IUPAC name
80373-22-4 YesY
3D model (Jmol) Interactive image
ChemSpider 49279 N
MeSH D019257
PubChem 54562
UNII 20OP60125T N
Molar mass 219.33 g/mol
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Quinpirole is a psychoactive drug and research chemical which acts as a selective D2 and D3 receptor agonist. It is used in scientific research.[1][2][3] Quinpirole has been shown to increase locomotion and sniffing behavior in mice treated with it. At least one study has found that quinpirole induces compulsive behavior symptomatic of obsessive compulsive disorder in rats.[4] Another study in rats show that quinpirole produces significant THC-like effects when metabolic degradation of anandamide is inhibited, supporting the hypothesis that these effects of quinpirole are mediated by cannabinoid CB1 receptors.[5]

Experiments in flies found quinpirole may have neuroprotective effects against Parkinson's disease-like pathology.[6] Moreover, in primary neuronal cultures it also reduces the rate of firing in dopaminergic neurons.[6]

See also


  1. Eilam D, Szechtman H (February 1989). "Biphasic effect of D-2 agonist quinpirole on locomotion and movements". European Journal of Pharmacology. 161 (2–3): 151–7. doi:10.1016/0014-2999(89)90837-6. PMID 2566488.
  2. Navarro JF, Maldonado E (September 1999). "Behavioral profile of quinpirole in agonistic encounters between male mice". Methods and Findings in Experimental and Clinical Pharmacology. 21 (7): 477–80. PMID 10544391.
  3. Culm KE, Lugo-Escobar N, Hope BT, Hammer RP (October 2004). "Repeated quinpirole treatment increases cAMP-dependent protein kinase activity and CREB phosphorylation in nucleus accumbens and reverses quinpirole-induced sensorimotor gating deficits in rats". Neuropsychopharmacology. 29 (10): 1823–30. doi:10.1038/sj.npp.1300483. PMID 15138441.
  4. Szechtman, Henry; Sulis, William; Eilam, David (1998). "Quinpirole induces compulsive checking behavior in rats: A potential animal model of obsessive-compulsive disorder (OCD)". Behavioral Neuroscience. 112 (6): 1475–85. doi:10.1037/0735-7044.112.6.1475. PMID 9926830.
  5. Solinas, Marcello; Tanda, Gianluigi; Wertheim, Carrie E.; Goldberg, Steven R. (2016-10-08). "Dopaminergic augmentation of delta-9-tetrahydrocannabinol (THC) discrimination: possible involvement of D2-induced formation of anandamide". Psychopharmacology. 209 (2): 191–202. doi:10.1007/s00213-010-1789-8. ISSN 0033-3158. PMC 2834964Freely accessible.
  6. 1 2 Wiemerslage L, Schultz BJ, Ganguly A, Lee D (2013). "Selective degeneration of dopaminergic neurons by MPP(+) and its rescue by D2 autoreceptors in Drosophila primary culture.". J Neurochem. 126 (4): 529–40. doi:10.1111/jnc.12228. PMID 23452092.

This article is issued from Wikipedia - version of the 11/8/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.