KBM-7 cells

KBM-7 cells are a Chronic myelogenous leukemia (CML) cell line used for biomedical research. Like all cancer cell lines, it is immortal and can divide indefinitely. A unique aspect of the KBM-7 cell line is that it is near-haploid, meaning it contains only one copy for most of its chromosomes.

Origin

KBM-7 cells were derived from a 39-year-old man with chronic myeloid leukemia in blast crisis.[1] The original cell line contained both near haploid and hyperdiploid clones. Subsequent subcloning yielded a pure near-haploid cell line.[2] Genome analysis has revealed that besides the disomic chromosome 8 also a 30 megabase fragment of chromosome 15 is present in two copies.[3] Like other CML cells lines (e.g., K562) KBM-7 cells are positive for the Philadelphia chromosome harboring the BCR-ABL oncogenic fusion. KBM-7 cells have been reprogrammed to yield the HAP1 cell line which is also monosomy for chromosome 8.[4]

Cultivation

KBM-7 cells grow in suspension and are maintained in Iscove's Modified Dulbecco's Medium (IMDM) supplemented with 10% fetal bovine serum. They divide approximately every 24 hours.

References

  1. Andersson, B. S., Beran, M., Pathak, S., Goodacre, A., Barlogie, B., and McCredie, K. B. (1987). "Ph-positive chronic myeloid leukemia with near-haploid conversion in vivo and establishment of a continuously growing cell line with similar cytogenetic pattern". Cancer Genet. Cytogenet. 24: 335–343. doi:10.1016/0165-4608(87)90116-6.
  2. Kotecki M, Reddy PS, Cochran BH (1999). "Isolation and characterization of a near-haploid human cell line". Exp Cell Res. 252 (2): 273–80. doi:10.1006/excr.1999.4656.
  3. Bürckstümmer T, Banning C, Hainzl P, Schobesberger R, Kerzendorfer C, Pauler FM, Chen D, Them N, Schischlik F, Rebsamen M, Smida M, Fece de la Cruz F, Lapao A, Liszt M, Eizinger B, Guenzl PM, Blomen VA, Konopka T, Gapp B, Parapatics K, Maier B, Stöckl J, Fischl W, Salic S, Taba Casari MR, Knapp S, Bennett KL, Bock C, Colinge J, Kralovics R, Ammerer G, Casari G, Brummelkamp TR, Superti-Furga G, Nijman SM (2013). "A reversible gene trap collection empowers haploid genetics in human cells". Nat Methods. 10: 965–71. doi:10.1038/nmeth.2609. PMID 24161985.
  4. Carette JE, Raaben M, Wong AC, Herbert AS, Obernosterer G, Mulherkar N, Kuehne AI, Kranzusch PJ, Griffin AM, Ruthel G, Dal Cin P, Dye JM, Whelan SP, Chandran K, Brummelkamp TR (2011). "Ebola virus entry requires the cholesterol transporter Niemann-Pick C1". Nature. 477 (7364): 340–3. doi:10.1038/nature10348. PMC 3175325Freely accessible. PMID 21866103.
This article is issued from Wikipedia - version of the 6/1/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.