Second sound

Second sound is a quantum mechanical phenomenon in which heat transfer occurs by wave-like motion, rather than by the more usual mechanism of diffusion. Heat takes the place of pressure in normal sound waves. This leads to a very high thermal conductivity. It is known as "second sound" because the wave motion of heat is similar to the propagation of sound in air.

Normal sound waves are fluctuations in the density of molecules in a substance; second sound waves are fluctuations in the density of particle-like thermal excitations (rotons and phonons[1]). Second sound can be observed in any system in which most phonon-phonon collisions conserve momentum. This occurs in superfluids,[2] and also in some dielectric crystals[3][4][5] when Umklapp scattering is small. (Umklapp phonon-phonon scattering exchanges momentum with the crystal lattice, so phonon momentum is not conserved.)

Second sound in helium II

Second sound is observed in liquid helium at temperatures below the lambda point, 2.1768 K, where 4He becomes a superfluid known as helium II. Helium II has the highest thermal conductivity of any known material (several hundred times higher than copper).[6] Second sound can be observed either as pulses or in a resonant cavity.[7]

The speed of second sound is close to zero near the lambda point, increasing to approximately 20 m/s around 1.8 K,[8] about ten times slower than normal sound waves.[9] At temperatures below 1 K, the speed of second sound in helium II increases as the temperature decreases.[10]

Second sound is also observed in superfluid helium-3 below its lambda point 2.5 mK.[11]

Second sound in other media

Second sound has been observed in solid 4He and 3He,[12][13] and in some dielectric solids such as Bi in the temperature range of 1.2 to 4.0 K with a velocity of (0.78±0.05)×103 m/s,[14] or NaF around 10 to 20 K.[15]


Measuring the speed of second sound in 3He-4He mixtures can be used as a thermometer in the range 0.01-0.7 K.[16]

Oscillating Superleak Transducers (OST)[17] use second sound to locate defects in superconducting accelerator cavities.[18][19]

See also


  1. Smith, Henrik; Jensen, H. Hojgaard (1989). "Section 4.3: Second Sound". Transport Phenomena. Oxford University Press. ISBN 0-19-851985-0.
  2. Srinivasan, R (March 1999). "Second Sound: Waves of Entropy and Temperature" (PDF). Resonance. 3: 16–24.
  3. Srinivasan, R (June 1999). "Second Sound: The Role of Elastic Waves" (PDF). Resonance. 4: 15–19. doi:10.1007/bf02834631.
  4. Prohofsky, E.; Krumhansl, J. (1964). "Second-Sound Propagation in Dielectric Solids". Physical Review. 133 (5A): A1403. Bibcode:1964PhRv..133.1403P. doi:10.1103/PhysRev.133.A1403.
  5. Chester, M. (1963). "Second Sound in Solids". Physical Review. 131 (5): 2013–2015. Bibcode:1963PhRv..131.2013C. doi:10.1103/PhysRev.131.2013.
  6. Lebrun, Phillipe (July 17, 1997). Superfluid helium as a technical coolant (PDF) (LHC-Project-Report-125). CERN. p. 4.
  7. Van Der Boog, A. G. M.; Husson, L. P. J.; Disatnik, Y.; Kramers, H. C. (1981). "Experimental results on the velocity of second sound and the viscosity in dilute 3He-4He mixtures". Physica B+C. 104 (3): 303–315. Bibcode:1981PhyBC.104..303V. doi:10.1016/0378-4363(81)90176-5.
  8. Wang, R. T.; Wagner, W. T.; Donnelly, R. J. (1987). "Precision second-sound velocity measurements in helium II". Journal of Low Temperature Physics. 68 (5–6): 409–417. Bibcode:1987JLTP...68..409W. doi:10.1007/BF00682305.
  9. Lane, C.; Fairbank, H.; Fairbank, W. (1947). "Second Sound in Liquid Helium II". Physical Review. 71 (9): 600–605. Bibcode:1947PhRv...71..600L. doi:10.1103/PhysRev.71.600.
  10. De Klerk, D.; Hudson, R.; Pellam, J. (1954). "Second Sound Propagation below 1°K". Physical Review. 93: 28–37. Bibcode:1954PhRv...93...28D. doi:10.1103/PhysRev.93.28.
  11. Lu, S.; Kojima, H. (1985). "Observation of Second Sound in Superfluid ^{3}He-B". Physical Review Letters. 55 (16): 1677–1680. Bibcode:1985PhRvL..55.1677L. doi:10.1103/PhysRevLett.55.1677. PMID 10031890.
  12. Ackerman, C.; Bertman, B.; Fairbank, H.; Guyer, R. (1966). "Second Sound in Solid Helium". Physical Review Letters. 16 (18): 789–791. Bibcode:1966PhRvL..16..789A. doi:10.1103/PhysRevLett.16.789.
  13. Ackerman, C.; Overton, W. (1969). "Second Sound in Solid Helium-3". Physical Review Letters. 22 (15): 764–766. Bibcode:1969PhRvL..22..764A. doi:10.1103/PhysRevLett.22.764.
  14. Narayanamurti, V.; Dynes, R. (1972). "Observation of Second Sound in Bismuth". Physical Review Letters. 28 (22): 1461–1465. Bibcode:1972PhRvL..28.1461N. doi:10.1103/PhysRevLett.28.1461.
  15. Jackson, H.; Walker, C.; McNelly, T. (1970). "Second Sound in NaF". Physical Review Letters. 25: 26–28. Bibcode:1970PhRvL..25...26J. doi:10.1103/PhysRevLett.25.26.
  16. Pitre, L. (2003). "The Comparison between a Second-Sound Thermometer and a Melting-Curve Thermometer from 0.8 K Down to 20 mK". AIP Conference Proceedings. 684. pp. 101–101. doi:10.1063/1.1627108.
  17. Sherlock, R. A. (1970). "Oscillating Superleak Second Sound Transducers". Review of Scientific Instruments. 41 (11): 1603–1601. Bibcode:1970RScI...41.1603S. doi:10.1063/1.1684354.
  18. Hesla, Leah (21 April 2011). "The sound of accelerator cavities". ILC newsline. Retrieved 26 October 2012.
  19. Quadt, A.; Schröder, B.; Uhrmacher, M.; Weingarten, J.; Willenberg, B.; Vennekate, H. (2012). "Response of an oscillating superleak transducer to a pointlike heat source". Physical Review Special Topics - Accelerators and Beams. 15 (3). arXiv:1111.5520Freely accessible. Bibcode:2012PhRvS..15c1001Q. doi:10.1103/PhysRevSTAB.15.031001.


This article is issued from Wikipedia - version of the 6/6/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.