Circolo Matematico di Palermo

The Circolo Matematico di Palermo (Mathematical Circle of Palermo) is an Italian mathematical society, founded in Palermo by Sicilian geometer Giovanni B. Guccia in 1884.[1] It began accepting foreign members in 1888,[1] and by the time of Guccia's death in 1914 it had become the foremost international mathematical society, with approximately one thousand members.[2] However, subsequently to that time it declined in influence.[1]


Rendiconti del Circolo Matematico di Palermo (Rend. Circ. Mat. Palermo, ISSN 0009-725X), the journal of the society, was published in a first series from 1885 to 1941 and in a second ongoing series beginning in 1952. It is currently published by Springer Science+Business Media; its editor-in-chief is Pasquale Vetro.[3]

Influential papers published in the Rendiconti include Henri Poincaré's On the Dynamics of the Electron (1906), the introduction of normal numbers,[4] the original publications of the Plancherel theorem[5] and Carathéodory's theorem,[6] Hermann Weyl's proof of the equidistribution theorem,[7] and one of the appendices to Henri Poincaré's "Analysis Situs".[8]


  1. 1 2 3 The Mathematical Circle of Palermo, The MacTutor History of Mathematics archive, retrieved 2011-06-19.
  2. Grattan-Guinness, Ivor (2000), Rainbow of Mathematics: A History of the Mathematical Sciences, W. W. Norton & Company, p. 656, ISBN 978-0-393-32030-5.
  3. Rendiconti del Circolo Matematico di Palermo, Springer Science+Business Media, accessed 2011-06-19.
  4. Borel, E. (1909), "Les probabilités dénombrables et leurs applications arithmétiques", Rendiconti del Circolo Matematico di Palermo, 27: 247–271, doi:10.1007/BF03019651.
  5. Plancherel, Michel; Mittag-Leffler (1910), "Contribution à l'étude de la représentation d'une fonction arbitraire par les intégrales définies", Rendiconti del Circolo Matematico di Palermo, 30 (1): 289335, doi:10.1007/BF03014877.
  6. Carathéodory, C. (1911), "Über den Variabilitätsbereich der Fourierschen Konstanten von positiven harmonischen Funktionen", Rendiconti del Circolo Matematico di Palermo, 32: 193–217, doi:10.1007/bf03014795.
  7. Weyl, H. (1910), "Über die Gibbs'sche Erscheinung und verwandte Konvergenzphänomene", Rendiconti del Circolo Matematico di Palermo, 30 (1): 377–407, doi:10.1007/BF03014883.
  8. Poincaré, Henri (1899), "Complément à l'Analysis Situs", Rendiconti del Circolo Matematico di Palermo, 13: 285–343.

External links

This article is issued from Wikipedia - version of the 11/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.