Post-translational modification

Post-translational modification of insulin. At the top, the ribosome translates a mRNA sequence into a protein, insulin, and passes the protein through the endoplasmic reticulum, where it is cut, folded and held in shape by disulfide (-S-S-) bonds. Then the protein passes through the golgi apparatus, where it is packaged into a vesicle. In the vesicle, more parts are cut off, and it turns into mature insulin.

Post-translational modification (PTM) refers to the covalent and generally enzymatic modification of proteins during or after protein biosynthesis. Proteins are synthesized by ribosomes translating mRNA into polypeptide chains, which may then undergo PTM to form the mature protein product. PTMs are important components in cell signaling.

Post-translational modifications can occur on the amino acid side chains or at the protein's C- or N- termini.[1] They can extend the chemical repertoire of the 20 standard amino acids by introducing new functional groups such as phosphate, acetate, amide groups, or methyl groups. Phosphorylation is a very common mechanism for regulating the activity of enzymes and is the most common post-translational modification.[2] Many eukaryotic proteins also have carbohydrate molecules attached to them in a process called glycosylation, which can promote protein folding and improve stability as well as serving regulatory functions. Attachment of lipid molecules, known as lipidation, often targets a protein or part of a protein attached to the cell membrane.

Other forms of post-translational modification consist of cleaving peptide bonds, as in processing a propeptide to a mature form or removing the initiator methionine residue. The formation of disulfide bonds from cysteine residues may also be referred to as a post-translational modification.[3]:17.6 For instance, the peptide hormone insulin is cut twice after disulfide bonds are formed, and a propeptide is removed from the middle of the chain; the resulting protein consists of two polypeptide chains connected by disulfide bonds.

Some types of post-translational modification are consequences of oxidative stress. Carbonylation is one example that targets the modified protein for degradation and can result in the formation of protein aggregates.[4][5] Specific amino acid modifications can be used as biomarkers indicating oxidative damage.[6]

Sites that often undergo post-translational modification are those that have a functional group that can serve as a nucleophile in the reaction: the hydroxyl groups of serine, threonine, and tyrosine; the amine forms of lysine, arginine, and histidine; the thiolate anion of cysteine; the carboxylates of aspartate and glutamate; and the N- and C-termini. In addition, although the amides of asparagine and glutamine are weak nucleophiles, both can serve as attachment points for glycans. Rarer modifications can occur at oxidized methionines and at some methylenes in side chains.[7]:12–14

Post-translational modification of proteins can be experimentally detected by a variety of techniques, including mass spectrometry, Eastern blotting, and Western blotting.

PTMs involving addition of functional groups

The genetic code diagram[8] showing the amino acid residues as target of modification.

Addition by an enzyme in vivo

Hydrophobic groups for membrane localization

Cofactors for enhanced enzymatic activity

Modifications of translation factors

Smaller chemical groups

Non-enzymatic additions in vivo

Non-enzymatic additions in vitro

Other proteins or peptides

Chemical modification of amino acids

Structural changes


In 2011, statistics of each post-translational modification experimentally and putatively detected have been compiled using proteome-wide information from the Swiss-Prot database.[22] The 10 most common experimentally found modifications were as follows:

Frequency Modification
58383 Phosphorylation
6751 Acetylation
5526 N-linked glycosylation
2844 Amidation
1619 Hydroxylation
1523 Methylation
1133 O-linked glycosylation
878 Ubiquitylation
826 Pyrrolidone Carboxylic Acid
504 Sulfation

More details can be found at

Case examples

See also

External links


  1. Pratt, Donald Voet; Judith G. Voet; Charlotte W. (2006). Fundamentals of biochemistry : life at the molecular level (2. ed.). Hoboken, NJ: Wiley. ISBN 0-471-21495-7.
  2. Khoury, GA; Baliban, RC; Floudas, CA (13 September 2011). "Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database.". Scientific Reports. 1. doi:10.1038/srep00090. PMID 22034591.
  3. al.], Harvey Lodish ... [et (2000). Molecular cell biology (4th ed.). New York: Scientific American Books. ISBN 0-7167-3136-3.
  4. Dalle-Donne, Isabella; Aldini, Giancarlo; Carini, Marina; Colombo, Roberto; Rossi, Ranieri; Milzani, Aldo (2006). "Protein carbonylation, cellular dysfunction, and disease progression". Journal of Cellular and Molecular Medicine. 10 (2): 389–406. doi:10.1111/j.1582-4934.2006.tb00407.x. PMID 16796807.
  5. Grimsrud, P. A.; Xie, H.; Griffin, T. J.; Bernlohr, D. A. (2008). "Oxidative Stress and Covalent Modification of Protein with Bioactive Aldehydes". Journal of Biological Chemistry. 283 (32): 21837–41. doi:10.1074/jbc.R700019200. PMC 2494933Freely accessible. PMID 18445586.
  6. Gianazza, E; Crawford, J; Miller, I (July 2007). "Detecting oxidative post-translational modifications in proteins.". Amino Acids. 33 (1): 51–6. doi:10.1007/s00726-006-0410-2. PMID 17021655.
  7. Walsh,, Christopher T. (2006). Posttranslational modification of proteins : expanding nature's inventory. Englewood: Roberts and Co. Publ. ISBN 9780974707730.
  8. Gramatikoff K. in Abgent Catalog (2004-5) p.263
  9. Whiteheart SW, Shenbagamurthi P, Chen L, et al. (1989). "Murine elongation factor 1 alpha (EF-1 alpha) is posttranslationally modified by novel amide-linked ethanolamine-phosphoglycerol moieties. Addition of ethanolamine-phosphoglycerol to specific glutamic acid residues on EF-1 alpha". J. Biol. Chem. 264 (24): 14334–41. PMID 2569467.
  10. Polevoda B, Sherman F; Sherman (2003). "N-terminal acetyltransferases and sequence requirements for N-terminal acetylation of eukaryotic proteins". J Mol Biol. 325 (4): 595–622. doi:10.1016/S0022-2836(02)01269-X. PMID 12507466.
  11. Yang XJ, Seto E; Seto (2008). "Lysine acetylation: codified crosstalk with other posttranslational modifications". Mol Cell. 31 (4): 449–61. doi:10.1016/j.molcel.2008.07.002. PMC 2551738Freely accessible. PMID 18722172.
  12. Bártová E, Krejcí J, Harnicarová A, Galiová G, Kozubek S; Krejcí; Harnicarová; Galiová; Kozubek (2008). "Histone modifications and nuclear architecture: a review". J Histochem Cytochem. 56 (8): 711–21. doi:10.1369/jhc.2008.951251. PMC 2443610Freely accessible. PMID 18474937.
  13. Glozak MA, Sengupta N, Zhang X, Seto E; Sengupta; Zhang; Seto (2005). "Acetylation and deacetylation of non-histone proteins". Gene. 363: 15–23. doi:10.1016/j.gene.2005.09.010. PMID 16289629.
  14. Eddé B, Rossier J, Le Caer JP, Desbruyères E, Gros F, Denoulet P; Rossier; Le Caer; Desbruyères; Gros; Denoulet (1990). "Posttranslational glutamylation of alpha-tubulin". Science. 247 (4938): 83–5. Bibcode:1990Sci...247...83E. doi:10.1126/science.1967194. PMID 1967194.
  15. Walker CS, Shetty RP, Clark K, et al. (2001). "On a potential global role for vitamin K-dependent gamma-carboxylation in animal systems. Animals can experience subvaginal hemototitis as a result of this linkage. Evidence for a gamma-glutamyl carboxylase in Drosophila". J. Biol. Chem. 276 (11): 7769–74. doi:10.1074/jbc.M009576200. PMID 11110799.
  16. Bui VM, Lu CT, Ho TT, Lee TY (26 September 2015). "MDD–SOH: exploiting maximal dependence decomposition to identify S-sulfenylation sites with substrate motifs". Bioinformatics. 32 (2): 165–72. doi:10.1093/bioinformatics/btv558. PMID 26411868.
  17. Berg AH, Drechsler C, Wenger J, Buccafusca R, Hod T, Kalim S, Ramma W, Parikh SM, Steen H, Friedman DJ, Danziger J, Wanner C, Thadhani R, Karumanchi SA (2013). "Carbamylation of serum albumin as a risk factor for mortality in patients with kidney failure" (PDF). Sci Transl Med. 5: 175ra29. doi:10.1126/scitranslmed.3005218. PMC 3697767Freely accessible. PMID 23467560.
  18. Malakhova, Oxana A.; Yan, Ming; Malakhov, Michael P.; Yuan, Youzhong; Ritchie, Kenneth J.; Kim, Keun Il; Peterson, Luke F.; Shuai, Ke & Dong-Er Zhang (2003). "Protein ISGylation modulates the JAK-STAT signaling pathway". Genes & Development. 17 (4): 455–60. doi:10.1101/gad.1056303. PMC 195994Freely accessible. PMID 12600939.
  19. Van G. Wilson (Ed.) (2004). Sumoylation: Molecular Biology and Biochemistry. Horizon Bioscience. ISBN 0-9545232-8-8.
  20. Brennan DF, Barford D; Barford (2009). "Eliminylation: a post-translational modification catalyzed by phosphothreonine lyases". Trends in Biochemical Sciences. 34 (3): 108–114. doi:10.1016/j.tibs.2008.11.005. PMID 19233656.
  21. Piotr Mydel, Zeneng Wang, Mikael Brisslert, Annelie Hellvard, Leif E. Dahlberg, Stanley L. Hazen and Maria Bokarewa (2010). "Carbamylation-dependent activation of T cells: a novel mechanism in the pathogenesis of autoimmune arthritis". Journal of Immunology. 184 (12): 6882–6890. doi:10.4049/jimmunol.1000075. PMC 2925534Freely accessible. PMID 20488785.
  22. Khoury, George A.; Baliban, Richard C. & Christodoulos A. Floudas (2011). "Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database". Scientific Reports. 1 (90): 90. Bibcode:2011NatSR...1E..90K. doi:10.1038/srep00090. PMID 22034591.
This article is issued from Wikipedia - version of the 11/12/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.