Prismanes

Not to be confused with Prismane C8.

The prismanes are a class of hydrocarbon compounds consisting of prism-like polyhedra of various numbers of sides on the polygonal base. Chemically, it is a series of fused cyclobutane rings (a ladderane, with all-cis/all-syn geometry) that wraps around to join its ends and form a band, with cycloalkane edges. Their chemical formula is (C2H2)n, where n is the number of cyclobutane sides (the size of the cycloalkane base), and that number also forms the basis for a system of nomenclature within this class. The first few chemicals in this class are:

(C2H2)3
C6H6
(C2H2)4
C8H8
(C2H2)5
C10H10
(C2H2)6
C12H12
Prismane
[3]Prismane
Triprismane
Cubane
[4]Prismane
Tetraprismane
[5]Prismane
Pentaprismane
[6]Prismane
Hexaprismane

Triprismane, tetraprismane, and pentaprismane have been synthesized and studied experimentally, and many higher members of the series have been studied using computer models. The first several members do indeed have the geometry of a regular prism, with flat n-gon bases. As n becomes increasingly large, however, modeling experiments find that highly symmetric geometry is no longer stable, and the molecule distorts into less-symmetric forms. One series of modelling experiments found that starting with [11]prismane, the regular-prism form is not a stable geometry. For example, the structure of [12]prismane would have the cyclobutane chain twisted, with the dodecagonal bases non-planar and non-parallel.[1] [2] [3]

Related structures

[3]Asterane (left) and [4]asterane

The asteranes contain a methylene group bridge on each edge between the two n-gon bases. Each side is thus a cyclohexane rather than a cyclobutane.

Bi[5]prismane (left) and tri[4]prismane

The polyprismanes consist of multiple prismanes stacked base-to-base.[4] The carbons at each intermediate level—the n-gon bases where the prismanes fuse to each other—have no hydrogen atoms attached to them.

Helvetane (left) and Israelane

For large base-sizes, some of the cyclobutanes can be fused anti to each other, giving a non-convex polygon base. These are geometric isomers of the prismanes. Two isomers of [12]prismane that have been studied computationally are named helvetane and israelane, based on the star-like shapes of the rings that form their bases.[5] This was explored computationally after originally being proposed as an April fools joke.

References

  1. Gribanova, T. N.; Minyaev, R. M.; Minkin, V. I. (2007). "Quantum-chemical investigation of structure and stability of [n]-prismanes and [n]-asteranes". Russian Journal of Organic Chemistry. 43 (8): 1144–1150. doi:10.1134/S107042800708009X.
  2. Shinmyozu, Terou; Nogita, Riki; Akita, Motoki; Lim, Chultack (2003). "23. Photochemical Approaches to the Synthesis of [n]Prismanes". In Horspool, William H.; Lenci, Francesco. CRC Handbook of Organic Photochemistry and Photobiology, Volumes 1 & 2, Second Edition. CRC Press. ISBN 9780203495902.
  3. Allinger, Norman L.; Eaton, Philip E. (1983). "The geometries of pentaprismane and hexaprismane insights from molecular mechanics". Tetrahedron Letters. 24 (35): 3697–3700. doi:10.1016/S0040-4039(00)94512-X.
  4. Minyaev, Ruslan M.; Minkin, Vladimir I.; Gribanova, Tatyana N.; Starikov, Andrey G.; Hoffmann, Roald (2003). "Poly[n]prismanes: A Family of Stable Cage Structures with Half-Planar Carbon Centers". J. Org. Chem. 68 (22): 8588–8594. doi:10.1021/jo034910l.
  5. Wang, Xin; Lau, Kai-Chung; Li, Wai-Kee (2009). "Structures and Properties of Closed Ladderanes C24H24, Laddersilanes Si24H24, and Their Nitrogen-Containing Isoelectronic Equivalents: A G3(MP2) Investigation". J. Phys. Chem. A. 113 (14): 3413–3419. doi:10.1021/jp900161s.
This article is issued from Wikipedia - version of the 7/13/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.