineering hematopoietic stem cells expressing the MGMT gene prior to transplanting them into brain-tumor patients. This would allow for the patients to receive stronger doses of temozolomide, since the patient's hematopoietic cells would be resistant to the drug.[20]

High doses of temozolomide in high-grade gliomas have low toxicity, but the results are comparable to the standard doses.[21]

References

  1. 1 2 3 Temodar label Last updated Feb 2011
  2. 1 2 NICE NICE technology appraisal guidance [TA23]: Guidance on the use of temozolomide for the treatment of recurrent malignant glioma (brain cancer) Published date: April 200
  3. Sitbon Sitruk, L.; Sanson, M.; Prades, M.; Lefebvre, G.; Schubert, B.; Poirot, C. (2010). "Chimiothérapie à gonadotoxicité inconnue et préservation de la fertilité : Exemple du témozolomide☆". Gynécologie Obstétrique & Fertilité. 38 (11): 660–662. doi:10.1016/j.gyobfe.2010.09.002. PMID 21030284.
  4. Jacinto, FV; Esteller, M (August 2007). "MGMT hypermethylation: a prognostic foe, a predictive friend.". DNA Repair. 6 (8): 1155–60. doi:10.1016/j.dnarep.2007.03.013. PMID 17482895.
  5. Hegi ME, Diserens AC, Gorlia T, Hamou MF, de Tribolet N, Weller M, Kros JM, Hainfellner JA, Mason W, Mariani L, Bromberg JE, Hau P, Mirimanoff RO, Cairncross JG, Janzer RC, Stupp R (March 2005). "MGMT gene silencing and benefit from temozolomide in glioblastoma". N. Engl. J. Med. 352 (10): 997–1003. doi:10.1056/NEJMoa043331. PMID 15758010.
  6. National Cancer Institute Of Canada Clinical Trials, Group; Hegi, ME; Mason, WP; Van Den Bent, MJ; Taphoorn, MJ; Janzer, RC; Ludwin, SK; Allgeier, A; et al. (May 2009). "Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase III study: 5-year analysis of the EORTC-NCIC trial". Lancet Oncology. 10 (5): 459–466. doi:10.1016/S1470-2045(09)70025-7. PMID 19269895.
  7. 1 2 3 Clare Sansom for Chemistry World. July 2009 Temozolomide – birth of a blockbuster
  8. Malcolm Stevens - interview, Cancer Research UK impact & achievements page
  9. Newlands ES, Stevens MF, Wedge SR, Wheelhouse RT, Brock C (January 1997). "Temozolomide: a review of its discovery, chemical properties, pre-clinical development and clinical trials". Cancer Treat. Rev. 23 (1): 35–61. doi:10.1016/S0305-7372(97)90019-0. PMID 9189180.
  10. Gilbert MR (March 2006). "New treatments for malignant gliomas: careful evaluation and cautious optimism required". Ann. Intern. Med. 144 (5): 371–3. doi:10.7326/0003-4819-144-5-200603070-00015. PMID 16520480.
  11. Pyrko P, Schönthal AH, Hofman FM, Chen TC, Lee AS (October 2007). "The unfolded protein response regulator GRP78/BiP as a novel target for increasing chemosensitivity in malignant gliomas". Cancer Res. 67 (20): 9809–16. doi:10.1158/0008-5472.CAN-07-0625. PMID 17942911.
  12. Sheehan J, Cifarelli CP, Dassoulas K, Olson C, Rainey J, Han S (2010). "Trans-sodium crocetinate enhancing survival and glioma response on magnetic resonance imaging to radiation and temozolomide". Journal of Neurosurgery. 113 (2): 234–239. doi:10.3171/2009.11.JNS091314. PMID 20001586.
  13. "Safety and Efficacy Study of Trans Sodium Crocetinate (TSC) With Concomitant Radiation Therapy and Temozolomide in Newly Diagnosed Glioblastoma (GBM)". ClinicalTrials.gov. November 2011. Retrieved 2016-02-01.
  14. DA Fonseca CO, Teixeira RM, Silva JC, DE Saldanha DA Gama Fischer J, Meirelles OC, Landeiro JA, Quirico-Santos T (2013). "Long-term outcome in patients with recurrent malignant glioma treated with perillyl alcohol inhalation.". Anticancer Res. 33 (12): 5625–5631. PMID 24324108.
  15. Cho HY, Wang W, Jhaveri N, Lee DJ, Sharma N, Dubeau L, Schönthal AH, Hofman FM, Chen TC (2014). "NEO212, temozolomide conjugated to perillyl alcohol, is a novel drug for effective treatment of a broad range of temozolomide-resistant gliomas.". Mol. Cancer Ther. 13 (8): 2004–2017. doi:10.1158/1535-7163.mct-13-0964. PMID 24994771.
  16. Chen TC, Cho HY, Wang W, Nguyen J, Jhaveri N, Rosenstein-Sisson R, Hofman FM, Schönthal AH (2015). "A novel temozolomide analog, NEO212, with enhanced activity against MGMT-positive melanoma in vitro and in vivo.". Cancer Lett. 358 (2): 144–151. doi:10.1016/j.canlet.2014.12.021. PMID 25524552.
  17. Chen TC, Cho HY, Wang W, Barath M, Sharma N, Hofman FM, Schönthal AH (2014). "A novel temozolomide-perillyl alcohol conjugate exhibits superior activity against breast cancer cells in vitro and intracranial triple-negative tumor growth in vivo.". Mol. Cancer Ther. 13 (5): 1181–1193. doi:10.1158/1535-7163.mct-13-0882. PMID 24623736.
  18. Ueno T, Ko SH, Grubbs E, et al. (March 2006). "Modulation of chemotherapy resistance in regional therapy: a novel therapeutic approach to advanced extremity melanoma using intra-arterial temozolomide in combination with systemic O6-benzylguanine". Mol. Cancer Ther. 5 (3): 732–8. doi:10.1158/1535-7163.MCT-05-0098. PMID 16546988.
  19. Friedman, HS; Jiang, SX; Reardon, DA; Desjardins, A; Vredenburgh, JJ; Rich, JN; Gururangan, S; Friedman, AH; et al. (March 2009). "Phase II trial of temozolomide plus o6-benzylguanine in adults with recurrent, temozolomide-resistant malignant glioma". J. Clin. Oncol. 27 (8): 1262–7. doi:10.1200/JCO.2008.18.8417. PMC 2667825Freely accessible. PMID 19204199.
  20. http://labs.fhcrc.org/kiem/Hans-Peter_Kiem.html
  21. Dall'oglio S, D'Amico A, Pioli F, Gabbani M, Pasini F, Passarin MG, Talacchi A, Turazzi S, Maluta S (December 2008). "Dose-intensity temozolomide after concurrent chemoradiotherapy in operated high-grade gliomas". J Neurooncol. 90 (3): 315–9. doi:10.1007/s11060-008-9663-9. PMID 18688571.
This article is issued from Wikipedia - version of the 11/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.