Primitive notion

In mathematics, logic, and formal systems, a primitive notion is an undefined concept. In particular, a primitive notion is not defined in terms of previously defined concepts, but is only motivated informally, usually by an appeal to intuition and everyday experience. In an axiomatic theory or other formal system, the role of a primitive notion is analogous to that of axiom. In axiomatic theories, the primitive notions are sometimes said to be "defined" by one or more axioms, but this can be misleading. Formal theories cannot dispense with primitive notions, under pain of infinite regress.

Alfred Tarski explained the role of primitive notions as follows:[1]

When we set out to construct a given discipline, we distinguish, first of all, a certain small group of expressions of this discipline that seem to us to be immediately understandable; the expressions in this group we call PRIMITIVE TERMS or UNDEFINED TERMS, and we employ them without explaining their meanings. At the same time we adopt the principle: not to employ any of the other expressions of the discipline under consideration, unless its meaning has first been determined with the help of primitive terms and of such expressions of the discipline whose meanings have been explained previously. The sentence which determines the meaning of a term in this way is called a DEFINITION,...

An inevitable regress to primitive notions in the theory of knowledge was explained by Gilbert de B. Robinson:

To a non-mathematician it often comes as a surprise that it is impossible to define explicitly all the terms which are used. This is not a superficial problem but lies at the root of all knowledge; it is necessary to begin somewhere, and to make progress one must clearly state those elements and relations which are undefined and those properties which are taken for granted.[2]

Examples

The necessity for primitive notions is illustrated in several axiomatic foundations in mathematics:

See also

References

  1. Alfred Tarski (1946) Introduction to Logic and the Methodology of the Deductive Sciences, page 118, Oxford University Press.
  2. Gilbert de B. Robinson (1959) Foundations of Geometry, 4th edition, page 8, University of Toronto Press
  3. Mary Tiles (2004) The Philosophy of Set Theory, page 99
  4. Alessandro Padoa (1900) "Logical introduction to any deductive theory" in Jean van Heijenoort (1967) A Source Book in Mathematical Logic, 1879–1931, Harvard University Press 118–23
  5. Haack, Susan (1978), Philosophy of Logics, Cambridge University Press, p. 245, ISBN 9780521293297
This article is issued from Wikipedia - version of the 10/26/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.