Available structures
PDBOrtholog search: PDBe RCSB
Aliases GHRL, MTLRP, ghrelin/obestatin prepropeptide
External IDs MGI: 1930008 HomoloGene: 9487 GeneCards: GHRL
Species Human Mouse









RefSeq (mRNA)


RefSeq (protein)


Location (UCSC) Chr 3: 10.29 – 10.29 Mb Chr 6: 113.72 – 113.72 Mb
PubMed search [1] [2]
View/Edit HumanView/Edit Mouse

Ghrelin (pronounced /ˈɡrɛlɪn/), the "hunger hormone", also known as lenomorelin (INN), is a peptide hormone produced by ghrelinergic cells in the gastrointestinal tract[3][4] which functions as a neuropeptide in the central nervous system.[5] Besides regulating appetite, ghrelin also plays a significant role in regulating the distribution and rate of use of energy.[6]

When the stomach is empty, ghrelin is secreted. When the stomach is stretched, secretion stops.a It acts on hypothalamic brain cells both to increase hunger, and to increase gastric acid secretion and gastrointestinal motility to prepare the body for food intake.[7]

The receptor for ghrelin, the ghrelin/growth hormone secretagogue receptor (GHSR), is found on the same cells in the brain as the receptor for leptin, the satiety hormone that has opposite effects from ghrelin.[8] Ghrelin also plays an important role in regulating reward perception in dopamine neurons that link the ventral tegmental area to the nucleus accumbens[9][10] (a site that plays a role in processing sexual desire, reward, and reinforcement, and in developing addictions) through its colocalized receptors and interaction with dopamine and acetylcholine.[5][11] Ghrelin is encoded by the GHRL gene and is presumably produced from the cleavage of the prepropeptide ghrelin/obestatin. Full-length preproghrelin is homologous to promotilin and both are members of the motilin family.

Unlike the case of many other endogenous peptides, ghrelin is able to cross the blood-brain-barrier, giving exogenously-administered ghrelin unique clinical potential.[12]

History and name

Ghrelin was discovered after the ghrelin receptor (called growth hormone secretagogue type 1A receptor or GHSR) was discovered in 1996[13] and was reported in 1999.[14] The hormone name is based on its role as a growth hormone-releasing peptide, with reference to the Proto-Indo-European root ghre-, meaning "to grow".[15]

Gene, transcription products, and structure

Preproghrelin (green and blue) and ghrelin (green).

The GHRL gene produces mRNA which has four exons. Five products arise: the first is the 117-amino acid preproghrelin. (It is homologous to promotilin; both are members of the motilin family). It is cleaved to produce proghrelin which is cleaved to produce a 28-amino acid ghrelin (unacylated) and C-ghrelin(acylated). Obestatin is presumed to be cleaved from C-ghrelin.[16]

Ghrelin only becomes active when caprylic (octanoic) acid is linked posttranslationally to serine at the 3-position by the enzyme ghrelin O-acyltransferase (GOAT). It is located on the cell membrane of ghrelin cells in the stomach and pancreas.[17] The non-octanoylated form is desacyl ghrelin. It does not activate the GHSR receptor but does have other effects: cardiac,[18] anti-ghrelin,[19] appetite stimulation,[20] and inhibition of hepatic glucose output[21] Side-chains other than octanoyl have also been observed: these can also trigger the ghrelin receptor.[22] In particular, decanoyl ghrelin has been found to constitute a significant portion of circulating ghrelin in mice, but as of 2011 its presence in humans has not been established.[23]

Ghrelin cells

Alternative names

The ghrelin cell is also known as an A-like cell (pancreas), X-cell (for unknown function), X/A-like cell (rats), Epsilon cell (pancreas), P/D sub 1 cell (humans) and Gr cell (abbreviation for ghrelin cell).[24]


Ghrelin cells are found mainly in the stomach[25] and duodenum, but also in the jejunum, lungs, pancreatic islets,[26] gonads, adrenal cortex, placenta, and kidney. It has recently been shown that ghrelin is produced locally in the brain[27]


Ghrelin cells are found in oxyntic glands (20% of cells),[28] pyloric glands, and small intestine. They are ovoid cells with granules.[29] They have gastrin receptors.[30] Some produce nesfatin-1.[31] Ghrelin cells are not terminally differentiated in the pancreas: they are progenitor cells that can give rise to A-cells, PP cells and Beta-cells there.[32]

Function and mechanism of action

Ghrelin is a participant in regulating the complex process of energy homeostasis which adjusts both energy input – by adjusting hunger signals – and energy output – by adjusting the proportion of energy going to ATP production, fat storage, glycogen storage, and short-term heat loss. The net result of these processes is reflected in body weight, and is under continuous monitoring and adjustment based on metabolic signals and needs. At any given moment in time, it may be in equilibrium or disequilibrium. Gastric-brain communication is an essential part of energy homeostasis, and several communication pathways are probable, including the gastric intracellular mTOR/S6K1 pathway mediating the interaction among ghrelin, nesfatin and endocannabinoid gastric systems,[33] and both afferent and efferent vagal signals.

Ghrelin and synthetic ghrelin mimetics (growth hormone secretagogues) increase body weight and fat mass[34][35][36] by triggering receptors in the arcuate nucleus[37][38] that include the orexigenic neuropeptide Y (NPY) and agouti-related protein (AgRP) neurons.[39][40] Ghrelin-responsiveness of these neurons is both leptin- and insulin-sensitive.[41] Ghrelin reduces the mechanosensitivity of gastric vagal afferents, so they are less sensitive to gastric distension.[42]

In addition to its function in energy homeostasis, ghrelin also activates the cholinergic–dopaminergic reward link in inputs to the ventral tegmental area and in the mesolimbic pathway,[9] a circuit that communicates the hedonic and reinforcing aspects of natural rewards,[5] such as food and addictive drugs such as ethanol.[41][43][44] Ghrelin receptors are located on neurons in this circuit.[5][10] Hypothalamic ghrelin signalling is required for reward from alcohol[45] and palatable/rewarding foods.[46][47]

Ghrelin also improves endothelial function and inhibits proatherogenic changes in cell cultures. It activates the endothelial isoform of nitric oxide synthase in a pathway that depends on various kinases including Akt.[48]

Ghrelin has been linked to inducing appetite and feeding behaviors. Circulating ghrelin levels are the highest right before a meal and the lowest right after.[49][50] Injections of ghrelin in both humans and rats have been shown to increase food intake in a dose-dependent manner.[51] So the more ghrelin that is injected the more food that is consumed. However, ghrelin does not increase meal size, only meal number.[52] Ghrelin injections also increase an animal's motivation to seek out food, behaviors including increased sniffing, foraging for food, and hoarding food. Body weight is regulated through energy balance, the amount of energy taken in versus the amount of energy expended over an extended period of time. Studies have shown that ghrelin levels are negatively correlated with weight. This data suggests that ghrelin functions as an adiposity signal, a messenger between the body's energy stores and the brain.[7] When a person loses weight their ghrelin levels increase, which causes increased food consumption and weight gain. On the other hand, when a person gains weight, ghrelin levels drop, leading to a decrease in food consumption and weight loss. This suggests that ghrelin acts as a body weight regulator, continuously keeping one's body weight and energy stores in check.

Blood levels

Blood levels are in the pmol/l range. Both active and total ghrelin can be measured.[53] Circulating ghrelin concentrations rise before eating and fall afterward,[49] more strongly in response to protein and carbohydrate than to lipids.[23]

Ghrelin receptor

The ghrelin receptor GHSR1a (a splice-variant of the growth hormone secretagogue receptor, with the GHSR1b splice being inactive) is involved in mediating a wide variety of biological effects of ghrelin, including: stimulation of growth hormone release, increase in hunger, modulation of glucose and lipid metabolism, regulation of gastrointestinal motility and secretion, protection of neuronal and cardiovascular cells, and regulation of immune function.[54] They are present in high density in the hypothalamus and pituitary, on the vagus nerve (on both afferent cell bodies and afferent nerve endings) and throughout the gastrointestinal tract.[17][42]

Locations of action

Gastrointestinal tract

Ghrelin promotes intestinal cell proliferation and inhibits apoptosis during inflammatory states and oxidative stress.[55][56] It also suppresses pro-inflammatory mechanisms and augments anti-inflammatory mechanisms, thus creating a possibility of its therapeutic use in various gastrointestinal inflammatory conditions, including colitis, ischemia reperfusion injury, and sepsis.[57][58] Animal models of colitis, ischemia reperfusion, and sepsis-related gut dysfunction have been shown to benefit from therapeutic doses of ghrelin.[57][58] It has also been shown to have regenerative capacity and is beneficial in mucosal injury to the stomach.[59]

Ghrelin promotes gastrointestinal and pancreatic malignancy.[60][61][62]


Ghrelin inhibits glucose-stimulated insulin secretion from beta cells in the pancreatic islets. Ghrelin does this indirectly by promoting local negative feedback mediated by somatostatin from pancreatic delta cells, which selectively express the ghrelin receptor. [63]

Glucose metabolism

The entire ghrelin system (dAG, AG, GHSR and GOAT) has a gluco-regulatory action.[64]

Nervous system

Learning and memory

The hippocampus plays a significant role in neurotrophy: the cognitive adaptation to changing environments and the process of learning[65][66] and it is a potent stimulator of growth hormone.[14] Animal models indicate that ghrelin may enter the hippocampus from the bloodstream, altering nerve-cell connections, and so altering learning and memory.[67] It is suggested that learning may be best during the day and when the stomach is empty, since ghrelin levels are higher at these times. A similar effect on human memory performance is possible.[65] In rodents, X/A-like cells produce ghrelin.[68]


Ghrelin knock-out mice (who never express ghrelin) have increased anxiety in response to a variety of stressors, such as acute restraint stress and social stress in experimental settings.[69] In normal mice, ghrelin can stimulate the hypothalamic-pituitary-adrenal axis, from the anterior pituitary.[69]

Ghrelin has been shown to have implications for depression prevention. Antidepressant-like attributes were demonstrated when mice with high levels of ghrelin and mice with the ghrelin gene knocked out underwent social defeat stress and then were placed in the forced swim tank. Mice with elevated ghrelin swam more than ghrelin deficient mice.[70] These ghrelin-deficient mice exhibited more social avoidance as well. These mice did not exhibit depression-like behaviors when injected with a commonly prescribed antidepressant, suggesting that ghrelin acts as a short-term natural adaptation against depression.

Sleep duration

Short sleep duration is associated with high levels of ghrelin and obesity. An inverse relationship between the hours of sleep and blood plasma concentrations of ghrelin exists; as the hours of sleep increase, ghrelin levels trend lower and obesity is less likely.[71]

Stress-induced fear

Prior stress exposure heightens fear learning during Pavlovian fear conditioning. Stress-related increases in ghrelin circulation were shown to be necessary and sufficient for stress to increase fear learning. Ghrelin was found to be upregulated by stress even in the absence of adrenal hormones. Blocking the ghrelin receptor during stress abolished stress-related enhancement of fear memory without blunting other markers of stress. These results suggest that ghrelin is a novel branch of the stress response.[72] Human studies are needed to translate the use of anti-ghrelin treatments to prevent stress-induced psychiatric disorders.

Substantia nigra function

Ghrelin, through its receptor increases the concentration of dopamine in the substantia nigra.[73]

Reproductive system

Ghrelin has inhibitory effects on gonadotropin-releasing hormone (GnRH) secretion. It may cause decreased fertility.[74]

Fetus and neonate

Immune system

Ghrelin gene products have several actions on acute and chronic inflammation and autoimmunity, with promising therapeutic applications.[76]

Anorexia and obesity

Disease management

Gastric bypass surgery

Gastric bypass surgery not only reduces the gut's capacity for food but also dramatically lowers ghrelin levels compared to both lean controls and those that lost weight through dieting alone.[77] However, studies are conflicting as to whether or not ghrelin levels return to nearly normal with gastric bypass patients in the long term after weight loss has stabilized.[87] Bariatric surgeries involving vertical sleeve gastrectomy reduce plasma ghrelin levels by about 60% in the long term.[88]

Medical management of obesity

Ghrelin is not FDA approved for any indication.

In rodents and pigs, an anti-obesity vaccine has been developed: it blocks the ghrelin receptor.[89][90]


Ghrelin plasma concentration increases with age and this may contribute to the tendency for weight gain as people age.[91][92]

Future clinical uses



  1. "Human PubMed Reference:".
  2. "Mouse PubMed Reference:".
  3. Sakata I, Sakai T (2010). "Ghrelin cells in the gastrointestinal tract". International Journal of Peptides. 2010: 1–7. doi:10.1155/2010/945056. PMC 2925405Freely accessible. PMID 20798855.
  4. Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (March 2004). "Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ". FASEB Journal. 18 (3): 439–56. doi:10.1096/fj.03-0641rev. PMID 15003990.
  5. Burger KS, Berner LA (September 2014). "A functional neuroimaging review of obesity, appetitive hormones and ingestive behavior". Physiology & Behavior. 136: 121–7. doi:10.1016/j.physbeh.2014.04.025. PMID 24769220.
  6. 1 2 Schwartz MW, Woods SC, Porte D, Seeley RJ, Baskin DG (April 2000). "Central nervous system control of food intake". Nature. 404 (6778): 661–71. doi:10.1038/35007534 (inactive 1 February 2015). PMID 10766253.
  7. Perello M, Scott MM, Sakata I, Lee CE, Chuang JC, Osborne-Lawrence S, Rovinsky SA, Elmquist JK, Zigman JM (February 2012). "Functional implications of limited leptin receptor and ghrelin receptor coexpression in the brain". The Journal of Comparative Neurology. 520 (2): 281–94. doi:10.1002/cne.22690. PMC 3282302Freely accessible. PMID 21674492.
  8. 1 2 Naleid AM, Grace MK, Cummings DE, Levine AS (2005). "Ghrelin induces feeding in the mesolimbic reward pathway between the ventral tegmental area and the nucleus accumbens". Peptides. 26 (11): 2274–9. doi:10.1016/j.peptides.2005.04.025. PMID 16137788.
  9. 1 2 Malenka RC, Nestler EJ, Hyman SE (2009). "Chapter 10:Neural and Neuroendocrine Control of the Internal Milieu". In Sydor A, Brown RY. Molecular Neuropharmacology: A Foundation for Clinical Neuroscience (2nd ed.). New York: McGraw-Hill Medical. pp. 265–266. ISBN 9780071481274. The best described site of action of ghrelin is the VMH and arcuate nucleus, but ghrelin receptors are also expressed in the brain’s reward pathways (eg, VTA dopamine neurons) and may stimulate feeding through this action as well. ... It is very interesting then, as mentioned above, that orexin, leptin, and ghrelin receptors are expressed in the VTA, and MC4 and MCH receptors are enriched in the nucleus accumbens. There is increasing evidence that some of the actions of these feeding peptides are mediated at the level of the VTA-NAc circuit: recent studies, for example, have shown that injection of leptin into the VTA suppresses feeding behavior, while RNAi (RNA interference; Chapter 4) mediated-knockdown of leptin receptors in the VTA increases food intake, sensitivity to highly palatable foods, and locomotor activity.
  10. Le Moal M (2002). "Mesocorticolimbic Dopaminergic Neurons". In Davis KL, Charney D, Coyle JT, Nemeroff C. Neuropsychopharmacology : the fifth generation of progress : an official publication of the American College of Neuropsychopharmacology (5th ed.). Philadelphia, Pa.: Lippincott Williams & Wilkins. ISBN 978-0781728379.
  11. Veldhuis, Johannes D.; Bowers, Cyril Y. (2010). "Integrating GHS into the Ghrelin System". International Journal of Peptides. 2010: 1–40. doi:10.1155/2010/879503. ISSN 1687-9767.
  12. Howard AD, Feighner SD, Cully DF, Arena JP, Liberator PA, Rosenblum CI, Hamelin M, Hreniuk DL, Palyha OC, Anderson J, Paress PS, Diaz C, Chou M, Liu KK, McKee KK, Pong SS, Chaung LY, Elbrecht A, Dashkevicz M, Heavens R, Rigby M, Sirinathsinghji DJ, Dean DC, Melillo DG, Patchett AA, Nargund R, Griffin PR, DeMartino JA, Gupta SK, Schaeffer JM, Smith RG, Van der Ploeg LH (August 1996). "A receptor in pituitary and hypothalamus that functions in growth hormone release". Science. 273 (5277): 974–7. Bibcode:1996Sci...273..974H. doi:10.1126/science.273.5277.974. PMID 8688086.
  13. 1 2 Kojima M, Hosoda H, Date Y, Nakazato M, Matsuo H, Kangawa K (December 1999). "Ghrelin is a growth-hormone-releasing acylated peptide from stomach". Nature. 402 (6762): 656–60. Bibcode:1999Natur.402..656K. doi:10.1038/45230. PMID 10604470.
  14. Inui A, Asakawa A, Bowers CY, Mantovani G, Laviano A, Meguid MM, Fujimiya M (March 2004). "Ghrelin, appetite, and gastric motility: the emerging role of the stomach as an endocrine organ". FASEB Journal. 18 (3): 439–56. doi:10.1096/fj.03-0641rev. PMID 15003990.
  15. Seim I, Amorim L, Walpole C, Carter S, Chopin LK, Herington AC (January 2010). "Ghrelin gene-related peptides: multifunctional endocrine / autocrine modulators in health and disease". Clinical and Experimental Pharmacology & Physiology. 37 (1): 125–31. doi:10.1111/j.1440-1681.2009.05241.x. PMID 19566830.
  16. 1 2 Castañeda TR, Tong J, Datta R, Culler M, Tschöp MH (January 2010). "Ghrelin in the regulation of body weight and metabolism". Frontiers in Neuroendocrinology. 31 (1): 44–60. doi:10.1016/j.yfrne.2009.10.008. PMID 19896496.
  17. Bedendi I, Alloatti G, Marcantoni A, Malan D, Catapano F, Ghé C, Deghenghi R, Ghigo E, Muccioli G (August 2003). "Cardiac effects of ghrelin and its endogenous derivatives des-octanoyl ghrelin and des-Gln14-ghrelin". European Journal of Pharmacology. 476 (1–2): 87–95. doi:10.1016/S0014-2999(03)02083-1. PMID 12969753.
  18. Broglio F, Gottero C, Prodam F, Gauna C, Muccioli G, Papotti M, Abribat T, Van Der Lely AJ, Ghigo E (June 2004). "Non-acylated ghrelin counteracts the metabolic but not the neuroendocrine response to acylated ghrelin in humans". The Journal of Clinical Endocrinology and Metabolism. 89 (6): 3062–5. doi:10.1210/jc.2003-031964. PMID 15181099.
  19. Toshinai K, Yamaguchi H, Sun Y, Smith RG, Yamanaka A, Sakurai T, Date Y, Mondal MS, Shimbara T, Kawagoe T, Murakami N, Miyazato M, Kangawa K, Nakazato M (May 2006). "Des-acyl ghrelin induces food intake by a mechanism independent of the growth hormone secretagogue receptor". Endocrinology. 147 (5): 2306–14. doi:10.1210/en.2005-1357. PMID 16484324.
  20. Gauna C, Delhanty PJ, Hofland LJ, Janssen JA, Broglio F, Ross RJ, Ghigo E, van der Lely AJ (February 2005). "Ghrelin stimulates, whereas des-octanoyl ghrelin inhibits, glucose output by primary hepatocytes". The Journal of Clinical Endocrinology and Metabolism. 90 (2): 1055–6. doi:10.1210/jc.2004-1069. PMID 15536157.
  21. Korbonits M, Goldstone AP, Gueorguiev M, Grossman AB (April 2004). "Ghrelin—a hormone with multiple functions". Frontiers in Neuroendocrinology. 25 (1): 27–68. doi:10.1016/j.yfrne.2004.03.002. PMID 15183037.
  22. 1 2 Stengel A, Taché Y (June 2011). "Interaction between gastric and upper small intestinal hormones in the regulation of hunger and satiety: ghrelin and cholecystokinin take the central stage". Current Protein & Peptide Science. 12 (4): 293–304. doi:10.2174/138920311795906673. PMC 3670092Freely accessible. PMID 21428875.
  23. Zigman JM, Nakano Y, Coppari R, Balthasar N, Marcus JN, Lee CE, Jones JE, Deysher AE, Waxman AR, White RD, Williams TD, Lachey JL, Seeley RJ, Lowell BB, Elmquist JK (December 2005). "Mice lacking ghrelin receptors resist the development of diet-induced obesity". The Journal of Clinical Investigation. 115 (12): 3564–72. doi:10.1172/JCI26002. PMC 1297251Freely accessible. PMID 16322794.
  24. Ariyasu H, Takaya K, Tagami T, Ogawa Y, Hosoda K, Akamizu T, Suda M, Koh T, Natsui K, Toyooka S, Shirakami G, Usui T, Shimatsu A, Doi K, Hosoda H, Kojima M, Kangawa K, Nakao K (October 2001). "Stomach is a major source of circulating ghrelin, and feeding state determines plasma ghrelin-like immunoreactivity levels in humans". The Journal of Clinical Endocrinology and Metabolism. 86 (10): 4753–8. doi:10.1210/jcem.86.10.7885. PMID 11600536.
  25. Suckale J, Solimena M (2008). "Pancreas islets in metabolic signaling—focus on the beta-cell". Frontiers in Bioscience. 13 (13): 7156–71. doi:10.2741/3218. PMID 18508724.
  26. Ferrini F, Salio C, Lossi L, Merighi A (2009). "Ghrelin in Central Neurons". Current Neuropharmacology. 7 (1): 37–49. doi:10.2174/157015909787602779.
  27. Simonsson M, Eriksson S, Håkanson R, Lind T, Lönroth H, Lundell L, O'Connor DT, Sundler F (November 1988). "Endocrine cells in the human oxyntic mucosa. A histochemical study". Scandinavian Journal of Gastroenterology. 23 (9): 1089–99. doi:10.3109/00365528809090174. PMID 2470131.
  28. Grube D, Forssmann WG (November 1979). "Morphology and function of the entero-endocrine cells". Hormone and Metabolic Research = Hormon- Und Stoffwechselforschung = Hormones Et Métabolisme. 11 (11): 589–606. doi:10.1055/s-0028-1092785. PMID 94030.
  29. Fukumoto K, Nakahara K, Katayama T, Miyazatao M, Kangawa K, Murakami N (September 2008). "Synergistic action of gastrin and ghrelin on gastric acid secretion in rats". Biochemical and Biophysical Research Communications. 374 (1): 60–3. doi:10.1016/j.bbrc.2008.06.114. PMID 18611393.
  30. Inhoff T, Stengel A, Peter L, Goebel M, Taché Y, Bannert N, Wiedenmann B, Klapp BF, Mönnikes H, Kobelt P (February 2010). "Novel insight in distribution of nesfatin-1 and phospho-mTOR in the arcuate nucleus of the hypothalamus of rats". Peptides. 31 (2): 257–62. doi:10.1016/j.peptides.2009.11.024. PMC 4043136Freely accessible. PMID 19961888.
  31. Arnes L, Hill JT, Gross S, Magnuson MA, Sussel L (2012). "Ghrelin expression in the mouse pancreas defines a unique multipotent progenitor population". PLOS ONE. 7 (12): e52026. Bibcode:2012PLoSO...752026A. doi:10.1371/journal.pone.0052026. PMC 3520898Freely accessible. PMID 23251675.
  32. Folgueira C, Seoane LM, Casanueva FF (2014). "The brain-stomach connection". Frontiers of Hormone Research. Frontiers of Hormone Research. 42: 83–92. doi:10.1159/000358316. ISBN 978-3-318-02638-2. PMID 24732927.
  33. Lall S, Tung LY, Ohlsson C, Jansson JO, Dickson SL (January 2001). "Growth hormone (GH)-independent stimulation of adiposity by GH secretagogues". Biochemical and Biophysical Research Communications. 280 (1): 132–138. doi:10.1006/bbrc.2000.4065. PMID 11162489.
  34. Tschöp M, Smiley DL, Heiman ML (October 2000). "Ghrelin induces adiposity in rodents". Nature. 407 (6806): 908–913. doi:10.1038/35038090. PMID 11057670.
  35. Chebani Y, Marion C, Zizzari P, Chettab K, Pastor M, Korostelev M, Geny D, Epelbaum J, Tolle V, Morisset-Lopez S, Pantel J (2016). "Enhanced responsiveness of Ghsr Q343X rats to ghrelin results in enhanced adiposity without increased appetite". Sci Signal. 9 (424): ra39. doi:10.1126/scisignal.aae0374. PMID 27095593.
  36. Hewson AK, Dickson SL (November 2000). "Systemic administration of ghrelin induces Fos and Egr-1 proteins in the hypothalamic arcuate nucleus of fasted and fed rats". Journal of Neuroendocrinology. 12 (11): 1047–1049. doi:10.1046/j.1365-2826.2000.00584.x. PMID 11069119.
  37. Dickson SL, Leng G, Robinson IC (March 1993). "Systemic administration of growth hormone-releasing peptide activates hypothalamic arcuate neurons". Neuroscience. 53 (2): 303–306. doi:10.1016/0306-4522(93)90197-N. PMID 8492908.
  38. Chen HY, Trumbauer ME, Chen AS, Weingarth DT, Adams JR, Frazier EG, Shen Z, Marsh DJ, Feighner SD, Guan XM, Ye Z, Nargund RP, Smith RG, Van der Ploeg LH, Howard AD, MacNeil DJ, Qian S (2004). "Orexigenic action of peripheral ghrelin is mediated by neuropeptide Y and agouti-related protein". Endocrinology. 145 (6): 2607–12. doi:10.1210/en.2003-1596. PMID 14962995.
  39. Dickson SL, Luckman SM (February 1997). "Induction of c-fos messenger ribonucleic acid in neuropeptide Y and growth hormone (GH)-releasing factor neurons in the rat arcuate nucleus following systemic injection of the GH secretagogue, GH-releasing peptide-6". Endocrinology. 138 (2): 771–777. doi:10.1210/en.138.2.771. PMID 9003014.
  40. 1 2 Hewson AK, Tung LY, Connell DW, Tookman L, Dickson SL (December 2002). "The rat arcuate nucleus integrates peripheral signals provided by leptin, insulin, and a ghrelin mimetic". Diabetes. 51 (12): 3412–3419. doi:10.2337/diabetes.51.12.3412. PMID 12453894.
  41. 1 2 Page AJ, Slattery JA, Milte C, Laker R, O'Donnell T, Dorian C, Brierley SM, Blackshaw LA (May 2007). "Ghrelin selectively reduces mechanosensitivity of upper gastrointestinal vagal afferents". American Journal of Physiology. Gastrointestinal and Liver Physiology. 292 (5): 1376–1384. doi:10.1152/ajpgi.00536.2006. PMID 17290011.
  42. Jerlhag E, Egecioglu E, Dickson SL, Andersson M, Svensson L, Engel JA (March 2006). "Ghrelin stimulates locomotor activity and accumbal dopamine-overflow via central cholinergic systems in mice: implications for its involvement in brain reward". Addiction Biology. 11 (1): 45–54. doi:10.1111/j.1369-1600.2006.00002.x. PMID 16759336.
  43. Jerlhag E, Egecioglu E, Dickson SL, Douhan A, Svensson L, Engel JA (March 2007). "Ghrelin administration into tegmental areas stimulates locomotor activity and increases extracellular concentration of dopamine in the nucleus accumbens". Addiction Biology. 12 (1): 6–16. doi:10.1111/j.1369-1600.2006.00041.x. PMID 17407492.
  44. Jerlhag E, Egecioglu E, Landgren S, Salomé N, Heilig M, Moechars D, Datta R, Perrissoud D, Dickson SL, Engel JA (July 2009). "Requirement of central ghrelin signaling for alcohol reward". Proceedings of the National Academy of Sciences of the United States of America. 106 (27): 11318–23. Bibcode:2009PNAS..10611318J. doi:10.1073/pnas.0812809106. PMC 2703665Freely accessible. PMID 19564604.
  45. Egecioglu E, Jerlhag E, Salomé N, Skibicka KP, Haage D, Bohlooly-Y M, Andersson D, Bjursell M, Perrissoud D, Engel JA, Dickson SL (July 2010). "Ghrelin increases intake of rewarding food in rodents". Addiction Biology. 15 (3): 304–11. doi:10.1111/j.1369-1600.2010.00216.x. PMC 2901520Freely accessible. PMID 20477752.
  46. Skibicka KP, Hansson C, Egecioglu E, Dickson SL (January 2012). "Role of ghrelin in food reward: impact of ghrelin on sucrose self-administration and mesolimbic dopamine and acetylcholine receptor gene expression". Addiction Biology. 17 (1): 95–107. doi:10.1111/j.1369-1600.2010.00294.x. PMC 3298643Freely accessible. PMID 21309956.
  47. Xu X, Jhun BS, Ha CH, Jin ZG (August 2008). "Molecular mechanisms of ghrelin-mediated endothelial nitric oxide synthase activation". Endocrinology. 149 (8): 4183–4192. doi:10.1210/en.2008-0255. PMC 2488251Freely accessible. PMID 18450953.
  48. 1 2 Tolle V, Bassant MH, Zizzari P, Poindessous-Jazat F, Tomasetto C, Epelbaum J, Bluet-Pajot MT (2002). "Ultradian rhythmicity of ghrelin secretion in relation with GH, feeding behavior, and sleep-wake patterns in rats". Endocrinology. 143 (4): 1353–61. doi:10.1210/endo.143.4.8712. PMID 11897692.
  49. Cummings DE, Frayo RS, Marmonier C, Aubert R, Chapelot D (August 2004). "Plasma ghrelin levels and hunger scores in humans initiating meals voluntarily without time- and food-related cues". American Journal of Physiology. Endocrinology and Metabolism. 287 (2): E297–304. doi:10.1152/ajpendo.00582.2003. PMID 15039149.
  50. Wren AM, Small CJ, Ward HL, Murphy KG, Dakin CL, Taheri S, Kennedy AR, Roberts GH, Morgan DG, Ghatei MA, Bloom SR (November 2000). "The novel hypothalamic peptide ghrelin stimulates food intake and growth hormone secretion". Endocrinology. 141 (11): 4325–8. doi:10.1210/endo.141.11.7873. PMID 11089570.
  51. Faulconbridge LF, Cummings DE, Kaplan JM, Grill HJ (September 2003). "Hyperphagic effects of brainstem ghrelin administration". Diabetes. 52 (9): 2260–5. doi:10.2337/diabetes.52.9.2260. PMID 12941764.
  52. 1 2 Yokota I, Kitamura S, Hosoda H, Kotani Y, Kangawa K (April 2005). "Concentration of the n-octanoylated active form of ghrelin in fetal and neonatal circulation". Endocrine Journal. 52 (2): 271–6. doi:10.1507/endocrj.52.271. PMID 15863960.
  53. Yin Y, Li Y, Zhang W (2014). "The growth hormone secretagogue receptor: its intracellular signaling and regulation". International Journal of Molecular Sciences. 15 (3): 4837–55. doi:10.3390/ijms15034837. PMC 3975427Freely accessible. PMID 24651458.
  54. Waseem T, Duxbury M, Ito H, Rocha F, Lautz D, Whang E, Ashley SW, Robinson MK (September 2004). "Ghrelin ameliorates TNF-a induced anti-proliferative and pro-apoptotic effects and promotes intestinal epithelial restitution". Journal of the American College of Surgeons. 199 (3 Supplement): 16. doi:10.1016/j.jamcollsurg.2004.05.018.
  55. Waseem T, Duxbury M, Ito H, Ashley SW, Robinson MK (March 2008). "Exogenous ghrelin modulates release of pro-inflammatory and anti-inflammatory cytokines in LPS-stimulated macrophages through distinct signaling pathways". Surgery. 143 (3): 334–42. doi:10.1016/j.surg.2007.09.039. PMC 2278045Freely accessible. PMID 18291254.
  56. 1 2 Gonzalez-Rey E, Chorny A, Delgado M (May 2006). "Therapeutic action of ghrelin in a mouse model of colitis". Gastroenterology. 130 (6): 1707–20. doi:10.1053/j.gastro.2006.01.041. PMID 16697735.
  57. 1 2 Wu R, Dong W, Ji Y, Zhou M, Marini CP, Ravikumar TS, Wang P (2008). "Orexigenic hormone ghrelin attenuates local and remote organ injury after intestinal ischemia-reperfusion". PLOS ONE. 3 (4): e2026. Bibcode:2008PLoSO...3.2026W. doi:10.1371/journal.pone.0002026. PMC 2295264Freely accessible. PMID 18431503.
  58. Işeri SO, Sener G, Yüksel M, Contuk G, Cetinel S, Gedik N, Yegen BC (December 2005). "Ghrelin against alendronate-induced gastric damage in rats". The Journal of Endocrinology. 187 (3): 399–406. doi:10.1677/joe.1.06432. PMID 16423819.
  59. Waseem T (March 2010). "Commentary: Ghrelin's role in gastrointestinal tract cancer". Surgical Oncology. 19 (1): e1. doi:10.1016/j.suronc.2009.02.014. PMID 19324542.
  60. Waseem T, Ahmad F, Azam M, Qureshi MA (August 2008). "Role of ghrelin axis in colorectal cancer: a novel association". Peptides. 29 (8): 1369–76. doi:10.1016/j.peptides.2008.03.020. PMID 18471933.
  61. Duxbury MS, Waseem T, Ito H, Robinson MK, Zinner MJ, Ashley SW, Whang EE (September 2003). "Ghrelin promotes pancreatic adenocarcinoma cellular proliferation and invasiveness". Biochemical and Biophysical Research Communications. 309 (2): 464–8. doi:10.1016/j.bbrc.2003.08.024. PMID 12951072.
  62. Michael R. DiGruccio, Alex M. Mawla, Cynthia J. Donaldson, Glyn M. Noguchi, Joan Vaughan, Christopher Cowing-Zitron, Talitha van der Meulen, Mark O. Huising (2016-05-02). "Comprehensive alpha, beta and delta cell transcriptomes reveal that ghrelin selectively activates delta cells and promotes somatostatin release from pancreatic islets". Molecular Metabolism. 5: 449–458. doi:10.1016/j.molmet.2016.04.007. Retrieved 2016-05-30.
  63. Heppner KM, Tong J (July 2014). "Mechanisms in endocrinology: regulation of glucose metabolism by the ghrelin system: multiple players and multiple actions". European Journal of Endocrinology / European Federation of Endocrine Societies. 171 (1): R21–32. doi:10.1530/EJE-14-0183. PMID 24714083.
  64. 1 2 Diano S, Farr SA, Benoit SC, McNay EC, da Silva I, Horvath B, Gaskin FS, Nonaka N, Jaeger LB, Banks WA, Morley JE, Pinto S, Sherwin RS, Xu L, Yamada KA, Sleeman MW, Tschöp MH, Horvath TL (March 2006). "Ghrelin controls hippocampal spine synapse density and memory performance". Nature Neuroscience. 9 (3): 381–8. doi:10.1038/nn1656. PMID 16491079. Lay summary Science Blog.
  65. Atcha Z, Chen WS, Ong AB, Wong FK, Neo A, Browne ER, Witherington J, Pemberton DJ (October 2009). "Cognitive enhancing effects of ghrelin receptor agonists". Psychopharmacology. 206 (3): 415–27. doi:10.1007/s00213-009-1620-6. PMID 19652956.
  66. Cahill SP, Hatchard T, Abizaid A, Holahan MR (2014). "An examination of early neural and cognitive alterations in hippocampal-spatial function of ghrelin receptor-deficient rats". Behav. Brain Res. 264: 105–15. doi:10.1016/j.bbr.2014.02.004. PMID 24525421.
  67. Stengel A, Taché Y (2012). "Ghrelin – a pleiotropic hormone secreted from endocrine x/a-like cells of the stomach". Frontiers in Neuroscience. 6: 24. doi:10.3389/fnins.2012.00024. PMC 3280431Freely accessible. PMID 22355282.
  68. 1 2 Spencer SJ, Xu L, Clarke MA, Lemus M, Reichenbach A, Geenen B, Kozicz T, Andrews ZB (September 2012). "Ghrelin regulates the hypothalamic-pituitary-adrenal axis and restricts anxiety after acute stress". Biological Psychiatry. 72 (6): 457–65. doi:10.1016/j.biopsych.2012.03.010. PMID 22521145.
  69. Lutter M, Sakata I, Osborne-Lawrence S, Rovinsky SA, Anderson JG, Jung S, Birnbaum S, Yanagisawa M, Elmquist JK, Nestler EJ, Zigman JM (July 2008). "The orexigenic hormone ghrelin defends against depressive symptoms of chronic stress". Nature Neuroscience. 11 (7): 752–3. doi:10.1038/nn.2139. PMC 2765052Freely accessible. PMID 18552842.
  70. Taheri S, Lin L, Austin D, Young T, Mignot E (December 2004). "Short sleep duration is associated with reduced leptin, elevated ghrelin, and increased body mass index". PLoS Medicine. 1 (3): e62. doi:10.1371/journal.pmed.0010062. PMC 535701Freely accessible. PMID 15602591.
  71. Meyer RM, Burgos-Robles A, Liu E, Correia SS, Goosens KA (December 2014). "A ghrelin-growth hormone axis drives stress-induced vulnerability to enhanced fear". Molecular Psychiatry. 19 (12): 1284–94. doi:10.1038/mp.2013.135. PMC 3988273Freely accessible. PMID 24126924. Lay summary Massachusetts Institute of Technology News.
  72. Andrews ZB, Erion D, Beiler R, Liu ZW, Abizaid A, Zigman J, Elsworth JD, Savitt JM, DiMarchi R, Tschoep M, Roth RH, Gao XB, Horvath TL (November 2009). "Ghrelin promotes and protects nigrostriatal dopamine function via a UCP2-dependent mitochondrial mechanism". The Journal of Neuroscience. 29 (45): 14057–65. doi:10.1523/JNEUROSCI.3890-09.2009. PMC 2845822Freely accessible. PMID 19906954.
  73. Comninos AN, Jayasena CN, Dhillo WS (2014). "The relationship between gut and adipose hormones, and reproduction". Human Reproduction Update. 20 (2): 153–74. doi:10.1093/humupd/dmt033. PMID 24173881.
  74. Santos M, Bastos P, Gonzaga S, Roriz JM, Baptista MJ, Nogueira-Silva C, Melo-Rocha G, Henriques-Coelho T, Roncon-Albuquerque R, Leite-Moreira AF, De Krijger RR, Tibboel D, Rottier R, Correia-Pinto J (April 2006). "Ghrelin expression in human and rat fetal lungs and the effect of ghrelin administration in nitrofen-induced congenital diaphragmatic hernia". Pediatric Research. 59 (4 Pt 1): 531–7. doi:10.1203/01.pdr.0000202748.66359.a9. PMID 16549524.
  75. Prodam F, Filigheddu N (October 2014). "Ghrelin gene products in acute and chronic inflammation". Archivum Immunologiae et Therapiae Experimentalis. 62 (5): 369–84. doi:10.1007/s00005-014-0287-9. PMID 24728531.
  76. 1 2 Cummings DE, Weigle DS, Frayo RS, Breen PA, Ma MK, Dellinger EP, Purnell JQ (May 2002). "Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery". The New England Journal of Medicine. 346 (21): 1623–30. doi:10.1056/NEJMoa012908. PMID 12023994.
  77. Goldstone AP, Thomas EL, Brynes AE, Castroman G, Edwards R, Ghatei MA, Frost G, Holland AJ, Grossman AB, Korbonits M, Bloom SR, Bell JD (April 2004). "Elevated fasting plasma ghrelin in prader-willi syndrome adults is not solely explained by their reduced visceral adiposity and insulin resistance". The Journal of Clinical Endocrinology and Metabolism. 89 (4): 1718–26. doi:10.1210/jc.2003-031118. PMID 15070936.
  78. DelParigi A, Tschöp M, Heiman ML, Salbe AD, Vozarova B, Sell SM, Bunt JC, Tataranni PA (December 2002). "High circulating ghrelin: a potential cause for hyperphagia and obesity in prader-willi syndrome". The Journal of Clinical Endocrinology and Metabolism. 87 (12): 5461–4. doi:10.1210/jc.2002-020871. PMID 12466337.
  79. Misra M, Klibanski A (July 2014). "Endocrine consequences of anorexia nervosa". The Lancet. Diabetes & Endocrinology. 2 (7): 581–592. doi:10.1016/S2213-8587(13)70180-3. PMC 4133106Freely accessible. PMID 24731664.
  80. Tolle V, Kadem M, Bluet-Pajot MT, Frere D, Foulon C, Bossu C, Dardennes R, Mounier C, Zizzari P, Lang F, Epelbaum J, Estour B (2003). "Balance in ghrelin and leptin plasma levels in anorexia nervosa patients and constitutionally thin women". J. Clin. Endocrinol. Metab. 88 (1): 109–16. doi:10.1210/jc.2002-020645. PMID 12519838.
  81. Germain N, Galusca B, Le Roux CW, Bossu C, Ghatei MA, Lang F, Bloom SR, Estour B (April 2007). "Constitutional thinness and lean anorexia nervosa display opposite concentrations of peptide YY, glucagon-like peptide 1, ghrelin, and leptin". The American Journal of Clinical Nutrition. 85 (4): 967–71. PMID 17413094.
  82. Yildiz BO, Suchard MA, Wong ML, McCann SM, Licinio J (July 2004). "Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity". Proceedings of the National Academy of Sciences of the United States of America. 101 (28): 10434–9. Bibcode:2004PNAS..10110434Y. doi:10.1073/pnas.0403465101. PMC 478601Freely accessible. PMID 15231997.
  83. Fonken LK, Nelson RJ (April 2014). "The effects of light at night on circadian clocks and metabolism". Endocrine Reviews. 35 (4): 648–70. doi:10.1210/er.2013-1051. PMID 24673196.
  84. Cappuccio FP, Taggart FM, Kandala NB, Currie A, Peile E, Stranges S, Miller MA (May 2008). "Meta-analysis of short sleep duration and obesity in children and adults". Sleep. 31 (5): 619–26. PMC 2398753Freely accessible. PMID 18517032.
  85. Garcia JM, Garcia-Touza M, Hijazi RA, Taffet G, Epner D, Mann D, Smith RG, Cunningham GR, Marcelli M (May 2005). "Active ghrelin levels and active to total ghrelin ratio in cancer-induced cachexia". The Journal of Clinical Endocrinology and Metabolism. 90 (5): 2920–6. doi:10.1210/jc.2004-1788. PMID 15713718.
  86. Cummings DE, Shannon MH (July 2003). "Ghrelin and gastric bypass: is there a hormonal contribution to surgical weight loss?". The Journal of Clinical Endocrinology and Metabolism. 88 (7): 2999–3002. doi:10.1210/jc.2003-030705. PMID 12843132.
  87. Bohdjalian A, Langer FB, Shakeri-Leidenmühler S, Gfrerer L, Ludvik B, Zacherl J, Prager G (May 2010). "Sleeve gastrectomy as sole and definitive bariatric procedure: 5-year results for weight loss and ghrelin". Obesity Surgery. 20 (5): 535–40. doi:10.1007/s11695-009-0066-6. PMID 20094819.
  88. Zorrilla EP, Iwasaki S, Moss JA, Chang J, Otsuji J, Inoue K, Meijler MM, Janda KD (August 2006). "Vaccination against weight gain". Proceedings of the National Academy of Sciences of the United States of America. 103 (35): 13226–31. Bibcode:2006PNAS..10313226Z. doi:10.1073/pnas.0605376103. PMC 1559781Freely accessible. PMID 16891413. Lay summary The Scripps Research Institute.
  89. Vizcarra JA, Kirby JD, Kim SK, Galyean ML (August 2007). "Active immunization against ghrelin decreases weight gain and alters plasma concentrations of growth hormone in growing pigs". Domestic Animal Endocrinology. 33 (2): 176–89. doi:10.1016/j.domaniend.2006.05.005. PMID 16793235.
  90. Cummings DE, Purnell JQ, Frayo RS, Schmidova K, Wisse BE, Weigle DS (August 2001). "A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans". Diabetes. 50 (8): 1714–9. doi:10.2337/diabetes.50.8.1714. PMID 11473029.
  91. Karasu SR, Karasu TB (2010). The gravity of weight: a clinical guide to weight loss and maintenance (1st ed.). Washington, DC: American Psychiatric Publishing. p. 162. ISBN 978-1585623600.
  92. Berardi E, Annibali D, Cassano M, Crippa S, Sampaolesi M (2014). "Molecular and cell-based therapies for muscle degenerations: a road under construction". Frontiers in Physiology. 5: 119. doi:10.3389/fphys.2014.00119. PMC 3986550Freely accessible. PMID 24782779.
  93. Ruperto M, Sánchez-Muniz FJ, Barril G (2014). "A clinical approach to the nutritional care process in protein-energy wasting hemodialysis patients". Nutrición Hospitalaria. 29 (4): 735–50. doi:10.3305/nh.2014.29.4.7222. PMID 24679014.
  94. Clynen E, Swijsen A, Raijmakers M, Hoogland G, Rigo JM (October 2014). "Neuropeptides as targets for the development of anticonvulsant drugs". Molecular Neurobiology. 50 (2): 626–46. doi:10.1007/s12035-014-8669-x. PMC 4182642Freely accessible. PMID 24705860.
  95. Hasler WL (June 2014). "Emerging drugs for the treatment of gastroparesis". Expert Opinion on Emerging Drugs. 19 (2): 261–79. doi:10.1517/14728214.2014.899353. PMID 24669936.
  96. Williams DL, Cummings DE, Grill HJ, Kaplan JM (2003). "Meal-Related Ghrelin Suppression Requires Postgastric Feedback". Endocrinology. 144 (7): 2765–2767. doi:10.1210/en.2003-0381.

Further reading

This article is issued from Wikipedia - version of the 10/3/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.