Comet Swift–Tuttle

109P/Swift–Tuttle
Discovery
Discovered by Lewis Swift
Horace Parnell Tuttle
Discovery date July 16, 1862
Alternative
designations
1737 N1; 1737 II; 1862 O1;
1862 III; 1992 S2; 1992 XXVIII
Orbital characteristics A
Epoch October 10, 1995
(JD 2450000.5)
Aphelion 51.225 AU
Perihelion 0.9595 AU
Semi-major axis 26.092 AU
Eccentricity 0.9632
Orbital period 133.28 yr
Inclination 113.45°
Dimensions 26 km[1]
Last perihelion December 11, 1992[1]
Next perihelion July 12, 2126[2][3]

Comet Swift–Tuttle (formally designated 109P/Swift–Tuttle) is a periodic comet with a current (osculating) orbital period of 133 years. It fits the classical definition of a Halley-type comet with a period between 20 and 200 years.[1] It was independently discovered by Lewis Swift on July 16, 1862 and by Horace Parnell Tuttle on July 19, 1862. It has a well determined orbit and has a comet nucleus 26 km in diameter.[1]

Chinese records indicate that, in 188, the comet reached apparent magnitude 0.1.[4] In the discovery year of 1862, the comet was as bright as Polaris.[5] The comet made a return appearance in 1992, when it was rediscovered by Japanese astronomer Tsuruhiko Kiuchi and became visible with binoculars.[6] In 2126 it will be a bright naked-eye comet reaching about apparent magnitude 0.7.[4]

It was later identified with the comet Ignatius Kegler found morning 3 July 1737.[7]

It is the parent body of the Perseid meteor shower, perhaps the best known shower and among the most reliable in performance.[8]

An unusual aspect of its orbit is that it is captured into a 1:11 orbital resonance with Jupiter; it completes one orbit for every 11 of Jupiter.[9] This means that its proper long-term average period is actually only 130.48 years.

Threat to Earth

Distance of Comet Swift-Tuttle from Earth in Astronomical Units and gigametres from 800 BC to AD 2500 . Approaches in the shaded area are not visible to the unaided eye. The dashed line shows approximately the current year.

The comet is on an orbit that makes repeated close approaches to the Earth-Moon system,[9] and has an Earth-MOID of 0.0009 AU (130,000 km; 84,000 mi).[1] Upon its 1992 rediscovery, the comet's date of perihelion passage was off from the then-current prediction by 17 days. It was then noticed that, if its next perihelion passage (July 11, 2126) was also off by another 15 days (July 26), the comet would pass perilously close to Earth or the Moon on August 14, 2126 (IAUC 5636: 1992t). Given the size of the nucleus of Swift–Tuttle, this was of some concern. This prompted amateur astronomer and writer Gary W. Kronk to search for previous apparitions of this comet. He found the comet was most likely observed by the Chinese in 69 BC and AD 188, which was quickly confirmed by Brian G. Marsden.[10] This information and subsequent observations have led to recalculation of its orbit, which indicates the comet's orbit is very stable, and that there is absolutely no threat over the next two thousand years.[11] It is now known that the comet will pass 0.153 AU (22,900,000 km; 14,200,000 mi) from Earth on August 5, 2126.[1] and within 0.147 AU (22,000,000 km; 13,700,000 mi) from Earth on August 24, 2261.[12]

A close encounter with Earth is predicted for the comet's return to the inner Solar System in the year 4479, around Sept. 15; the closest approach is estimated to be 0.03–0.05 AU, with a probability of impact of 1×106, or 0.0001%.[9] Subsequent to 4479, the orbital evolution of the comet is more difficult to predict; the probability of Earth impact per orbit is estimated as 2×108 (0.000002%).[9] It is the largest Solar System object that makes repeated close approaches to Earth with a relative velocity of 60 km/s.[13][14] An Earth impact would have an estimated energy of ≈27 times that of the Cretaceous–Paleogene impactor.[15] Comet Swift–Tuttle has been described as "the single most dangerous object known to humanity".[14]

Notes

  1. 1 2 3 4 5 6 "JPL Small-Body Database Browser: 109P/Swift–Tuttle" (last observation: 1995-03-29). Jet Propulsion Laboratory. Retrieved 2011-05-09.
  2. "109P/Swift-Tuttle Orbit". Minor Planet Center. Retrieved 2014-06-17.
  3. Syuichi Nakano (1999-11-18). "109P/Swift–Tuttle (NK 798)". OAA Computing and Minor Planet Sections. Retrieved 2011-05-09.
  4. 1 2 Yau, K.; Yeomans, D.; Weissman, P. (1994). "The past and future motion of Comet P/Swift-Tuttle". Monthly Notices of the Royal Astronomical Society. 266: 305–316. Bibcode:1994MNRAS.266..305Y. doi:10.1093/mnras/266.2.305.
  5. David Levy's Guide to Observing Meteor Showers (pg12)
  6. Britt, Robert (2005-08-11). "Top 10 Perseid Meteor Shower Facts". Space.com. Retrieved 2009-08-10.
  7. Gary W. Kronk (1999). "109P/1737 N1". Cometography. 1. pp. 400–2.
  8. Bedient, John. "AMS Meteor Showers page", American Meteor Society, 20 June 2010. Retrieved 2010-7-31.
  9. 1 2 3 4 Chambers, J. E. (1995). "The long-term dynamical evolution of Comet Swift–Tuttle". Icarus. Academic Press. 114 (2): 372–386. Bibcode:1995Icar..114..372C. doi:10.1006/icar.1995.1069.
  10. Kronk, Gary; Marsden, Brian G. (1992). "Periodic Comet Swift–Tuttle (1992t)". Central Bureau for Astronomical Telegrams. Retrieved 2009-06-19.
  11. Stephens, Sally (1993). "on Swift–Tuttle's possible collision". Astronomical Society of the Pacific. Retrieved 2008-08-25.
  12. Yau, Kevin; Paul, Weissman; Yeomans, Donald. "The past and future motion ofComet P/Swift-Tuttle" (PDF). Jet Propulsion Laboratory, California Institute of Technology.
  13. Weissman, Paul R. (2007). "The cometary impactor flux at the Earth". In Milani, A.; Valsecchi, G.B.; Vokrouhlicky, D. Near Earth Objects, our Celestial Neighbors: Opportunity and Risk; Proceedings IAU Symposium No. 236, 2006. Proceedings of the International Astronomical Union. 2. Cambridge University Press. pp. 441–450. doi:10.1017/S1743921307003559. Archived from the original on 2009-08-15. Retrieved 2009-08-13.
  14. 1 2 Verschuur, Gerrit L. (1997). Impact!: the threat of comets and asteroids. Oxford University Press. pp. 256 (see p. 116). ISBN 978-0-19-511919-0.
  15. This calculation can be carried out in the manner given by Weissman for Comet Hale–Bopp, as follows: A radius of 13.5 km and an estimated density of 0.6 g/cm3 gives a cometary mass of 6.2×1018 g. An encounter velocity of 60 km/s yields an impact velocity of 61 km/s, giving an impact energy of 1.15×1032 ergs, or 2.75×109 megatons, about 27.5 times the estimated energy of the K–T impact event.
Numbered comets
Previous
108P/Ciffreo
Comet Swift–Tuttle Next
110P/Hartley
This article is issued from Wikipedia - version of the 11/29/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.