Partial equivalence relation

In mathematics, a partial equivalence relation (often abbreviated as PER, in older literature also called restricted equivalence relation) on a set is a relation that is symmetric and transitive. In other words, it holds for all that:

  1. if , then (symmetry)
  2. if and , then (transitivity)

If is also reflexive, then is an equivalence relation.

Properties and applications

In a set-theoretic context, there is a simple structure to the general PER on : it is an equivalence relation on the subset . ( is the subset of such that in the complement of () no element is related by to any other.) By construction, is reflexive on and therefore an equivalence relation on . Notice that is actually only true on elements of : if , then by symmetry, so and by transitivity. Conversely, given a subset Y of X, any equivalence relation on Y is automatically a PER on X.

PERs are therefore used mainly in computer science, type theory and constructive mathematics, particularly to define setoids, sometimes called partial setoids. The action of forming one from a type and a PER is analogous to the operations of subset and quotient in classical set-theoretic mathematics.

Every partial equivalence relation is a difunctional relation, but the converse does not hold.

The algebraic notion of congruence can also be generalized to partial equivalences, yielding the notion of subcongruence, i.e. a homomorphic relation that is symmetric and transitive, but not necessarily reflexive.[1]

Examples

A simple example of a PER that is not an equivalence relation is the empty relation (unless , in which case the empty relation is an equivalence relation (and is the only relation on )).

Kernels of partial functions

For another example of a PER, consider a set and a partial function that is defined on some elements of but not all. Then the relation defined by

if and only if is defined at , is defined at , and

is a partial equivalence relation but not an equivalence relation. It possesses the symmetry and transitivity properties, but it is not reflexive since if is not defined then in fact, for such an there is no such that . (It follows immediately that the subset of for which is an equivalence relation is precisely the subset on which is defined.)

Functions respecting equivalence relations

Let X and Y be sets equipped with equivalence relations (or PERs) . For , define to mean:

then means that f induces a well-defined function of the quotients . Thus, the PER captures both the idea of definedness on the quotients and of two functions inducing the same function on the quotient.

Equality of [IEEE floating point] values

IEEE 754:2008 floating point standard defines an "EQ" relation for floating point values. This predicate is symmetrical and transitive, but is not reflexive because of the presence of [NaN] values that are not EQ to themselves.

References

  1. J. Lambek (1996). "The Butterfly and the Serpent". In Aldo Ursini, Paulo Agliano. Logic and Algebra. CRC Press. pp. 161–180. ISBN 978-0-8247-9606-8.

See also

This article is issued from Wikipedia - version of the 5/31/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.