Graphing calculator

For the software tool of the same name, see NuCalc.
A typical graphing calculator by Texas Instruments

A graphing calculator (also graphics / graphic calculator) is a handheld calculator that is capable of plotting graphs, solving simultaneous equations, and performing other tasks with variables. Most popular graphing calculators are also programmable, allowing the user to create customized programs, typically for scientific/engineering and education applications. Because they have large displays, graphing calculators also typically display several lines of text and calculations at the same time.

History

Casio fx-7000G; The world's first graphing calculator

Casio produced the first commercially available graphing calculator, the fx-7000G, in 1985. Casio's innovations include an icon menu for easy access to functions (1994, FX-7700GE and later), graphing in several colors (1995, CFX-9800G), expandable memory (FX-9860SD), textbook-like input and output (2009, FX-9750GII & 9860GII), backlit screen (2009, FX-9860 Slim & GII), full-color, high resolution backlit screen (2010, FX-CG10/CG20 PRIZM).

Sharp produced its first graphing calculator, the EL-5200, in 1986. Since then Sharp's innovations include models with a touchscreen (EL9600 series), Equation Editor (textbook-like input) (EL-9450 and later), and reversible keyboard to ease learning (one side has basic functions, the other side has additional functions) (EL-9900).

Hewlett Packard followed in the form of the HP-28C.[1] This was followed by the HP-28S (1988), HP-48SX (1990), HP-48S (1991), and many other models. Models like the HP 50g (2006) or the HP Prime (2013) feature a computer algebra system (CAS) capable of manipulating symbolic expressions and analytic solving. An unusual and powerful CAS "calculator" is the now obsolete year 2001 Casio Cassiopeia A-10 and A-11 (flip top) stylus-operated PDAs, which ran the Maple V symbolic engine. The HP-28 and -48 ranges were primarily meant for the professional science/engineering markets; the HP-38/39/40 were sold in the high school/college educational market; while the HP-49 series cater to both educational and professional customers of all levels. The HP series of graphing calculators is best known for its Reverse Polish notation (RPN) / Reverse Polish Lisp (RPL) interface, although the HP-49G introduced a standard expression entry interface as well.

Texas Instruments has produced graphing calculators since 1990, the oldest of which was the TI-81. Some of the newer calculators are similar, with the addition of more memory, faster processors, and USB connection such as the TI-82, TI-83 series, and TI-84 series. Other models, designed to be appropriate for students 1014 years of age, are the TI-80 and TI-73. Other TI graphing calculators have been designed to be appropriate for calculus, namely the TI-85, TI-86, TI-89 series, and TI-92 series (TI-92, TI-92 Plus, and Voyage 200). TI offers a CAS on the TI-89, TI-Nspire CAS and TI-92 series of calculators. TI calculators are targeted specifically to the educational market, but are also widely available to the general public.

Features

Computer algebra systems

Some graphing calculators have a computer algebra system (CAS), which means that they are capable of producing symbolic results. These calculators can manipulate algebraic expressions, performing operations such as factor, expand, and simplify. In addition, they can give answers in exact form without numerical approximations.[2] Calculators that have a computer algebra system are called symbolic or CAS calculators. Examples of symbolic calculators include the HP 50g, the HP Prime, the TI-89, the TI-Nspire CAS, and the Casio ClassPad.

Laboratory usage

Many graphing calculators can be attached to devices like electronic thermometers, pH gauges, weather instruments, decibel and light meters, accelerometers, and other sensors and therefore function as data loggers, as well as WiFi or other communication modules for monitoring, polling and interaction with the teacher. Student laboratory exercises with data from such devices enhances learning of math, especially statistics and mechanics.

Games

Since graphing calculators are usually readily user-programmable, such calculators are also widely used for gaming purposes, with a sizable body of user-created game software on most popular platforms. It is easy to get games for your graphing calculator.[3] Even though handheld gaming devices fall in a similar price range, graphing calculators offer superior math programming capability for math based games. However, for developers and advanced users like researchers, analysts and gamers, 3rd party software development involving firmware mods, whether for powerful gaming or exploiting capabilities beyond the published data sheet and programming language, is a contentious issue with manufacturers and education authorities as it might incite unfair calculator use during standardized high school and college tests where these devices are targeted. Nowadays graduate (Masters) students and researchers have turned to advanced Computer Aided Math software for learning as well as experimenting.

Color

Some graphing calculators are capable of color output and feature animated and interactive drawing of math plots (2D and 3D), other figures such as animated Algebra theorems, preparation of documents which can include these plots and drawings, etc. Some calculator manufacturers also offer computer software for emulating and working with handheld graphing calculators.

Graphing calculators in education

TI-89 Titanium, capable of doing Symbolic Manipulation, Computer Algebra System (CAS)

Programming

The game Tetris is being played on a TI-83 Plus.
Graphing calculators are sometimes used for gaming.

Most graphing calculators, as well as some non-graphing scientific and programmer's calculators can be programmed to automate complex and frequently used series of calculations and those inaccessible from the keyboard.

The actual programming can often be done on a computer then later uploaded to the calculators. The most common tools for this include the PC link cable and software for the given calculator, configurable text editors or hex editors, and specialized programming tools such as the below-mentioned implementation of various languages on the computer side.

Earlier calculators stored programs on magnetic cards and the like; increased memory capacity has made storage on the calculator the most common implementation. Some of the newer machines can also use memory cards.

Many graphing and scientific calculators will tokenize the program text, replacing textual programming elements with short numerical tokens. Many graphical calculators work much like computers and use versions of 7-bit, 8-bit or 9-bit ASCII-derived character sets or even UTF-8 and Unicode. Many of them have a tool similar to the character map on Windows.

They also have BASIC like functions such as chr$, chr, char, asc, and so on, which sometimes may be more Pascal or C like. One example may be use of ord, as in Pascal, instead of the asc of many Basic variants, to return the code of a character, i.e. the position of the character in the collating sequence of the machine.

A cable and/or IrDA transceiver connecting the calculator to a computer make the process easier and expands other possibilities such as on-board spreadsheet, database, graphics, and word processing programs. The second option is being able to code the programs on board the calculator itself. This option is facilitated by the inclusion of full-screen text editors and other programming tools in the default feature set of the calculator or as optional items. Some calculators have QWERTY keyboards and others can be attached to an external keyboard which can be close to the size of a regular 102-key computer keyboard. Programming is a major use for the software and cables used to connect calculators to computers.

The most common programming languages used for calculators are similar to keystroke-macro languages and variants of BASIC. The latter can have a large feature set—approaching that of BASIC as found in computers—including character and string manipulation, advanced conditional and branching statements, sound, graphics, and more including, of course, the huge spectrum of mathematical, string, bit-manipulation, number base, I/O, and graphics functions built into the machine.

Languages for programming calculators fall into all of the main groups, i.e. machine code, low-level, mid-level, high-level languages for systems and application programming, scripting, macro, and glue languages, procedural, functional, imperative &. object-oriented programming can be achieved in some cases.

Most calculators capable to being connected to a computer can be programmed in assembly language and machine code, although on some calculators this is only possible through using exploits. The most common assembly and machine languages are for TMS9900, SH-3, Zilog Z80, and various Motorola chips (e.g. a modified 68000) which serve as the main processors of the machines although many (not all) are modified to some extent from their use elsewhere. Some manufacturers do not document and even mildly discourage the assembly language programming of their machines because they must be programmed in this way by putting together the program on the PC and then forcing it into the calculator by various improvised methods.

Other on-board programming languages include purpose-made languages, variants of Eiffel, Forth, and Lisp, and Command Script facilities which are similar in function to batch/shell programming and other glue languages on computers but generally not as full featured. Ports of other languages like BBC BASIC and development of on-board interpreters for Fortran, REXX, AWK, Perl, Unix shells (e.g., bash, zsh), other shells (DOS/Windows 9x, OS/2, and Windows NT family shells as well as the related 4DOS, 4NT and 4OS2 as well as DCL), COBOL, C, Python, Tcl, Pascal, Delphi, ALGOL, and other languages are at various levels of development.

Some calculators, especially those with other PDA-like functions have actual operating systems including the TI proprietary OS for its more recent machines, DOS, Windows CE, and rarely Windows NT 4.0 Embedded et seq, and Linux. Experiments with the TI-89, TI-92, TI-92 Plus and Voyage 200 machines show the possibility of installing some variants of other systems such as a chopped-down variant of CP/M-68K, an operating system which has been used for portable devices in the past.

Tools which allow for programming the calculators in C/C++ and possibly Fortran and assembly language are used on the computer side, such as HPGCC, TIGCC and others. Flash memory is another means of conveyance of information to and from the calculator.

The on-board BASIC variants in TI graphing calculators and the languages available on HP-48 type calculators can be used for rapid prototyping by developers, professors, and students, often when a computer is not close at hand.

Most graphing calculators have on-board spreadsheets which usually integrate with Microsoft Excel on the computer side. At this time, spreadsheets with macro and other automation facilities on the calculator side are not on the market. In some cases, the list, matrix, and data grid facilities can be combined with the native programming language of the calculator to have the effect of a macro and scripting enabled spreadsheet.

See also

References

  1. Campbell, Paul (October 1987). "Reviews". Mathematics Magazine. 60: 249. doi:10.2307/2689351. JSTOR 2689351.
  2. "The Role of Computer Algebra Systems (CAS) in Math Teaching and the Common Core". University of Chicago Blogs.
  3. "How To Get Graphing Calculator Games". Calcustar. Scotty Thompson. Retrieved 26 May 2016.
  4. http://education.ti.com/en/us/software/details/en/1E8EB275DBED43918A5E8230BCDDEDF0/83periodictable1 Periodic table app for the Ti-84
  5. http://jcq.org.uk/attachments/published/898/17.%20ICE%2010-11.pdf General, Vocational and Diploma Qualifications Instructions for conducting examinations.
  6. http://www.curriculum.wa.edu.au/internet/_Documents/Policy/Calculators_use_in_the_WACE_examinations_2010_pdf.pdf Calculator use in the 2011 WACE examinations
  7. http://meyda.education.gov.il/sheeloney_bagrut/2012/1/HEB/35807.PDF The instructions for conducting the 5 point exam Bagrut in math, 2012 in Hebrew.

Further reading

Wikimedia Commons has media related to graphics calculator.
This article is issued from Wikipedia - version of the 11/27/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.