Larger sieve

In number theory, the larger sieve is a sifting device invented by P. X. Gallagher. The name denotes a heightening of the large sieve. In fact, combinatorial sieves like the Selberg sieve are strongest, when only a few residue classes are removed, while the term large sieve means that this sieve can take advantage of the removal of a large number of up to half of all residue classes. The larger sieve can exploit the deletion of an arbitrary number of classes.

Statement

Suppose that is a set of prime powers, N an integer, a set of integers in the interval [1, N], such that for there are at most residue classes modulo , which contain elements of .

Then we have

provided the denominator on the right is positive.[1]

Applications

A typical application is the following result due to Gallagher.[2]

The number of integers , such that the order of modulo is for all primes is .

The large sieve cannot prove this statement for .

If the number of excluded residue classes modulo varies with , then the larger sieve is often combined with the large sieve. The larger sieve is applied with the set above defined to be the set of primes for which many residue classes are removed, while the large sieve is used to obtain information using the primes outside .[3]

Notes

  1. Gallagher 1971, Theorem 1
  2. Gallagher, 1971, Theorem 2
  3. Croot, Elsholtz, 2004

References

This article is issued from Wikipedia - version of the 3/23/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.