Isotopes of nitrogen

Natural nitrogen (N) consists of two stable isotopes, nitrogen-14, which makes up the vast majority of naturally occurring nitrogen, and nitrogen-15. Fourteen radioactive isotopes (radioisotopes) have also been found so far, with atomic masses ranging from 10 to 25, and one nuclear isomer, 11mN. All of these radioisotopes are short-lived, with the longest-lived one being nitrogen-13 with a half-life of 9.965 minutes. All of the others have half-lives below 7.15 seconds, with most of these being below five-eighths of a second. Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of about 2.3 microseconds.

The relative atomic mass of nitrogen is 14.0067.

Natural isotopes

Nitrogen-14

Nitrogen-14 is one of two stable (non-radioactive) isotopes of the chemical element nitrogen, which makes about 99.636% of natural nitrogen.

Nitrogen-14 is one of the very few stable nuclides with both an odd number of protons and of neutrons (seven each). Each of these contributes a nuclear spin of plus or minus spin 1/2, giving the nucleus a total magnetic spin of one.

Like all elements heavier than lithium, the original source of nitrogen-14 and nitrogen-15 in the Universe is believed to be stellar nucleosynthesis, where they are produced as part of the carbon-nitrogen-oxygen cycle.

Nitrogen-14 is the source of naturally-occurring, radioactive, carbon-14. Some kinds of cosmic radiation cause a nuclear reaction with nitrogen-14 in the upper atmosphere of the Earth, creating carbon-14, which decays back to nitrogen-14 with a half-life of 5,730±40 years.[1]

Nitrogen-15

Nitrogen-15, or 15N, is a rare stable isotope of nitrogen. Two sources of nitrogen-15 are the positron emission of oxygen-15[2] and the beta decay of carbon-15. Nitrogen-15 presents one of the lowest thermal neutron capture cross sections of all isotopes.[3]

Nitrogen-15 is frequently used in NMR (Nitrogen-15 NMR spectroscopy). Unlike the more abundant nitrogen-14, that has an integer nuclear spin and thus a quadrupole moment, 15N has a fractional nuclear spin of one-half, which offers advantages for NMR such as narrower line width.

Isotopic signatures

Table

nuclide
symbol
Z(p) N(n)  
isotopic mass (u)
 
half-life decay mode(s)[4] daughter
isotope(s)[n 1]
nuclear
spin
representative
isotopic
composition
(mole fraction)
range of natural
variation
(mole fraction)
excitation energy
10N 7 3 10.04165(43) 200(140)×10−24 s
[2.3(16) MeV]
p 9
C
(2−)
11N 7 4 11.02609(5) 590(210)×10−24 s
[1.58(+75−52) MeV]
p 10
C
1/2+
11mN 740(60) keV 6.90(80)×10−22 s 1/2−
12N 7 5 12.0186132(11) 11.000(16) ms β+ (96.5%) 12
C
1+
β+, α (3.5%) 8
Be
[n 2]
13N[n 3] 7 6 13.00573861(29) 9.965(4) min β+ 13
C
1/2−
14N 7 7 14.0030740048(6) Stable 1+ 0.99636(20) 0.99579–0.99654
15N 7 8 15.0001088982(7) Stable 1/2− 0.00364(20) 0.00346–0.00421
16N 7 9 16.0061017(28) 7.13(2) s β (99.99%) 16
O
2−
β, α (.001%) 12
C
17N 7 10 17.008450(16) 4.173(4) s β, n (95.0%) 16
O
1/2−
β (4.99%) 17
O
β, α (.0025%) 13
C
18N 7 11 18.014079(20) 622(9) ms β (76.9%) 18
O
1−
β, α (12.2%) 14
C
β, n (10.9%) 17
O
19N 7 12 19.017029(18) 271(8) ms β, n (54.6%) 18
O
(1/2−)
β (45.4%) 19
O
20N 7 13 20.02337(6) 130(7) ms β, n (56.99%) 19O
β (43.00%) 20O
21N 7 14 21.02711(10) 87(6) ms β, n (80.0%) 20O 1/2−#
β (20.0%) 21O
22N 7 15 22.03439(21) 13.9(14) ms β (65.0%) 22O
β, n (35.0%) 21O
23N 7 16 23.04122(32)# 14.5(24) ms
[14.1(+12−15) ms]
β 23O 1/2−#
24N 7 17 24.05104(43)# <52 ns n 23N
25N 7 18 25.06066(54)# <260 ns 1/2−#
  1. Bold for stable isotopes
  2. Immediately decays into two alpha particles for a net reaction of 12N -> 34He + e+
  3. Used in positron emission tomography

Notes

References

  1. Godwin, H (1962). "Half-life of radiocarbon". Nature. 195 (4845): 984. Bibcode:1962Natur.195..984G. doi:10.1038/195984a0.
  2. CRC Handbook of Chemistry and Physics (64th ed.). 1983–1984. p. B-234.
  3. "Evaluated Nuclear Data File (ENDF) Retrieval & Plotting". National Nuclear Data Center.
  4. "Universal Nuclide Chart". nucleonica. (registration required (help)).
Isotopes of carbon Isotopes of nitrogen Isotopes of oxygen
Table of nuclides
This article is issued from Wikipedia - version of the 10/10/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.