Educational technology

"E-learning" redirects here. It is not to be confused with Online machine learning.

Educational technology is defined by the Association for Educational Communications and Technology as "the study and ethical practice of facilitating learning and improving performance by creating, using, and managing appropriate technological processes and resources."[1]

Educational technology refers to the use of both physical hardware and educational theoretics. It encompasses several domains, including learning theory, computer-based training, online learning, and, where mobile technologies are used, m-learning.[2] Accordingly, there are several discrete aspects to describing the intellectual and technical development of educational technology:

Technology in education and technology of education are two different concepts which deal with the use of technological tools and innovative educational strategies respectively.


Richey defined educational technology as "the study and ethical practice of facilitating learning and improving performance by creating, using and managing appropriate technological processes and resources."[3] The Association for Educational Communications and Technology (AECT) denoted instructional technology as "the theory and practice of design, development, utilization, management, and evaluation of processes and resources for learning."[4][5][6] As such, educational technology refers to all valid and reliable applied education sciences, such as equipment, as well as processes and procedures that are derived from scientific research, and in a given context may refer to theoretical, algorithmic or heuristic processes: it does not necessarily imply physical technology. Educational technology is the process of integrating technology into education in a positive manner that promotes a more diverse learning environment and a way for students to learn how to use technology as well as their common assignments.

Early 20th century abacus used in a Danish elementary school.

Given this definition, educational technology is an inclusive term for both the material tools and the theoretical foundations for supporting learning and teaching. Educational technology is not restricted to high technology.[7] Education technology is anything that enhances classroom learning in the utilization of blended or online learning.[8]

However, modern electronic educational technology is an important part of society today.[9] Educational technology encompasses e-learning, instructional technology, information and communication technology (ICT) in education, EdTech, learning technology, multimedia learning, technology-enhanced learning (TEL), computer-based instruction (CBI), computer managed instruction, computer-based training (CBT), computer-assisted instruction or computer-aided instruction (CAI),[10] internet-based training (IBT), flexible learning, web-based training (WBT), online education, digital educational collaboration, distributed learning, computer-mediated communication, cyber-learning, and multi-modal instruction, virtual education, personal learning environments, networked learning, virtual learning environments (VLE) (which are also called learning platforms), m-learning, ubiquitous learning and digital education.

Each of these numerous terms has had its advocates, who point up potential distinctive features.[11] However, many terms and concepts in educational technology have been defined nebulously; for example, Fiedler's review of the literature found a complete lack agreement of the components of a personal learning environment.[12] Moreover, Moore saw these terminologies as emphasizing particular features such as digitization approaches, components or delivery methods rather than being fundamentally dissimilar in concept or principle.[11] For example, m-learning emphasizes mobility, which allows for altered timing, location, accessibility and context of learning;[13] nevertheless, its purpose and conceptual principles are those of educational technology.[11]

In practice, as technology has advanced, the particular "narrowly defined" terminological aspect that was initially emphasized by name has blended into the general field of educational technology.[11] Initially, "virtual learning" as narrowly defined in a semantic sense implied entering an environmental simulation within a virtual world,[14][15] for example in treating posttraumatic stress disorder (PTSD).[16][17] In practice, a "virtual education course" refers to any instructional course in which all, or at least a significant portion, is delivered by the Internet. "Virtual" is used in that broader way to describe a course that is not taught in a classroom face-to-face but through a substitute mode that can conceptually be associated "virtually" with classroom teaching, which means that people do not have to go to the physical classroom to learn. Accordingly, virtual education refers to a form of distance learning in which course content is delivered by various methods such as course management applications, multimedia resources, and videoconferencing.[18]

As a further example, ubiquitous learning emphasizes an omnipresent learning milieu.[19] Educational content, pervasively embedded in objects, is all around the learner, who may not even be conscious of the learning process: students may not have to do anything in order to learn, they just have to be there.[19][20] The combination of adaptive learning, using an individualized interface and materials, which accommodate to an individual, who thus receives personally differentiated instruction, with ubiquitous access to digital resources and learning opportunities in a range of places and at various times, has been termed smart learning.[21][22][23] Smart learning is a component of the smart city concept.[24][25]

Bernard Luskin, an educational technology pioneer, advocated that the "e" of e-learning should be interpreted to mean "exciting, energetic, enthusiastic, emotional, extended, excellent, and educational" in addition to "electronic."[26] Parks suggested that the "e" should refer to "everything, everyone, engaging, easy".[27] These broad interpretations focus on new applications[28] and developments, as well as learning theory and media psychology.[26]


Main article: Educational software
19th century classroom, Auckland
iPads are becoming a popular tool used in classrooms for all ages.

Helping people learn in ways that are easier, faster, surer, or less expensive can be traced back to the emergence of very early tools, such as paintings on cave walls.[29][30] Various types of abacus have been used. Writing slates and blackboards have been used for at least a millennium.[31] From their introduction, books and pamphlets have held a prominent role in education. From the early twentieth century, duplicating machines such as the mimeograph and Gestetner stencil devices were used to produce short copy runs (typically 10–50 copies) for classroom or home use. The use of media for instructional purposes is generally traced back to the first decade of the 20th century[32] with the introduction of educational films (1900s) and Sidney Pressey's mechanical teaching machines (1920s). The first all multiple choice, large scale assessment was the Army Alpha, used to assess the intelligence and more specifically the aptitudes of World War I military recruits. Further large-scale use of technologies was employed in training soldiers during and after WWII using films and other mediated materials, such as overhead projectors. The concept of hypertext is traced to description of memex by Vannevar Bush in 1945.

Cuisenaire rods

Slide projectors were widely used during the 1950s in educational institutional settings. Cuisenaire rods were devised in the 1920s and saw widespread use from the late 1950s.

In 1960, the University of Illinois initiated a classroom system based in linked computer terminals where students could access informational resources on a particular course while listening to the lectures that were recorded via some form of remotely linked device like a television or audio device.[33]

In the mid 1960s Stanford University psychology professors Patrick Suppes and Richard C. Atkinson experimented with using computers to teach arithmetic and spelling via Teletypes to elementary school students in the Palo Alto Unified School District in California.[34][35] Stanford's Education Program for Gifted Youth is descended from those early experiments. In 1963, Bernard Luskin installed the first computer in a community college for instruction. Working with Stanford and others he helped develop computer-assisted instruction. Working with the Rand Corporation, Luskin's landmark UCLA dissertation in 1970 analyzed obstacles to computer-assisted instruction.

Artistic portrait of Ivan Illich by Amano1.
Multimedia space Moldova Alliance Française.

In 1971, Ivan Illich published a hugely influential book called, Deschooling Society, in which he envisioned "learning webs" as a model for people to network the learning they needed. The 1970s and 1980s saw notable contributions in computer-based learning by Murray Turoff and Starr Roxanne Hiltz at the New Jersey Institute of Technology[36] as well as developments at the University of Guelph in Canada.[37] In 1976, Bernard Luskin launched Coastline Community College as a "college without walls" using television station KOCE-TV as a vehicle. In the UK the Council for Educational Technology supported the use of educational technology, in particular administering the government's National Development Programme in Computer Aided Learning[38] (1973–77) and the Microelectronics Education Programme (1980–86).

By the mid-1980s, accessing course content became possible at many college libraries. In computer-based training (CBT) or computer-based learning (CBL), the learning interaction was between the student and computer drills or micro-world simulations.

Digitized communication and networking in education started in the mid-1980s. Educational institutions began to take advantage of the new medium by offering distance learning courses using computer networking for information. Early e-learning systems, based on computer-based learning/training often replicated autocratic teaching styles whereby the role of the e-learning system was assumed to be for transferring knowledge, as opposed to systems developed later based on computer supported collaborative learning (CSCL), which encouraged the shared development of knowledge.

Videoconferencing was an important forerunner to the educational technologies known today. This work was especially popular with Museum Education. Even in recent years, videoconferencing has risen in popularity to reach over 20,000 students across the United States and Canada in 2008-2009. Disadvantages of this form of educational technology are readily apparent: image and sound quality is often grainy or pixelated; videoconferencing requires setting up a type of mini-television studio within the museum for broadcast, space becomes an issue; and specialised equipment is required for both the provider and the participant.[39]

The Open University in Britain[37] and the University of British Columbia (where Web CT, now incorporated into Blackboard Inc., was first developed) began a revolution of using the Internet to deliver learning,[40] making heavy use of web-based training, online distance learning and online discussion between students.[41] Practitioners such as Harasim (1995)[42] put heavy emphasis on the use of learning networks.

With the advent of World Wide Web in the 1990s, teachers embarked on the method using emerging technologies to employ multi-object oriented sites, which are text-based online virtual reality systems, to create course websites along with simple sets of instructions for its students.

Text book publishers also explored ways to utilize both the Internet and CD ROM technology as an extension to traditional learning. In 1994, Simon and Schuster was the one of first to pioneer in this area, launching the New Media Group through its then Higher-Ed subsidiary Prentice Hall. Among the New Media Group’s members was future MP3 Newswire publisher Richard Menta, whose key project was the Guest Lecture Series. This series was the first successful delivery of online video lectures to universities.[43] The inaugural lecture was streamed in December 1996 with Harvard physics professor Dr. Eric Mazur presenting on Peer Instruction.[44]

By 1994, the first online high school had been founded. In 1997, Graziadei described criteria for evaluating products and developing technology-based courses that include being portable, replicable, scalable, affordable, and having a high probability of long-term cost-effectiveness.[45]

Improved Internet functionality enabled new schemes of communication with multimedia or webcams. The National Center for Education Statistics estimate the number of K-12 students enrolled in online distance learning programs increased by 65 percent from 2002 to 2005, with greater flexibility, ease of communication between teacher and student, and quick lecture and assignment feedback.

According to a 2008 study conducted by the U.S Department of Education, during the 2006-2007 academic year about 66% of postsecondary public and private schools participating in student financial aid programs offered some distance learning courses; records show 77% of enrollment in for-credit courses with an online component.[46] In 2008, the Council of Europe passed a statement endorsing e-learning's potential to drive equality and education improvements across the EU.[47]

Computer-mediated communication (CMC) is between learners and instructors, mediated by the computer. In contrast, CBT/CBL usually means individualized (self-study) learning, while CMC involves educator/tutor facilitation and requires scenarization of flexible learning activities. In addition, modern ICT provides education with tools for sustaining learning communities and associated knowledge management tasks.

Students growing up in this digital age have extensive exposure to a variety of media.[48][49] Major high-tech companies such as Google, Verizon and Microsoft have funded schools to provide them the ability to teach their students through technology, in the hope that this would lead to improved student performance.[50]


Various pedagogical perspectives or learning theories may be considered in designing and interacting with educational technology. E-learning theory examines these approaches. These theoretical perspectives are grouped into three main theoretical schools or philosophical frameworks: behaviorism, cognitivism and constructivism.


This theoretical framework was developed in the early 20th century based on animal learning experiments by Ivan Pavlov, Edward Thorndike, Edward C. Tolman, Clark L. Hull, and B.F. Skinner. Many psychologists used these results to develop theories of human learning, but modern educators generally see behaviorism as one aspect of a holistic synthesis. Teaching in behaviorism has been linked to training, emphasizing the animal learning experiments. Since behaviorism consists of the view of teaching people how to something with rewards and punishments, it is related to training people.[51]

B.F. Skinner wrote extensively on improvements of teaching based on his functional analysis of verbal behavior[52][53] and wrote "The Technology of Teaching",[54][55] an attempt to dispel the myths underlying contemporary education as well as promote his system he called programmed instruction. Ogden Lindsley developed a learning system, named Celeration, that was based on behavior analysis but that substantially differed from Keller's and Skinner's models.


Cognitive science underwent significant change in the 1960s and 1970s. While retaining the empirical framework of behaviorism, cognitive psychology theories look beyond behavior to explain brain-based learning by considering how human memory works to promote learning. The Atkinson-Shiffrin memory model and Baddeley's working memory model were established as theoretical frameworks. Computer Science and Information Technology have had a major influence on Cognitive Science theory. The Cognitive concepts of working memory (formerly known as short term memory) and long term memory have been facilitated by research and technology from the field of Computer Science. Another major influence on the field of Cognitive Science is Noam Chomsky. Today researchers are concentrating on topics like cognitive load, information processing and media psychology. These theoretical perspectives influence instructional design.[56]


Educational psychologists distinguish between several types of constructivism: individual (or psychological) constructivism, such as Piaget's theory of cognitive development, and social constructivism. This form of constructivism has a primary focus on how learners construct their own meaning from new information, as they interact with reality and with other learners who bring different perspectives. Constructivist learning environments require students to use their prior knowledge and experiences to formulate new, related, and/or adaptive concepts in learning (Termos, 2012[57]). Under this framework the role of the teacher becomes that of a facilitator, providing guidance so that learners can construct their own knowledge. Constructivist educators must make sure that the prior learning experiences are appropriate and related to the concepts being taught. Jonassen (1997) suggests "well-structured" learning environments are useful for novice learners and that "ill-structured" environments are only useful for more advanced learners. Educators utilizing a constructivist perspective may emphasize an active learning environment that may incorporate learner centered problem based learning, project-based learning, and inquiry-based learning, ideally involving real-world scenarios, in which students are actively engaged in critical thinking activities. An illustrative discussion and example can be found in the 1980s deployment of constructivist cognitive learning in computer literacy, which involved programming as an instrument of learning.[58]:224 LOGO, a programming language, embodied an attempt to integrate Piagetan ideas with computers and technology.[58][59] Initially there were broad, hopeful claims, including "perhaps the most controversial claim" that it would "improve general problem-solving skills" across disciplines.[58]:238 However, LOGO programming skills did not consistently yield cognitive benefits.[58]:238 It was "not as concrete" as advocates claimed, it privileged "one form of reasoning over all others," and it was difficult to apply the thinking activity to non-LOGO based activities.[60] By the late 1980s, LOGO and other similar programming languages had lost their novelty and dominance and were gradually de-emphasized amid criticisms.[61]


The extent to which e-learning assists or replaces other learning and teaching approaches is variable, ranging on a continuum from none to fully online distance learning.[62][63] A variety of descriptive terms have been employed (somewhat inconsistently) to categorize the extent to which technology is used. For example, 'hybrid learning' or 'blended learning' may refer to classroom aids and laptops, or may refer to approaches in which traditional classroom time is reduced but not eliminated, and is replaced with some online learning.[64][65][66] 'Distributed learning' may describe either the e-learning component of a hybrid approach, or fully online distance learning environments.[62]

Synchronous and asynchronous

E-learning may either be synchronous or asynchronous. Synchronous learning occurs in real-time, with all participants interacting at the same time, while asynchronous learning is self-paced and allows participants to engage in the exchange of ideas or information without the dependency of other participants′ involvement at the same time.

Synchronous learning refers to the exchange of ideas and information with one or more participants during the same period. Examples are face-to-face discussion, online real-time live teacher instruction and feedback, Skype conversations, and chat rooms or virtual classrooms where everyone is online and working collaboratively at the same time. Since students are working collaboratively, synchronized learning helps students create an open mind because they have to listen and learn from their peers. Synchronized learning fosters online awareness and improves many students' writing skills.[67]

Asynchronous learning may use technologies such as email, blogs, wikis, and discussion boards, as well as web-supported textbooks,[68] hypertext documents, audio[69] video courses, and social networking using web 2.0. At the professional educational level, training may include virtual operating rooms. Asynchronous learning is beneficial for students who have health problems or who have child care responsibilities. They have the opportunity to complete their work in a low stress environment and within a more flexible time frame.[41] In asynchronous online courses, students proceed at their own pace. If they need to listen to a lecture a second time, or think about a question for a while, they may do so without fearing that they will hold back the rest of the class. Through online courses, students can earn their diplomas more quickly, or repeat failed courses without the embarrassment of being in a class with younger students. Students have access to an incredible variety of enrichment courses in online learning, and can participate in college courses, internships, sports, or work and still graduate with their class.

On the other hand, the technological convergence of the mass media is the result of a long adaptation process of their communicative resources to the evolutionary changes of each historical moment. Thus, the new media became (plurally) an extension of the traditional media on the cyberspace, allowing the public to access information in a wide range of digital devices.[70] In other words, it is a cultural virtualization of human reality as a result of the migration from physical to virtual space (mediated by the ICTs), ruled by codes, signs and particular social relationships, inside and outside classroom. Forwards, arise instant ways of synchronous and asynchronous communication, interaction and possible quick access to information, in which we are no longer mere senders, but also producers, reproducers, co-workers and providers. New technologies also help to “connect” people from different cultures outside the virtual space, what was unthinkable fifty years ago. In this giant relationships web, we mutually absorb each other’s beliefs, customs, education, values, laws and habits, cultural legacies perpetuated by a physical-virtual dynamics in constant metamorphosis (ibidem).

Linear learning

Computer-based training (CBT) refers to self-paced learning activities delivered on a computer or handheld device such as a tablet or smartphone. CBT initially delivered content via CD-ROM, and typically presented content linearly, much like reading an online book or manual. For this reason, CBT is often used to teach static processes, such as using software or completing mathematical equations. Computer-based training is conceptually similar to web-based training (WBT) which are delivered via Internet using a web browser.

Assessing learning in a CBT is often by assessments that can be easily scored by a computer such as multiple choice questions, drag-and-drop, radio button, simulation or other interactive means. Assessments are easily scored and recorded via online software, providing immediate end-user feedback and completion status. Users are often able to print completion records in the form of certificates.

CBTs provide learning stimulus beyond traditional learning methodology from textbook, manual, or classroom-based instruction. CBTs can be a good alternative to printed learning materials since rich media, including videos or animations, can be embedded to enhance the learning.

However, CBTs pose some learning challenges. Typically, the creation of effective CBTs requires enormous resources. The software for developing CBTs (such as Flash or Adobe Director) is often more complex than a subject matter expert or teacher is able to use. The lack of human interaction can limit both the type of content that can be presented and the type of assessment that can be performed, and may need supplementation with online discussion or other interactive elements.

Collaborative learning

Computer-supported collaborative learning (CSCL) uses instructional methods designed to encourage or require students to work together on learning tasks, allowing social learning. CSCL is similar in concept to the terminology, "e-learning 2.0"[71] and "networked collaborative learning" (NCL).[72] With Web 2.0 advances, sharing information between multiple people in a network has become much easier and use has increased.[73]:1[74] One of the main reasons for its usage states that it is "a breeding ground for creative and engaging educational endeavors."[73]:2 Learning takes place through conversations about content and grounded interaction about problems and actions. This collaborative learning differs from instruction in which the instructor is the principal source of knowledge and skills. The neologism "e-learning 1.0" refers to direct instruction used in early computer-based learning and training systems (CBL). In contrast to that linear delivery of content, often directly from the instructor's material, CSCL uses social software such as blogs, social media, wikis, podcasts, cloud-based document portals (such as Google Docs and Dropbox), and discussion groups and virtual worlds such as Second Life.[75] This phenomenon has been referred to as Long Tail Learning.[76] Advocates of social learning claim that one of the best ways to learn something is to teach it to others.[76] Social networks have been used to foster online learning communities around subjects as diverse as test preparation and language education.[77] mobile-assisted language learning (MALL) is the use of handheld computers or cell phones to assist in language learning.

Collaborative apps allow students and teachers to interact while studying. An example is MathChat, which allows cooperative problem solving and answer feedback.[78] Some apps can also provide an opportunity to revise or learn new topics independently in a simulated classroom environment. A popular example is Khan Academy,[79] which offers material in math, biology, chemistry, economics, art history and many others. It has the advantage of blending learning styles as the app offers many videos for visual and auditory learners, as well as exercises and tasks to solve for the kinesthetic learners. Other apps are designed after games, which provide a fun way to revise. When the experience is enjoyable the students become more engaged. Games also usually come with a sense of progression, which can help keep students motivated and consistent while trying to improve. Examples of educational games are Dragon Box, Mind Snacks, Code Spells and many more.[80]

Classroom 2.0 refers to online multi-user virtual environments (MUVEs) that connect schools across geographical frontiers. Known as "eTwinning", computer-supported collaborative learning (CSCL) allows learners in one school to communicate with learners in another that they would not get to know otherwise,[81][82] enhancing educational outcomes and cultural integration. Examples of classroom 2.0 applications are Blogger and Skype.[83]

Further, many researchers distinguish between collaborative and cooperative approaches to group learning. For example, Roschelle and Teasley (1995) argue that "cooperation is accomplished by the division of labour among participants, as an activity where each person is responsible for a portion of the problem solving", in contrast with collaboration that involves the "mutual engagement of participants in a coordinated effort to solve the problem together."[84]


A 2.5m teaching slide rule compared to a normal sized model

Educational media and tools can be used for:

Numerous types of physical technology are currently used:[85][86] digital cameras, video cameras, interactive whiteboard tools, document cameras, electronic media, and LCD projectors. Combinations of these techniques include blogs, collaborative software, ePortfolios, and virtual classrooms.

Audio and video

Radio offers a synchronous educational vehicle, while streaming audio over the internet with webcasts and podcasts can be asynchronous. Classroom microphones, often wireless, can enable learners and educators to interact more clearly.

Video technology[87] has included VHS tapes and DVDs, as well as on-demand and synchronous methods with digital video via server or web-based options such as streamed video from YouTube, Teacher Tube, Skype, Adobe Connect, and webcams. Telecommuting can connect with speakers and other experts. Interactive digital video games are being used at K-12 and higher education institutions.[88]

Computers, tablets and mobile devices

Teaching and learning online

Collaborative learning is a group-based learning approach in which learners are mutually engaged in a coordinated fashion to achieve a learning goal or complete a learning task. With recent developments in smartphone technology, the processing powers and storage capabilities of modern mobiles allow for advanced development and use of apps. Many app developers and education experts have been exploring smartphone and tablet apps as a medium for collaborative learning.

Computers and tablets enable learners and educators to access websites as well as programs such as Microsoft Word, PowerPoint, PDF files, and images. Many mobile devices support m-learning.

Mobile devices such as clickers and smartphones can be used for interactive audience response feedback.[89] Mobile learning can provide performance support for checking the time, setting reminders, retrieving worksheets, and instruction manuals.[90][91]

OpenCourseWare (OCW) gives free public access to information used in undergraduate and graduate programs. Participating institutions are MIT,[92][93] Harvard, Yale, Princeton, Stanford, University of Pennsylvania, and University of Michigan.[94]

Google Classroom allows instructors to create, administer, and grade assignments. While Google Classroom ultimately strives to create a paperless learning environment, there are many different types of learner; a learning environment like the one that Google Classroom projects does not work for everyone.

Social networks

Group webpages, blogs, wikis, and Twitter allow learners and educators to post thoughts, ideas, and comments on a website in an interactive learning environment.[95][96][97] Social networking sites are virtual communities for people interested in a particular subject to communicate by voice, chat, instant message, video conference, or blogs.[98] The National School Boards Association found that 96% of students with online access have used social networking technologies, and more than 50% talk online about schoolwork. Social networking encourages collaboration and engagement[99] and can be a motivational tool for self-efficacy amongst students.[100] Every student has his or her own learning requirements, and a Web 2.0  educational  framework  provides  enough resources, learning styles, communication tools and flexibility to accommodate this diversity.[101]


Webcams and webcasting have enabled creation of virtual classrooms and virtual learning environment.[102] Webcams are also being used to counter plagiarism and other forms of academic dishonesty that might occur in an e-learning environment.

Combination whiteboard and bulletin board


Interactive whiteboard in 2007

There are three types of whiteboards.[103] The initial whiteboards, analogous to blackboards, date from the late 1950s. The term whiteboard is also used metaphorically to refer to virtual whiteboards in which computer software applications simulate whiteboards by allowing writing or drawing. This is a common feature of groupware for virtual meeting, collaboration, and instant messaging. Interactive whiteboards allow learners and instructors to write on the touch screen. The screen markup can be on either a blank whiteboard or any computer screen content. Depending on permission settings, this visual learning can be interactive and participatory, including writing and manipulating images on the interactive whiteboard.[103]


Screencasting allows users to share their screens directly from their browser and make the video available online so that other viewers can stream the video directly.[104] The presenter thus has the ability to show their ideas and flow of thoughts rather than simply explain them as simple text content. In combination with audio and video, the educator can mimic the one-on-one experience of the classroom. Learners have an ability to pause and rewind, to review at their own pace, something a classroom cannot always offer.

Virtual classroom

A virtual learning environment (VLE), also known as a learning platform, simulates a virtual classroom or meetings by simultaneously mixing several communication technologies. For example, web conferencing software such as GoToTraining, WebEx Training or Adobe Connect enables students and instructors to communicate with each other via webcam, microphone, and real-time chatting in a group setting. Participants can raise hands, answer polls or take tests. Students are able to whiteboard and screencast when given rights by the instructor, who sets permission levels for text notes, microphone rights and mouse control.[105]

A virtual classroom provides the opportunity for students to receive direct instruction from a qualified teacher in an interactive environment. Learners can have direct and immediate access to their instructor for instant feedback and direction. The virtual classroom provides a structured schedule of classes, which can be helpful for students who may find the freedom of asynchronous learning to be overwhelming. In addition, the virtual classroom provides a social learning environment that replicates the traditional "brick and mortar" classroom. Most virtual classroom applications provide a recording feature. Each class is recorded and stored on a server, which allows for instant playback of any class over the course of the school year. This can be extremely useful for students to retrieve missed material or review concepts for an upcoming exam. Parents and auditors have the conceptual ability to monitor any classroom to ensure that they are satisfied with the education the learner is receiving.

In higher education especially, a virtual learning environment (VLE) is sometimes combined with a management information system (MIS) to create a managed learning environment, in which all aspects of a course are handled through a consistent user interface throughout the institution. Physical universities and newer online-only colleges offer select academic degrees and certificate programs via the Internet. Some programs require students to attend some campus classes or orientations, but many are delivered completely online. Several universities offer online student support services, such as online advising and registration, e-counseling, online textbook purchases, student governments and student newspapers.

Augmented reality (AR) provides students and teachers the opportunity to create layers of digital information, that includes both virtual world and real world elements, to interact with in real time. There are already a variety of apps which offer a lot of variations and possibilities.

Media psychology involves the application of theories in psychology to media and is a growing specialty in learning and educational technology.

E-learning authoring tools

E-learning authoring tools are software or online services that enable users to create courses, simulations, or other educational experiences. These tools typically support conventional, presentation-like courses, and may enable screen recording, multimedia, interactivity, quizzes, and non-linear or adaptive approaches.[106] An example of an e-learning authoring tools is Adobe Captivate.

Typing software

Typing software allows users to practice their typing skills. Some of these programs include Typing Instructor, Typing Master, and Mavis Beacon Keyboarding Kidz.

Learning management system

A learning management system (LMS) is software used for delivering, tracking and managing training and education. For example, an LMS tracks attendance, time on task, and student progress. Educators can post announcements, grade assignments, check on course activity, and participate in class discussions. Students can submit their work, read and respond to discussion questions, and take quizzes.[95] An LMS may allow teachers, administrators, students, and permitted additional parties (such as parents if appropriate) to track various metrics. LMSs range from systems for managing training/educational records to software for distributing courses over the Internet and offering features for online collaboration. The creation and maintenance of comprehensive learning content requires substantial initial and ongoing investments of human labor. Effective translation into other languages and cultural contexts requires even more investment by knowledgeable personnel.[107]

Internet-based learning management systems include Canvas, Blackboard Inc. and Moodle. These types of LMS allow educators to run a learning system partially or fully online, asynchronously or synchronously. Blackboard can be used for K-12 education, Higher Education, Business, and Government collaboration.[108] Moodle is a free-to-download Open Source Course Management System that provides blended learning opportunities as well as platforms for distance learning courses.[109] Eliademy is a free cloud based Course Management System that provides blended learning opportunities as well as platforms for distance learning courses.

Learning content management system

A learning content management system (LCMS) is software for author content (courses, reusable content objects). An LCMS may be solely dedicated to producing and publishing content that is hosted on an LMS, or it can host the content itself. The Aviation Industry Computer-Based Training Committee (AICC) specification provides support for content that is hosted separately from the LMS.

A recent trend in LCMSs is to address this issue through crowdsourcing (cf.SlideWiki[110]).

Computer-aided assessment

Computer-aided assessment (e-assessment) ranges from automated multiple-choice tests to more sophisticated systems. With some systems, feedback can be geared towards a student's specific mistakes or the computer can navigate the student through a series of questions adapting to what the student appears to have learned or not learned. Formative assessment sifts out the incorrect answers, and these questions are then explained by the teacher. The learner then practices with slight variations of the sifted out questions. The process is completed by summative assessment using a new set of questions that only cover the topics previously taught.

Electronic performance support system

An electronic performance support system (EPSS) is, according to Barry Raybould, "a computer-based system that improves worker productivity by providing on-the-job access to integrated information, advice, and learning experiences".[111] Gloria Gery defines it as "an integrated electronic environment that is available to and easily accessible by each employee and is structured to provide immediate, individualized on-line access to the full range of information, software, guidance, advice and assistance, data, images, tools, and assessment and monitoring systems to permit job performance with minimal support and intervention by others."[112][113]

Learning objects

Main article: Learning object


Content and design architecture issues include pedagogy and learning object re-use. One approach looks at five aspects:[114]

Pedagogical elements

Pedagogical elements are defined as structures or units of educational material. They are the educational content that is to be delivered. These units are independent of format, meaning that although the unit may be delivered in various ways, the pedagogical structures themselves are not the textbook, web page, video conference, Podcast, lesson, assignment, multiple choice question, quiz, discussion group or a case study, all of which are possible methods of delivery.

Learning objects standards

Much effort has been put into the technical reuse of electronically based teaching materials and in particular creating or re-using learning objects. These are self-contained units that are properly tagged with keywords, or other metadata, and often stored in an XML file format. Creating a course requires putting together a sequence of learning objects. There are both proprietary and open, non-commercial and commercial, peer-reviewed repositories of learning objects such as the Merlot repository. Sharable Content Object Reference Model (SCORM) is a collection of standards and specifications that applies to certain web-based e-learning. Other specifications such as Schools Framework allow for the transporting of learning objects, or for categorizing metadata (LOM).



Various forms of electronic media are a feature of preschool life.[115] Although parents report a positive experience, the impact of such use has not been systematically assessed.[115]

The age when a given child might start using a particular technology such as a cellphone or computer might depend on matching a technological resource to the recipient's developmental capabilities, such as the age-anticipated stages labeled by Swiss psychologist, Jean Piaget.[116] Parameters, such as age-appropriateness, coherence with sought-after values, and concurrent entertainment and educational aspects, have been suggested for choosing media.[117]


Teacher showing primary school students how to work a program at a primary school in Santa Fe, Mexico City.

E-learning is utilized by public K–12 schools in the United States as well as private schools. Some e-learning environments take place in a traditional classroom, others allow students to attend classes from home or other locations. There are several states that are utilizing virtual school platforms for e-learning across the country that continue to increase. For example: Digital technology is becoming increasingly commonplace in K-12 education, and many researchers argue that it will save money and transform schools into more effective institutions.[118] With technology having such a heavy influence in our society it is no doubt that schools are looking into technology to teach students. Meanwhile, despite the debate over the effectiveness of computerized education, all-online K-12 schools are proliferating nationwide, and enrollment in online courses is soaring.[118] Technology can make anyone's life much easier and it is proven that it can help students in an effective way. But in the digitized world of 21st-century education, computers are increasingly taking on the teachers' role.[118] Computers can now “hear” students speak, for example, correct their pronunciation and evaluate their progress over time, says Michael L. Kamil, a professor emeritus at the Stanford University School of Education.[118] Many experts claim that digital education is the future. “If we want our kids to be prepared for life after school in the 21st century, we need to consider technology a basic element of public education,” said New York's Deputy Chancellor of EducationJohn White.[118] And many schools are making it a requirement to take an online class. Digital learning has been getting a boost in localities across the nation this year.[118] For example, Idaho became the first state to require high-school students to complete two or more online courses to receive a diploma.[118] It is no doubt that digital education is increasing in our educational system.Virtual school enables students to log in to synchronous learning or asynchronous learning courses anywhere there is an internet connection.

E-learning is increasingly being utilized by students who may not want to go to traditional brick and mortar schools due to severe allergies or other medical issues, fear of school violence and school bullying and students whose parents would like to homeschool but do not feel qualified.[119] Online schools create a haven for students to receive a quality education while almost completely avoiding these common problems. Online charter schools also often are not limited by location, income level or class size in the way brick and mortar charter schools are.[120]

E-learning also has been rising as a supplement to the traditional classroom. Students with special talents or interests outside of the available curricula use e-learning to advance their skills or exceed grade restrictions.[121] Some online institutions connect students with instructors via web conference technology to form a digital classroom.

National private schools are also available online. These provide the benefits of e-learning to students in states where charter online schools are not available. They also may allow students greater flexibility and exemption from state testing.

Virtual education in K-12 schooling often refers to virtual schools, and in higher education to virtual universities. Virtual schools are “cybercharter schools"[122] with innovative administrative models and course delivery technology.[122]

Higher education

Online college course enrollment has seen a 29% increase in enrollment with nearly one third of all college students, or an estimated 6.7 million students are currently enrolled in online classes.[123][124] In 2009, 44 percent of post-secondary students in the USA were taking some or all of their courses online, which was projected to rise to 81 percent by 2014.[125]

Although a large proportion of for-profit higher education institutions now offer online classes, only about half of private, non-profit schools do so. Private institutions may become more involved with on-line presentations as the costs decrease. Properly trained staff must also be hired to work with students online.[126] These staff members need to understand the content area, and also be highly trained in the use of the computer and Internet. Online education is rapidly increasing, and online doctoral programs have even developed at leading research universities.[127]

Although massive open online courses (MOOCs) may have limitations that preclude them from fully replacing college education,[128] such programs have significantly expanded. MIT, Stanford and Princeton University offer classes to a global audience, but not for college credit.[129] University-level programs, like edX founded by Massachusetts Institute of Technology and Harvard University, offer wide range of disciplines at no charge, while others permit students to audit a course at no charge but require a small fee for accreditation. MOOCs have not had a significant impact on higher education and declined after the initial expansion, but are expected to remain in some form.[130]

Private organizations also offer classes, such as Udacity, with free computer science classes, and Khan Academy, with over 3,900 free micro-lectures available via YouTube. Distributed open collaborative course (DOCC) sees itself as a counter-movement to MOOC, emphasizing decentralized teaching.[131] University of the People is a non-profit accredited online university. Coursera offers online courses. According to Fortune magazine, over a million people worldwide have enrolled in free online courses.[132]

Corporate and professional

Companies with spread out distribution chains use e-learning for staff training and development and to bring customers information about the latest product developments. Continuing professional development (CPD) can deliver regulatory compliance updates and staff development of valuable workplace skills. For effectiveness and competitive learning performance, scoring systems are designed to give live feedback on decision-making in complex (mobile) learning scenarios.[133]

Public health

There is an important need for recent, reliable, and high-quality health information to be made available to the public as well as in summarized form for public health providers.[134] Providers have indicated the need for automatic notification of the latest research, a single searchable portal of information, and access to grey literature.[135] The Maternal and Child Health (MCH) Library is funded by the U.S. Maternal and Child Health Bureau to screen the latest research and develop automatic notifications to providers through the MCH Alert. Another application in public health is the development of mHealth (use of mobile telecommunication and multimedia into global public health). MHealth has been used to promote prenatal and newborn services, with positive outcomes. In addition, "Health systems have implemented mHealth programs to facilitate emergency medical responses, point-of-care support, health promotion and data collection."[136] In low and middle income countries, mHealth is most frequently used as one-way text messages or phone reminders to promote treatment adherence and gather data.[137]


There has also been a growing interest in e-learning as a beneficial educational method for students with attention deficit hyperactivity disorder (ADHD). With the growing popularity in e-learning among K-12 and higher education, the opportunity to take online classes is becoming increasingly important for students of all ages.[138] However, students with ADHD and special needs face different learning demands compared to the typical developing learner. This is especially significant considering the dramatic rise in ADHD diagnoses in the last decade among both children and adults.[139] Compared to the traditional face-to-face classroom, e-learning and virtual classrooms require a higher level of executive functions, which is the primary deficit associated with ADHD.[140] Although ADHD is not specifically named in the Rehabilitation Act of 1973, students with ADHD who have symptoms that interfere with their learning or ability may be eligible for assistive technology. Some examples of the resources that may help interest students and adults with ADHD consist of, computer software, brain games, timers, calendars, voice recognition devices, screen magnifiers, and talking books.[141]

Wolf lists 12 executive function skills necessary for students to succeed in postsecondary education: plan, set goals, organize, initiate, sustain attention/effort, flexibility, monitor, use feedback, structure, manage time, manage materials, and follow through.[142] These skills, along with strong independent and self-regulated learning, are especially pronounced in the online environment and as many ADHD students suffer from a deficit in one or more of these executive functions, this presents a significant challenge and accessibility barrier to the current e-learning approach.[143][144]

Some have noted that current e-learning models are moving towards applying a constructivism learning theory[145] that emphasizes a learner-centered environment[146] and postulates that everyone has the ability to construct their own knowledge and meaning through a process of problem solving and discovery.[147] However, some principles of constructivism may not be appropriate for ADHD learners; these principles include active learning, self-monitoring, motivation, and strong focus.[145]

Despite the limitations, students with special needs, including ADHD, have expressed an overall enthusiasm for e-learning and have identified a number e-learning benefits, including: availability of online course notes, materials and additional resources; the ability to work at an independent pace and spend extra time spent formulating thoughtful responses in class discussions; help in understanding course lecture/content; ability to review lectures multiple times; and enhanced access to and communication with the course instructor.[143][148]


The design of e-learning platforms in ways that enable universal access has received attention from several directions, including the World Wide Web Consortium's Web Accessibility Initiative (WAI). WAI provides universal formatting standards for websites so they can remain accessible to people with disabilities. For example, developing or adopting e-learning material can enable accessibility for people with visual impairment.[149][150] The Perkins School for the Blind offers learning resources tailored for the visually impaired, including webcasts, webinars, downloadable science activities, and an online library that has access to over 40,000 resource materials on blindness and deaf blindness.[151]

Online education may appear to be a promising alternative for students with physical and sensory disabilities because they get to work at their own pace and in their own home. However, not all online programs are equal when it comes to their resources for students with disabilities. Students with disabilities who wish to enroll in online education must either be able to advocate for themselves and their own rights or have a person whom is willing to advocate for them. The American with Disabilities Act states that online programs must provide appropriate accommodations for students with disabilities, but has not specifically defined what that means. "Once students with disabilities are accepted into an online program, they should prepare to be direct and open about what they need to succeed, experts say" (Haynie).[152]

Identity options

Educational technology, particularly in online learning environments, can allow students to use real identity, pseudonym, or anonymous identity during classroom communication. Advantages in anonymizing race, age, and gender are increased student participation[153] and increased cross-cultural communication.[154] Risks include increased cyberbullying, and aggressive or hostile language.[154][155][156]


Effective technology use deploys multiple evidence-based strategies concurrently (e.g. adaptive content, frequent testing, immediate feedback, etc.), as do effective teachers.[157] Using computers or other forms of technology can give students practice on core content and skills while the teacher can work with others, conduct assessments, or perform other tasks.[157][158] Through the use of educational technology, education is able to be individualized for each student allowing for better differentiation and allowing students to work for mastery at their own pace.[159]

Modern educational technology can improve access to education, including full degree programs.[160] It enables better integration for non-full-time students, particularly in continuing education,[160] and improved interactions between students and instructors.[161] Learning material can be used for long distance learning and are accessible to a wider audience.[162] Course materials are easy to access.[163] In 2010, 70.3% of American family households had access to the internet.[164] In 2013, according to Canadian Radio Television and Telecommunications Commission Canada, 79% of homes have access to the internet.[165] Students can access and engage with numerous online resources at home. Using online resources such as Khan Academy or TED Talks can help students spend more time on specific aspects of what they may be learning in school, but at home. Schools like MIT have made certain course materials free online.[166] Although some aspects of a classroom setting are missed by using these resources, they are helpful tools to add additional support to the educational system. The necessity to pay for transport to the educational facility is removed.

Students appreciate the convenience of e-learning, but report greater engagement in face-to-face learning environments.[167]

According to James Kulik, who studies the effectiveness of computers used for instruction, students usually learn more in less time when receiving computer-based instruction and they like classes more and develop more positive attitudes toward computers in computer-based classes.[168] Students can independently solve problems.[161] There are no intrinsic age-based restrictions on difficulty level, i.e. students can go at their own pace. Students editing their written work on word processors improve the quality of their writing. According to some studies, the students are better at critiquing and editing written work that is exchanged over a computer network with students they know.[163] Studies completed in "computer intensive" settings found increases in student-centric, cooperative and higher order learning, writing skills, problem solving, and using technology.[169] In addition, attitudes toward technology as a learning tool by parents, students and teachers are also improved.

Employers' acceptance of online education has risen over time.[170] More than 50% of human resource managers SHRM surveyed for an August 2010 report said that if two candidates with the same level of experience were applying for a job, it would not have any kind of effect whether the candidate’s obtained degree was acquired through an online or a traditional school. Seventy-nine percent said they had employed a candidate with an online degree in the past 12 months. However 66% said candidates who get degrees online were not seen as positively as a job applicant with traditional degrees.[170]

The use of educational apps generally has positive effect on learning. Pre- and post- tests reveal that the use of apps on mobile devices reduces the achievement gap between struggling and average students.[171] Some educational apps improve group work by allowing students to receive feedback on answers and promoting collaboration in solving problems, examples of these apps can be found in the third paragraph. The benefits of app-assisted learning have been exhibited in all age groups. Kindergarten students that use iPads show much higher rates of literacy than non-users. Medical students at University of California Irvine that utilized iPad academically have been reported to score 23% higher on national exams than previous classes that did not. Mobile devices and apps have also been shown to assist in the education of disabled students, with one study reporting increased engagement and accelerated comprehension and learning.[172]

Recent e-learning studies modulated that the use of e-learning systems in university contexts increases productivity and allows learners to accomplish their tasks in more effective ways Aparicio, Bacao & Oliveira [173] model explains more than 66% of the variation of the perceived individual performance and 60% of the perceived organizational performance, due to the e-learning systems use, learners' satisfaction, and to individualism/collectivism. Latest studies on e-learning success determinants demonstrate that students with high grit levels (stamina, perseverance and consistency of interest) achieve better results in learning.[174]


Many US states spend large sums of money on technology. However, as of 2013, none were looking at technology return on investment (ROI) to connect expenditures on technology with improved student outcomes.[175]

New technologies are frequently accompanied by unrealistic hype and promise regarding their transformative power to change education for the better or in allowing better educational opportunities to reach the masses. Examples include silent film, broadcast radio, and television, none of which have maintained much of a foothold in the daily practices of mainstream, formal education.[176] Technology, in and of itself, does not necessarily result in fundamental improvements to educational practice.[177] The focus needs to be on the learner's interaction with technology—not the technology itself. It needs to be recognized as "ecological" rather than "additive" or "subtractive". In this ecological change, one significant change will create total change.[178]

According to Branford et al., "technology does not guarantee effective learning" and inappropriate use of technology can even hinder it.[179] A University of Washington study of infant vocabulary shows that it is slipping due to educational baby DVDs. Published in the Journal of Pediatrics, a 2007 University of Washington study on the vocabulary of babies surveyed over 1,000 parents in Washington and Minnesota. The study found that for every one hour that babies 8–16 months of age watched DVDs and Videos they knew 6-8 fewer of 90 common baby words than the babies that did not watch them. Andrew Meltzoff, a surveyor in this study states that the result makes sense, that if the baby's 'alert time' is spent in front of DVDs and TV, instead of with people speaking, the babies are not going to get the same linguistic experience. Dr. Dimitri Chistakis, another surveyor reported that the evidence is mounting that baby DVDs are of no value and may be harmful.[180][181][182][183]

Adaptive instructional materials tailor questions to each student's ability and calculate their scores, but this encourages students to work individually rather than socially or collaboratively (Kruse, 2013). Social relationships are important but high-tech environments may compromise the balance of trust, care and respect between teacher and student.[184]

Massively open online courses (MOOCs), although quite popular in discussions of technology and education in developed countries (more so in US), are not a major concern in most developing or low-income countries. One of the stated goals of MOOCs is to provide less fortunate populations (i.e., in developing countries) an opportunity to experience courses with US-style content and structure. However, research shows only 3% of the registrants are from low-income countries and although many courses have thousands of registered students only 5-10% of them complete the course.[185] MOOCs also implies that certain curriculum and teaching methods are superior and this could eventually wash over (or possibly washing out) local educational institutions, cultural norms and educational traditions.[186]

With the Internet and social media, using educational apps makes the students highly susceptible to distraction and sidetracking. Even though proper use has shown to increase student performances, being distracted would be detrimental. Another disadvantage is increased potential for cheating. Smartphones can be very easy to hide and use inconspicuously, especially if their use is normalized in the classroom. These disadvantages can be managed with strict rules and regulations on mobile phone use.


Electronic devices such as cellphones and computers facilitate rapid access to a stream of sources, each of which may receive cursory attention. Michel Rich, an associate professor at Harvard Medical School and executive director of the center on Media and Child Health in Boston, said of the digital generation, "Their brains are rewarded not for staying on task, but for jumping to the next thing. The worry is we're raising a generation of kids in front of screens whose brains are going to be wired differently."[187] Students have always faced distractions; computers and cellphones are a particular challenge because the stream of data can interfere with focusing and learning. Although these technologies affect adults too, young people may be more influenced by it as their developing brains can easily become habituated to switching tasks and become unaccustomed to sustaining attention.[187] Too much information, coming too rapidly, can overwhelm thinking.[188]

Technology is "rapidly and profoundly altering our brains."[189] High exposure levels stimulate brain cell alteration and release neurotransmitters, which causes the strengthening of some neural pathways and weakening of others. This leads to heightened stress levels on the brain that, at first, boost energy levels, but, over time, actually augment memory, impair cognition, lead to depression, alter the neural circuity of the hippocampus, amygdala and prefrontal cortex. These are the brain regions that control mood and thought. If unchecked, the underlying structure of the brain could be altered.[187][189] Over-stimulation due to technology may begin too young. When children are exposed before the age of seven, important developmental tasks may be delayed, and bad learning habits might develop, which "deprives children of the exploration and play that they need to develop."[190] Media psychology is an emerging specialty field that embraces electronic devices and the sensory behaviors occurring from the use of educational technology in learning.

Sociocultural criticism

According to Lai, "the learning environment is a complex system where the interplay and interactions of many things impact the outcome of learning."[191] When technology is brought into an educational setting, the pedagogical setting changes in that technology-driven teaching can change the entire meaning of an activity without adequate research validation. If technology monopolizes an activity, students can begin to develop the sense that "life would scarcely be thinkable without technology."[192]

Leo Marx considered the word "technology" itself as problematic,[193] susceptible to reification and "phantom objectivity", which conceals its fundamental nature as something that is only valuable insofar as it benefits the human condition. Technology ultimately comes down to affecting the relations between people, but this notion is obfuscated when technology is treated as an abstract notion devoid of good and evil. Langdon Winner makes a similar point by arguing that the underdevelopment of the philosophy of technology leaves us with an overly simplistic reduction in our discourse to the supposedly dichotomous notions of the "making" versus the "uses" of new technologies, and that a narrow focus on "use" leads us to believe that all technologies are neutral in moral standing.[192]:ix–39 These critiques would have us ask not, "How do we maximize the role or advancement of technology in education?", but, rather, "What are the social and human consequences of adopting any particular technology?"

Winner viewed technology as a "form of life" that not only aids human activity, but that also represents a powerful force in reshaping that activity and its meaning.[192]:ix–39 For example, the use of robots in the industrial workplace may increase productivity, but they also radically change the process of production itself, thereby redefining what is meant by "work" in such a setting. In education, standardized testing has arguably redefined the notions of learning and assessment. We rarely explicitly reflect on how strange a notion it is that a number between, say, 0 and 100 could accurately reflect a person’s knowledge about the world. According to Winner, the recurring patterns in everyday life tend to become an unconscious process that we learn to take for granted. Winner writes,

By far the greatest latitude of choice exists the very first time a particular instrument, system, or technique is introduced. Because choices tend to become strongly fixed in material equipment, economic investment, and social habit, the original flexibility vanishes for all practical purposes once the initial commitments are made. In that sense technological innovations are similar to legislative acts or political foundings that establish a framework for public order that will endure over many generations. (p. 29)

When adopting new technologies, there may be one best chance to "get it right." Seymour Papert (p. 32) points out a good example of a (bad) choice that has become strongly fixed in social habit and material equipment: our "choice" to use the QWERTY keyboard.[194] The QWERTY arrangement of letters on the keyboard was originally chosen, not because it was the most efficient for typing, but because early typewriters were prone to jam when adjacent keys were struck in quick succession. Now that typing has become a digital process, this is no longer an issue, but the QWERTY arrangement lives on as a social habit, one that is very difficult to change.

Neil Postman endorsed the notion that technology impacts human cultures, including the culture of classrooms, and that this is a consideration even more important than considering the efficiency of a new technology as a tool for teaching.[178] Regarding the computer’s impact on education, Postman writes (p. 19):

What we need to consider about the computer has nothing to do with its efficiency as a teaching tool. We need to know in what ways it is altering our conception of learning, and how in conjunction with television, it undermines the old idea of school.

Digital divide

Main article: Digital divide

The concept of the digital divide is a gap between those who have access to digital technologies and those who do not.[195] Access may be associated with age, gender, socio-economic status, education, income, ethnicity, and geography.[195][196]

Teacher training

Since technology is not the end goal of education, but rather a means by which it can be accomplished, educators must have a good grasp of the technology and its advantages and disadvantages. Teacher training aims for effective integration of classroom technology.[197]

The evolving nature of technology may unsettle teachers, who may experience themselves as perpetual novices.[198] Finding quality materials to support classroom objectives is often difficult. Random professional development days are inadequate.[198]

According to Jenkins, "Rather than dealing with each technology in isolation, we would do better to take an ecological approach, thinking about the interrelationship among different communication technologies, the cultural communities that grow up around them, and the activities they support."[196] Jenkins also suggested that the traditional school curriculum guided teachers to train students to be autonomous problem solvers.[196] However, today's workers are increasingly asked to work in teams, drawing on different sets of expertise, and collaborating to solve problem.[196] Learning styles and the methods of collecting information have evolved, and "students often feel locked out of the worlds described in their textbooks through the depersonalized and abstract prose used to describe them".[196] These twenty-first century skills can be attained through the incorporation and engagement with technology.[199] Changes in instruction and use of technology can also promote a higher level of learning among students with different types of intelligence.[200]


There are two distinct issues of assessment: the assessment of educational technology[196][201] and assessment with technology.[202]

Assessments of educational technology have included the Follow Through project.

Educational assessment with technology may be either formative assessment or summative assessment. Instructors use both types of assessment to understand student progress and learning in the classroom. Technology has helped teachers create better assessments to help understand where students who are having trouble with the material are having issues.

Formative assessment is more difficult, as the perfect form is ongoing and allows the students to show their learning in different ways depending on their learning styles. Technology has helped some teachers make their formative assessments better, particularly through the use of classroom response systems (CRS).[203] A CRS is a tool in which the students each have a handheld device that partners up with the teacher's computer. The instructor then asks multiple choice or true or false questions and the students answer on their device.[203] Depending on the software used, the answers may then be shown on a graph so students and teacher can see the percentage of students who gave each answer and the teacher can focus on what went wrong.[204] Some examples of CRSs are Quizzler, Turning Systems, and the quiz aspect of the Mastering Programs (for example Mastering Physics or Mastering Chemistry).

Summative assessments are more common in classrooms and are usually set up to be more easily graded, as they take the form of tests or projects with specific grading schemes. One huge benefit to tech-based testing is the option to give students immediate feedback on their answers. When students get these responses, they are able to know how they are doing in the class which can help push them to improve or give them confidence that they are doing well.[205] Technology also allows for different kinds of summative assessment, such as digital presentations, videos, or anything else the teacher/students may come up with, which allows different learners to show what they learned more effectively.[205] Teachers can also use technology to post graded assessments online for students to have a better idea of what a good project is.

Electronic assessment uses information technology. It encompasses several potential applications, which may be teacher or student oriented, including educational assessment throughout the continuum of learning, such as computerized classification testing, computerized adaptive testing, student testing, and grading an exam. E-Marking is an examiner led activity closely related to other e-assessment activities such as e-testing, or e-learning which are student led. E-marking allows markers to mark a scanned script or online response on a computer screen rather than on paper.

There are no restrictions to the types of tests that can use e-marking, with e-marking applications designed to accommodate multiple choice, written, and even video submissions for performance examinations. E-marking software is used by individual educational institutions and can also be rolled out to the participating schools of awarding exam organisations. e-marking has been used to mark many well known high stakes examinations, which in the United Kingdom include A levels and GCSE exams, and in the US includes the SAT test for college admissions. Ofqual reports that e-marking is the main type of marking used for general qualifications in the United Kingdom.

In 2007, the International Baccalaureate implemented e-marking. In 2012, 66% of nearly 16 million exam scripts were "e-marked" in the United Kingdom.[206] Ofqual reports that in 2015, all key stage 2 tests in the United Kingdom will be marked onscreen.

In 2014, the Scottish Qualifications Authority (SQA) announced that most of the National 5 question papers would be e-marked.[207]

In June 2015, the Odisha state government in India announced that it planned to use e-marking for all Plus II papers from 2016.[208]


The importance of self-assessment through tools made available on Educational Technology platforms has been growing. Self-assessment in education technology relies on students analyzing their strengths, weaknesses and areas where improvement is possible to set realistic goals in learning, improve their educational performances and track their progress.[209][210] One of the unique tools for self-assessment made possible by education technology is Analytics. Analytics is data gathered on the student's activities on the learning platform, drawn into meaningful patterns that leads to a valid conclusion, usually through the medium of data visualization such as graphs.


The five key sectors of the e-learning industry are consulting, content, technologies, services and support.[211] Worldwide, e-learning was estimated in 2000 to be over $48 billion according to conservative estimates.[212] Commercial growth has been brisk.[213][214] In 2014, the worldwide commercial market activity was estimated at $6 billion venture capital over the past five years,[213]:38 with self-paced learning generating $35.6 billion in 2011.[213]:4 North American e-learning generated $23.3 billion in revenue in 2013, with a 9% growth rate in cloud based authoring tools and learning platforms.[213]:19


Educational technologists and psychologists apply basic educational and psychological research into an evidence-based applied science (or a technology) of learning or instruction. In research, these professions typically require a graduate degree (Master's, Doctorate, Ph.D., or D.Phil.) in a field related to educational psychology, educational media, experimental psychology, cognitive psychology or, more purely, in the fields of Educational, Instructional or Human Performance Technology or Instructional design. In industry, educational technology is utilized to train students and employees by a wide range of learning and communication practitioners, including instructional designers, technical trainers, technical communication and professional communication specialists, technical writers, and of course primary school and college teachers of all levels. The transformation of educational technology from a cottage industry to a profession is discussed by Shurville et al.[215]

See also


  1. Robinson, Rhonda; Molenda, Michael; Rezabek, Landra. "Facilitating Learning" (PDF). Association for Educational Communications and Technology. Retrieved 18 March 2016.
  2. Dekel, Gil. "So, what does a Learning Technologist do?". Retrieved 3 July 2006.
  3. Richey, R.C. (2008). "Reflections on the 2008 AECT Definitions of the Field". TechTrends. 52 (1): 24–25. doi:10.1007/s11528-008-0108-2.
  4. D. Randy Garrison; Terry Anderson; Definitions and Terminology Committee (2003). E-Learning in the 21st Century: A Framework for Research and Practice. Routledge. ISBN 0-415-26346-8.
  5. Al Januszewski A.; Molenda Michael. (2007) Educational Technology: A Definition with Commentary ISBN 978-0805858617
  6. Lowenthal, P. R.; Wilson, B. G. (2010). "Labels do matter! A critique of AECT's redefinition of the field". TechTrends. 54 (1): 38–46. doi:10.1007/s11528-009-0362-y.
  7. add
  8. "Technology in Education: An Overview - Education Week". Retrieved 2016-10-31.
  9. Selwyn, N. (2011) Education and Technology: Key Issues and Debates. London: Continuum International Publishing Group.
  10. "Computer-managed instruction: an alternative teaching strategy.". US National Library of Medicine National Institutes of Health.
  11. 1 2 3 4 Moore, J. L.; Dickson-Deane, C.; Galyen, K. (2011). "E-Learning, online learning, and distance learning environments: Are they the same?". The Internet and Higher Education. 14 (2): 129–135. doi:10.1016/j.iheduc.2010.10.001.
  12. Fiedler, Sebastian.; Väljataga, Terje (2011). "Personal learning environments: concept or technology?". International Journal of Virtual and Personal Learning Environments 2(4). pp. 1–11. Retrieved 2014-03-03. QUOTE: "There are clear signs that over the years a wide range of conceptualisations and interpretations have surfaced in the ongoing debates and exchanges. Attwell (2007b), for example, reported his experience at a conference in the following terms: "there was no consensus on what a Personal Learning Environment (PLE) might be. The only thing most people seemed to agree on was that it was not a software application. Instead it was more of a new approach to using technologies for learning" (p. 1). Even this minimal consensus appears to be rather questionable after a thorough literature review on the topic. Kolas and Staupe (2007) also contested that "the variety of interpretation illustrates how diffuse the PLE concept still is" (p. 750). Johnson and Liber (2008) only recently asserted that "within this label, however, a number of practices and descriptions have emerged – not all of which are compatible, and discussions have raged as to the interpretation of the terms" (p. 3). This doesn't sound much different from what Johnson et al. (2006) had concluded already two years earlier: "This is a title that embraces a variety of different interpretations, and this essential ambiguity is reflected in the discourse that has emerged around it ... That such a variety of interpretation can emerge around the same terminology is indicative of a lack of clarity defining exactly what a PLE is" (p. 182). There is very little indication that this state of affairs has substantially improved or is currently improving."
  13. "mLearning Is Not eLearning on A Mobile Device - Float". Float.
  14. "Nurse education in second life at Glasgow Caledonian University demo". YouTube. Retrieved 2013-10-22.
  15. "Second Life Nursing Simulation". YouTube. 2009-09-16. Retrieved 2013-10-22.
  16. "Universities Use Second Life to Teach Complex Concepts". Government Technology. Retrieved 2013-10-03.
  17. "DoD gives PTSD help 'second life' in virtual reality | Article | The United States Army". Retrieved 2013-10-22.
  18. Kurbel, Karl: Virtuality on the Students' and on the Teachers' sides: A Multimedia and Internet based International Master Program; ICEF Berlin GmbH (Eds.), Proceedings on the 7th International Conference on Technology Supported Learning and Training – Online Educa; Berlin, Germany; November 2001, pp. 133–136
  19. 1 2 ZHAO, XINYOU; WAN XIN; OKAMOTO TOSHIO (2010-04-16). "Adaptive Content Delivery in Ubiquitous Learning Environment" (PDF). The 6th IEEE International Conference on Wireless, Mobile and Ubiquitous Technologies in Education(IEEE WMUTE 2010). Kaohsiung, TAIWAN. Retrieved 2010-07-22.
  20. Alsheail, Abdulrahman (2010). Teaching English as a Second/Foreign Language in a Ubiquitous Learning Environment: A Guide for ESL/EFL Instructors (PDF). (Master's Project).
  21. Hwang, G. J. (2014). Definition, framework and research issues of smart learning environments-a context-aware ubiquitous learning perspective. Smart Learning Environments, 1(1), 1-14.
  22. Kinshuk, Chen, N. S., Cheng, I. L., & Chew, S. W. (2016). Evolution Is not enough: Revolutionizing Current Learning Environments to Smart Learning Environments. International Journal of Artificial Intelligence in Education, 1-21.
  23. Spector, J. M. (2014). Conceptualizing the emerging field of smart learning environments. Smart Learning Environments, 1(1), 1-10.
  24. Andone, D., Holotescu, C., & Grosseck, G. (2014, November). Learning communities in smart cities. Case studies. In Web and Open Access to Learning (ICWOAL), 2014 International Conference on (pp. 1-4). IEEE.
  25. P. Lombardi, S. Giordano, H. Farouh, and W. Yousef, “Modelling the Smart City Performance,” Inno- vation: The European Journal of Social Science Research 25: 2 (2012) 137–149
  26. 1 2 Bernard Luskin. "Think "Exciting": E-Learning and the Big "E"".
  27. Eric Parks. "What's the "e" in e-Learning?". Retrieved 2013-10-22.
  28. "5 terrific education apps that put limitless knowledge under your fingertips". Retrieved 2016-08-24.
  29. Molenda, M. (2008). "Historical foundations". In M. J. Spector, M. D. Merrill, J. Merrienboer, & M. P. Driscoll (Eds.), Handbook of Research on Educational Communications and Technology (Third., pp. 3–20). New York, NY: Lawrence Earlbaum Associates.
  30. Nye, D. (2007). Technology Matters: Questions to Live With. Cambridge MA: MIT Press.
  31. Biruni, Muhammad ibn Ahmad, Sachau, Eduard (1910). Alberuni's India. An account of the religion, philosophy, literature, geography, chronology, astronomy, customs, laws and astrology of India about A.D. 1030. London: K. Paul, Trench, Trübner & Co.
  32. Saettler, P. (1990). The evolution of American educational technology. Englewood, CO: Libraries Unlimited.
  33. David R. Woolley (12 February 2013). "PLATO: The Emergence of Online Community". Retrieved 2013-10-22.
  34. Suppes, P.; Jerman, M.; Groen, G. (1966). "Arithmetic drills and review on a computer-based teletype" (PDF). The Arithmetic Teacher. 13 (4): 303–309.
  35. Suppes, P. (May 19, 1971). Computer Assisted Instruction at Stanford (PDF) (Report).
  36. Hiltz, S. (1990). "Evaluating the Virtual Classroom". In Harasim, L. (ed.) Online Education: Perspectives on a New Environment. New York: Praeger, pp. 133–169.
  37. 1 2 Mason. R. and Kaye, A. (1989). Mindweave: Communication, Computers and Distance Education. Oxford, UK: Pergamon Press.
  38. "Educational Technology v1 Feb 2014".
  39. Crow, W. B. & Din, H. (2009). Unbound By Place or Time: Museums and Online Learning. Washington, DC: American Association of Museums, 9–10.
  40. Bates, A. (2005). Technology, e-Learning and Distance Education. London: Routledge.
  41. 1 2 Johnson, Henry M (2007). "Dialogue and the construction of knowledge in e-learning: Exploring students' perceptions of their learning while using Blackboard's asynchronous discussion board". ISSN 1027-5207. Retrieved 2013-10-22.
  42. Harasim, L., Hiltz, S., Teles, L. and Turoff, M. (1995). Learning Networks: A Field Guide to Teaching and Learning Online. Cambridge, MA: MIT Press.
  43. "20 Years Ago: The First Online Video Lectures". Retrieved 2016-08-08.
  44. MP3newswire (2016-07-24), 20th Anniversary of the First Internet Video Lecture 1996, retrieved 2016-08-08
  45. Graziadei, W. D., et al., 1997. Building Asynchronous and Synchronous Teaching-Learning Environments: Exploring a Course/Classroom Management System Solution.
  46. ""The History of Online Education?." Career FAQs". 15 August 2013. Retrieved 2014-08-29.
  47. "Recommendation 1836 (2008)". Realising the full potential of e-learning for education and training. Council of Europe. Retrieved 7 May 2013.
  48. Geer, R.; Sweeney, T. (2012). "Students' voices about learning with technology". Journal of social sciences. 8 (2): 294–303.
  49. Craft, A (2012). "Childhood in a Digital Age: Creative Challenges for Educational Futures". London Review of Education. 10 (2): 173–190. doi:10.1080/14748460.2012.691282.
  50. "Technology In Schools: Weighing The Pros And Cons". Huffington Post. May 25, 2011.
  51. Green, Thomas (1971). The activities of teaching. McGraw Hill.
  52. Skinner, B.F. (1954). "The science of learning and the art of teaching". Harvard Educational Review. 24: 86–97.
  53. Skinner, B.F. (1958). "Teaching machines". Science. 128: 969–77. Bibcode:1958Sci...128..969S. doi:10.1126/science.128.3330.969. and others see
  54. Skinner BF (1965). "The technology of teaching". Proc R Soc Lond B Biol Sci. 162 (989): 427–43. Bibcode:1965RSPSB.162..427S. doi:10.1098/rspb.1965.0048. PMID 4378497.
  55. Skinner, B.F. (1968). The technology of teaching. New York: Appleton-Century-Crofts. Library of Congress Card Number 68-12340 E 81290.
  56. deJong, T. (2010). "Cognitive Load Theory, Educational Research, and Instructional Design: Some Food for Thought". Instructional Science: An International Journal of the Learning Sciences: 38.
  57. Termos, Mohamad (2012). "Does the Classroom Performance System (CPS) Increase Students' Chances for Getting a Good Grade in College Core Courses and Increase Retention?". International Journal of Technologies in Learning. 19 (1): 45–56.
  58. 1 2 3 4 Rosenberg, Richard (2004). The Social Impact of Computers. Amsterdam: Elsevier Academic Press. ISBN 0-12-597121-4.
  59. Cassidy, Margaret (2004). Book Ends: The Changing Media Environment of American Classrooms. Cresskill, NJ: Hampton Press, Inc. p. 223. ISBN 1-57273-492-2.
  60. Cassidy, Margaret (2004). Book Ends: The Changing Media Environment of American Classrooms. Cresskill, NJ: Hampton Press, Inc. p. 224. ISBN 1-57273-492-2.
  61. Rosenberg, Richard (2004). The Social Impact of Computers. Amsterdam: Elsevier Academic Press. p. 219. ISBN 0-12-597121-4.
  62. 1 2 Bates, A. and Poole, G. Effective Teaching with Technology in Higher Education San Francisco: Jossey-Bass/John Wiley, 2003
  63. OECD (2005) E-Learning in Tertiary Education: Where Do We Stand? Paris: OECD
  64. Baker, Celia. "Blended learning: Teachers plus computers equal success". Desert News. Retrieved 30 January 2014.
  65. "What is Blended Learning?". CareerFAQs state. CareerFAQs state. Retrieved 31 March 2013.
  66. Strauss, Valerie (2012-09-22). "Three fears about blended learning". The Washington post.
  67. Al-Asfour, A (2012). "Online Teaching: Navigating Its Advantages, Disadvantages and Best Practices". Tribal College Journal of American Indian Higher Education. 23: 3.
  68. Loutchko, Iouri; Kurbel, Karl; Pakhomov, Alexei: Production and Delivery of Multimedia Courses for Internet Based Virtual Education; The World Congress "Networked Learning in a Global Environment: Challenges and Solutions for Virtual Education", Berlin, Germany, May 1 – 4, 2002
  69. "PODCASTS IN EDUCATION: WHAT, WHY AND HOW?" (PDF). Archived from the original (PDF) on September 27, 2013. Retrieved 8 December 2012.
  70. Teixeira, Marcelo Mendonca; Ferreira, Tiago Alessandro Espinola (2014-01-28). The Communication Model of Virtual Universe. Munich: Grin Verlag. ISBN 9783656569916.
  71. E-Learning 2. 0 Technologies and Web Applications in Higher Education (2013) Jean-Eric Pelet IGI Global ISBN 978-1466648760
  72. Trentin G. (2010). Networked Collaborative Learning: social interaction and active learning, Woodhead/Chandos Publishing Limited, Cambridge, UK, ISBN 978-1-84334-501-5.
  73. 1 2 Crane B. "Using Web 2.0 Tools in the K-12 Classroom". Neal-Schuman Publishers, Inc., 2009
  74. Sendall, P; Ceccucci, W.; Peslak, A. (December 2008). "Web 2.0 Matters: An Analysis of Implementing Web 2.0 in the Classroom". Information Systems Education Journal. 6 (64).
  75. Redecker, Christine (2009). "Review of Learning 2.0 Practices: Study on the Impact of Web 2.0 Innovations on Education and Training in Europe". JRC Scientific and technical report (EUR 23664 EN – 2009).
  76. 1 2 Seely Brown, John; Adler, Richard P. (2008). "Minds on Fire:Open Education, the Long Tail, and Learning 2.0" (PDF). Educause review (January/February 2008): 16–32.
  77. Manprit Kaur (2011). "Using Online Forums in Language Learning and Education". Retrieved 2012-08-22.
  78. "MathChat - Join the Math Homework Help Community on the App Store". App Store. Retrieved 2015-11-11.
  79. "Khan Academy: learn math, biology, chemistry, economics, art history and almost anything for free on the App Store". App Store. Retrieved 2015-11-11.
  80. "UCI's iMedEd Initiative named a 2012-13 Apple Distinguished Program". Retrieved 2015-11-11.
  81. "Escuela 2.0". Retrieved 2013-10-22.
  82. "Scuola Digitale » Cl@ssi 2.0". Retrieved 2013-10-22.
  83. Pumilia-Gnarini, Paolo (2012). "Didactic Strategies and Technologies for Education: Incorporating Advancements".
  84. "What is collaborative learning?". Retrieved 2016-06-05.
  85. Forehand, M. (2010). Bloom’s Taxonomy. From Emerging Perspectives on Learning, Teaching and Technology. Retrieved October 25, 2012, from
  86. Reeves, Thomas C. (February 12, 1998). "The Impact of Media and Technology in Schools" (PDF). Retrieved 9 October 2013.
  87. Diecker, Lisa; Lane, Allsopp; O'Brien, Butler; Kyger, Fenty (May 2009). "Evaluating Video Models of Evidence-Based Instructional Practices to Enhance Teacher Learning". Teacher Education and Special Education. 32 (2): 180–196. Retrieved 2011-09-17.
  88. Biocchi, Michael. "Games in the Classroom". Gaming in the Classroom. Retrieved 24 March 2011.
  89. Tremblay, Eric (2010). "Educating the Mobile Generation – using personal cell phones as audience response systems in post-secondary science teaching.". Journal of Computers in Mathematics and Science Teaching. 29 (2): 217–227. Retrieved 2010-11-05.
  90. Terras, Melody; Ramsay (2012). "The five central psychological challenges facing effective mobile learning". British Journal of Educational Technology. 43 (5): 820–832. doi:10.1111/j.1467-8535.2012.01362.x. (registration required (help)).
  91. Kester, Liesbeth; Kirschner (May 2007). "Designing support to facilitate learning in powerful electronic learning environments". Computers in Human Behavior. 23 (3): 1047–1054. doi:10.1016/j.chb.2006.10.001.
  92. "OpenCourseWare: An 'MIT Thing'?" 2006-11, 14(10):53-58 Searcher: The Magazine for Database Professionals
  93. Iiyoshi, T., & Kumar, M. S. (2008). Opening up education: the collective advancement of education through open technology, open content, and open knowledge. Cambridge, Mass.: MIT Press.
  94. Lewin, T. (May 2, 2012). "Harvard and M.I.T. Team Up to Offer Free Online Courses". New York Times. p. A18. Retrieved November 26, 2012.
  95. 1 2 Courts, B., & Tucker, J. (2012). Using Technology To Create A Dynamic Classroom Experience. Journal of College Teaching & Learning (TLC), 9(2), 121-128.
  96. "NEA - Can Tweeting Help Your Teaching?". NEA.
  97. "News about #edtech on Twitter".
  98. Murray, Kristine; Rhonda Waller (May–June 2007). "Social Networking Goes Abroad" (PDF). Education Abroad. 16 (3): 56–59.
  99. Beagle, Martha; Don Hudges. "Social Networking in Education".
  100. Pilgrim, Jodi; Christie Bledsoe (September 1, 2011). "Learning Through Facebook: A Potential Tool for Educators". Delta Kappa Gamma.
  101. McCarroll, Niall; Kevin Curran (January–March 2013). "Social Networking in Education" (PDF). International Journal of Innovation in the Digital Economy. 4 (1): 15. doi:10.4018/jide.2013010101.
  102. Shiao, Dennis. "Why Virtual Classrooms Are Excellent Learning Venues". INXPO. Retrieved 18 May 2013.
  103. 1 2 Carpenter S. Definition: Whiteboard. TechTarget.
  104. "Screencasting | Teaching and Learning Innovation Park". Retrieved 2013-10-22.
  105. Farwell (2013). "Keeping an Online Class Interesting and Interactive". Distance Learning. 10 (3): 27–32.
  106. Ganci, J. "Toolkit: eLearning Tools Year in Review".
  107. Sarasota, Darya; Ali Khalid; Sören Auer; Jörg Unbehauen (2013). "Crowd Learn: Crowd sourcing the Creation of Highly-structured E-Learning Content". 5th International Conference on Computer Supported Education CSEDU 2013.
  108. "Blackboard International | EMEA". Retrieved 2012-10-24.
  109. "open-source community-based tools for learning". Retrieved 2012-10-24.
  110. Auer, Sören. "First Public Beta of". Retrieved 22 February 2013.
  111. Raybould, B. (1991). "An EPSS Case Study: Prime Computer". Handout given at the Electronic Performance Support Conference, Atlanta, GA, 1992.
  112. Gery, G. (1989). The quest for electronic performance support. CBT Directions, July.
  113. Gery, Gloria J. Electronic Performance Support Systems: How and why to remake the workplace through the strategic application of technology. Tolland, MA: Gery Associates, 1991. ISBN 978-0961796815
  114. Clark, R. C., Mayer, R. E. (2007). eLearning and the Science of Instruction. San Francisco: Pfeiffer. ISBN 978-0787986834
  115. 1 2 Rideout, V., Vanderwater, E. & Wartella, E. (2003). Zero to six: Electronic media in the lives of infants, toddlers, and preschoolers (Report). Menlo Park, CA: The Henry J. Kaiser Family Foundation.
  116. Warren Buckleitner (2008-06-12). "So Young, and So Gadgeted". The New York Times.
  117. Meidlinger, K. "Choosing media for children checklist" (PDF). (adapted from Rogow, F.). San Francisco: Kids Watch Monthly.
  118. 1 2 3 4 5 6 7 Clemmitt, Marcia (2011). "Digital Education". Can technology replace classroom teachers?. 21 via CQ RESEARCHER.
  119. publications. "The Rise of Cyber-Schools". The New Atlantis. Retrieved 2012-10-24.
  120. "Research Center: Charter Schools". Retrieved 2012-10-24.
  121. publications. "For Frustrated Gifted Kids, A World of Online Opportunities". KQED. Retrieved 2014-05-24.
  122. 1 2 Cavanaugh, C (2009). "Effectiveness of cyber charter schools: A review of research on learnings". TechTrends. 53 (4): 28–31. doi:10.1007/s11528-009-0302-x.
  123. Major, Claire (2015). Teaching Online: A Guide to Theory, Research, and Practice. Baltimore, Maryland: Johns Hopkins University Press.
  124. Jaggars, S. S., Edgecombe, N., Stacey, G. W. (2013). "What we know about online course outcomes (research overview)". Community College Research Center, Columbia University.
  125. Ambient Insight Research (2009). "US Self-paced e-Learning Market". Monroe WA: Ambient Insight Research.
  126. Repetto, M., & Trentin, G., eds. (2011). Faculty Training for Web-Enhanced Learning. Hauppauge, NY: Nova Science Publishers Inc. ISBN 978-1-61209-335-2.
  127. Hebert, D. G. (2007). "Five Challenges and Solutions in Online Music Teacher Education". Research and Issues in Music Education. 5 (1).
  128. Youngberg, David (August 13, 2012). "Why Online Education Won't Replace College--Yet". The Chronicle of Higher Education.
  129. Pappano, Laura (2012-11-02). "The Year of the MOOC". New York Times. Retrieved 12 February 2013.
  130. Kolowich, Steve (May 15, 2014). "Conventional Online Higher Education Will Absorb MOOCs, 2 Reports Say". The Chronicle of Higher Education. Retrieved May 15, 2014.
  131. Scott Jaschik, "Feminist Anti-MOOC", Inside Higher Ed, August 19, 2013.
  132. Iris Mansour, "Degreed wants to make online courses count", Fortune, August 15, 2013. Retrieved August 15, 2013.
  133. Gebbe, Marcel (2016) (in German), A Holistic Approach to Scoring in Complex Mobile Learning Scenarios
  134. Warner, D; Procaccino, JD (2004). "Toward wellness: Women seeking health information". Journal of the American Society for Information Science and Technology. 55: 709–730. doi:10.1002/asi.20016.
  135. Simpson, CW; Prusak, L (1995). "Troubles with information overload—Moving from quantity to quality in information provision". International Journal of Information Management. 15 (6): 413–425. doi:10.1016/0268-4012(95)00045-9.
  136. Tamrat T, Kachnowski S (2012). "Special delivery: an analysis of mHealth in maternal and newborn health programs and their outcomes around the world". Maternal and Child Health Journal. 16 (5): 1092–1101. doi:10.1007/s10995-011-0836-3. PMID 21688111.
  137. Källander, K; Tibenderana, JK; Akpogheneta, OJ; et al. (2013). "Mobile health (mHealth) approaches and lessons for increased performance and retention of community health workers in low- and middle-income countries: a review". Journal of medical Internet research. 15 (1): e17. doi:10.2196/jmir.2130. PMC 3636306Freely accessible. PMID 23353680.
  138. Grabinger, R. S; Aplin, C; Ponnappa-Brenner, G (2008). "Supporting learners with cognitive impairments in online environments" (PDF). TechTrends. 52 (1): 63–69. doi:10.1007/s11528-008-0114-4.
  139. "ADHD Data & Statistics". Center For Disease Control and Prevention. n.d. Retrieved June 27, 2014.
  140. Madaus, J. W.; McKeown, K.; Gelbar, N. & Banerjee, M. (2012). "The Online and Blended Learning Experience: Differences for Students With and Without Learning Disabilities and Attention Deficit/Hyperactivity Disorder." (PDF). International Journal for Research in Learning Disabilities.
  141. "Assistive Technology for ADHD". Retrieved 2015-09-18.
  142. Wolf, L. (2001). "College Students with ADHD and Other Hidden Disabilities: Outcomes and Interventions". Annals of the New York Academy of Sciences. 931: 385–395. Bibcode:2001NYASA.931..385W. doi:10.1111/j.1749-6632.2001.tb05792.x.
  143. 1 2 Cull, S., Reed, D., &Kirk , K (2010). "Student motivation and engagement in online courses". Retrieved 2013-10-22.
  144. Parker, D. P. & Banerjee, M. (2007). "Leveling the digital playing field: Assessing the learning technology needs of college-bound students with LD and/or ADHD.". Assessment for Effective Intervention.
  145. 1 2 Sajadi, S. S. & Khan, T. M. (2011). "An evaluation of constructivism for learners with ADHD: Development of a constructivist pedagogy for special needs." (PDF).
  146. Keengwe, J.; Onchwari, G. & Onchwari, J. (2009). "Technology and Student Learning: Toward a Learner-Centered Teaching Model," (PDF). AACE Journal.
  147. Crain, William (2010). Theories of Development: Concepts and Applications (6th Edition). Upper Saddle River, NJ: Prentice Hall: Pearson. ISBN 0205810462.
  148. Fichten, C. S.; Ferraro, V.; Asuncion, J. V.; Chwojka, C.; Barile, M.; Nguyen, M. N.; Klomp, R. & Wolforth, J. (2009). "Disabilities and e-Learning Problems and Solutions: An Exploratory Study" (PDF). Technology & Society.
  149. D, Butucea (March 2013). "Personalized e-learning software systems. Extending the solution to assist visually impaired users". Academy of Economic Studies Bucharest, Romania-Database Systems Journal.
  150. Arrigo, M. (2005). "E-learning accessibility for blind students". Italian National Research Council.
  151. "Training & Educational Resources - Perkins School for the Blind". Perkins School for the Blind.
  152. Haynie, D. (2014, April 4). Tips for Online Students with Disabilities. Retrieved September 16, 2015.
  153. Hartman, K.; Neuwirth, C. M.; Kiesler, S.; Sproull, L.; Cochran, C.; Palmquist, M.; Zubrow, D. (1991). "Patterns of Social Interaction and Learning to Write: Some Effects of Network Technologies". Written Communication. 8 (1): 79–113. doi:10.1177/0741088391008001005.
  154. 1 2 Chester, A.; Gwynne, G. (2006). "Online Teaching: Encouraging Collaboration through Anonymity". Journal of Computer-Mediated Communication. 4: 2. doi:10.1111/j.1083-6101.1998.tb00096.x.
  155. Moore, M. J.; Nakano, T.; Enomoto, A.; Suda, T. (2012). "Anonymity and roles associated with aggressive posts in an online forum". Computers in Human Behavior. 28 (3): 861–867. doi:10.1016/j.chb.2011.12.005.
  156. Sticca, F.; Perren, S. (2013). "Is cyberbullying worse than traditional bullying? Examining the differential roles of medium, publicity, and anonymity for the perceived severity of bullying". Journal of Youth and Adolescence. 42 (5): 739–50. doi:10.1007/s10964-012-9867-3.
  157. 1 2 Ross, S., Morrison, G., & Lowther, D. (2010). "Educational technology research past and present: balancing rigor and relevance to impact learning" (PDF). Contemporary Educational Technology. 1 (1): 17.
  158. Hicks, S.D. (2011). "Technology in today's classroom: Are you a tech-savvy teacher?". The Clearing House. 84 (5): 188–191. doi:10.1080/00098655.2011.557406.
  159. Kronholz, J. (2011). "Getting at-risk teens to graduation". Education Next. Vol. 11 no. 4.
  160. 1 2 Ahmad, Zameer (November 16, 2010). "Virtual Education System (Current Myth & Future Reality in Pakistan)". Retrieved 2013-10-22.
  161. 1 2 Dalsgaard, Christian. "Social software: E-learning beyond learning management systems". University of Aarhus. Retrieved 31 March 2013.
  162. "Technology Uses in Education". 2011-12-09. Retrieved 2014-03-22.
  163. 1 2 "Technology Impact on Learning". 2011-12-09. Retrieved 2014-03-22.
  164. Warschauer, M., & Matuchniak, T. (2010). "New technology and digital worlds: analyzing evidence of equity in access, use and outcomes". Review of Research in Education. 34 (1): 179–225. doi:10.3102/0091732X09349791.
  165. "CRTC issues annual report on the state of the Canadian communication system". CRTC. 2013-09-27. Retrieved 2014-03-22.
  166. Theen, Andrew (February 12, 2012). "MIT Begins Offering Free Online Course With Certificate". Bloomberg. Retrieved November 24, 2014.
  167. Kemp, Nenagh; Grieve, Rachel (2014-01-01). "Face-to-face or face-to-screen? Undergraduates' opinions and test performance in classroom vs. online learning". Educational Psychology. 5: 1278. doi:10.3389/fpsyg.2014.01278. PMC 4228829Freely accessible. PMID 25429276.
  168. "Technology's Impact". 2011-12-09. Retrieved 2014-03-22.
  169. An, Y. J., & Reigeluth, C. (2011). "Creating Technology-Enhanced, Learner-Centered Classrooms: K–12 Teachers' Beliefs, Perceptions, Barriers, and Support Needs" (PDF). Journal of Digital Learning in Teacher Education. 28 (2): 54–62. doi:10.1080/21532974.2011.10784681. ISSN 2153-2974.
  170. 1 2 "Hiring Practices and Attitudes: Traditional vs. Online Degree Credentials SHRM Poll". Retrieved December 19, 2014.
  171. "Study: iPads improve Kindergarten literacy scores". Engadget. Retrieved 2015-11-11.
  172. Zhang, Meilan; Trussell, Robert P.; Gallegos, Benjamin; Asam, Rasmiyeh R. "Using Math Apps for Improving Student Learning: An Exploratory Study in an Inclusive Fourth Grade Classroom". TechTrends. 59 (2): 32–39. doi:10.1007/s11528-015-0837-y.
  173. Aparicio, M.; Bacao, F.; Oliveira, T. (2016). "Cultural impacts on e-learning systems' success". The Internet and Higher Education. Elsevier. 31: 58–70. doi:10.1016/j.iheduc.2016.06.003.
  174. Aparicio, M.; Bacao, F.; Oliveira, T. (2017). "Grit in the path to e-learning success". Computers in Human Behavior. Elsevier. 66: 388–399. doi:10.1016/j.chb.2016.10.009.
  175. Boser, U. (2013). "Are Schools Getting a Big Enough Bang for Their Education Technology Buck?" (PDF). www. americanprogress. org. pp. 1–12. Retrieved 2014-05-15.
  176. Culp, K.M.; Honey, M.; Mandinach, E. (2005). "A retrospective on twenty years of education technology policy". Journal of Educational Computing Research. 32 (3): 279–307. doi:10.2190/7W71-QVT2-PAP2-UDX7.
  177. Lai, K.W. (2008). ICT supporting the learning process: The premise, reality, and promise. In International handbook of information technology in primary and secondary education. Springer US. pp. 215–230.
  178. 1 2 Postman, N. (1992). Technopoly: the surrender of culture to technology. New York. New York, NY: Vintage Books. ISBN 978-0679745402.
  179. Bransford, J., Brown, A., & Cocking, R. R. (2000). "Technology to support learning". In J. Bransford, A. Brown, & R. R. Cocking. How people learn: Brain, mind, experience. Washington, DC: National Academies Press. pp. 206–230.
  180. "Baby DVDs, Videos May Hinder, Not Help, Infants' Language Development". UW Press Release. University of Washington Press. August 7, 2007. Archived from the original on February 15, 2015.
  181. "Baby Einsteins: Not So Smart After All". 6 August 2007.
  182. "TV for Babies: Does It Help or Hurt?". 3 March 2009.
  183. Moret, B. (June 8, 2012). "No television for babies: Why TV is bad for young children". Washington Times Communities. Archived from the original on January 4, 2015.
  184. Cuban, L. (1998). "High-Tech Schools and Low-Tech Teaching". Journal of Computing in Teacher Education. 14 (2): 6–7. doi:10.1080/10402454.1998.10784333.
  185. Ho, A. D., Reich, J., Nesterko, S., Seaton, D. T., Mullaney, T., Waldo, J., & Chuang, I. (2014). "HarvardX and MITx: The first year of open online courses". HarvardX and MITx Working Paper No. 1. doi:10.2139/ssrn.2381263. SSRN 2381263Freely accessible.
  186. Trucano, M. (2013, December 11). More about MOOCs and developing countries. EduTech: A World Bank Blog on ICT use in Education
  187. 1 2 3 Ritchel, M. "Growing up Digital, Wired for Distraction". The New York Times. Retrieved 21 November 2010.
  188. Begley, Sharon. "The Science of Making Decisions". Newsweek 27 Feb. 2011. Web. 14 Mar. 2011.
  189. 1 2 Small, G.; Vorgan, G. (2008). "Meet Your iBrain.". Scientific American Mind. 5 (19): 42–49. doi:10.1038/scientificamericanmind1008-42.
  190. Cuban, L. (2001). "Oversold and underused: Computers in the classroom" (PDF). Harvard University Press.
  191. Lai, K.W. (2008). Technopoly: the surrender of culture to technology. New York: Springer US. pp. 215–230.
  192. 1 2 3 Winner, L. (1986). "The Whale and the Reactor". The University of Chicago Press.
  193. Marx, L (2010). "Technology: The Emergence of a Hazardous Concept". Technology and Culture. 51 (3): 561–577. doi:10.1353/tech.2010.0009.
  194. Papert, S. (1980). Mindstorms: Children computers and powerful ideas (PDF). New York, NY: Basic Books.
  195. 1 2 Wei, L.; Hindman, D. (2011). "Does the Digital Divide Matter More? Comparing the Effects of New Media and Old Media Use on the Education-Based Knowledge Gap". Mass Communication and Society. 14 (1): 216–235. doi:10.1080/15205431003642707.
  196. 1 2 3 4 5 6 Jenkins, H. (2009). Confronting the Challenges of Participatory Culture: Media Education for the 21st Century. Cambridge, MA: The MIT Press.
  197. Oliver, A.; Osa, J. O.; Walker, T. M. (2012). "Using instructional technologies to enhance teaching and learning for the 21st century pre K-12 students: The case of a professional education programs unit". International Journal of Instructional Media. 39 (4): 283–295.
  198. 1 2 Harris, J., Mishra, P., & Koehler, M. (2009). "Teachers' Technological Pedagogical Integration Reframed" (PDF). Journal of Research on Technology in Education. 41 (4): 393–416. doi:10.1080/15391523.2009.10782536.
  199. De Castell, S. (2011). "Ludic Epistemology: What Game-Based Learning Can Teach Curriculum Studies". Journal of the Canadian Association for Curriculum Studies. 8 (2): 19–27.
  200. Robinson, T. (2006). Schools Kill Creativity. TED Talks. Retrieved October 25, 2012.
  201. Eisenberg, M (2008). "Information Literacy: Essential Skills for the Information Age". Journal of Library & Information Technology. 28 (2): 39–47. doi:10.14429/djlit.28.2.166.
  202. Fletcher, S (2013). "Machine Learning". Scientific American. 309 (2): 62–28. Bibcode:2013SciAm.309b..62F. doi:10.1038/scientificamerican0813-62.
  203. 1 2 Beatty, Ian D; Gerace, William J (Jan 2009). "Technology-Enhanced Formative Assessment: A Research-Based Pedagogy for Teaching Science with Classroom Response Technology". Journal of Science and Technology.
  204. Fies, Carmen; Marshall, Jill (March 2006). "Classroom Response Systems: A Review of the Literature". Journal of Science Education and Technology.
  205. 1 2 Marriott, Pru; Lau, Alice (2008). "The use of on-line summative assessment in an undergraduate financial accounting course". Journal of Accounting Education.
  206. "The Rise of Onscreen Marking Around The World". RM Results. RM Results. Retrieved 15 October 2015.
  207. "An Introduction to E-marking" (PDF). SQA. SQA. Retrieved 15 October 2015.
  208. "State government of India announces that it would be using e-marking for all streams from 2016". Times of India. Times of India. Retrieved 15 October 2015.
  209. "What is Self Assessment?". nzqa. Retrieved 7 June 2016.
  210. "Student Self-Assessment". unsw. Retrieved 7 June 2016.
  211. Nagy, A. (2005). The Impact of E-Learning, in: Bruck, P.A.; Buchholz, A.; Karssen, Z.; Zerfass, A. (Eds). E-Content: Technologies and Perspectives for the European Market. Berlin: Springer-Verlag, pp. 79–96
  212. EC (2000). Communication from the Commission: E-Learning – Designing "Tejas at Niit" tomorrow’s education. Brussels: European Commission
  213. 1 2 3 4 "E-Learning Market Trends & Forecast 2014 - 2016 Report" (PDF). Docebo. Retrieved 2 December 2014.
  214. McCue, TJ. "La educación en línea, una industria preparada para recibir 107 billones de dolares en 2015". Forbes. Retrieved 1 December 2014.
  215. Shurville, S.; Browne, T.; Whitaker, M. (2009). "Accommodating the newfound strategic importance of educational technologists within higher education: A critical literature review". Campus-Wide Information Systems. 26 (3): 201–231. doi:10.1108/10650740910967384.

Further reading

Wikibooks has a book on the topic of: ICT in Education
Wikiversity has learning materials about Teaching and Learning Online
Wikiversity has learning materials about Educational Technology
This article is issued from Wikipedia - version of the 12/3/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.