Systematic IUPAC name
Other names
Chlordan; Chlordano; Ortho; Octachloro-4,7-methanohydroindane
57-74-9 YesY
ECHA InfoCard 100.000.317
KEGG C14176 YesY
PubChem 5993
Molar mass 409.76 g·mol−1
Appearance Colorless, viscous liquid
Odor Slightly pungent, chlorine-like
Density 1.60 g/cm3
Melting point 102–106 °C (216–223 °F; 375–379 K) [1]
Boiling point decomposes[1]
0.0001% (20°C)[1]
Main hazards potential occupational carcinogen
Flash point 107 °C (225 °F; 380 K) (open cup)
Explosive limits 0.7–5%
Lethal dose or concentration (LD, LC):
590 mg/kg (rat, oral)
100 mg/kg (rabbit, oral)
430 mg/kg (mouse, oral)
300 mg/kg (rabbit, oral)
145 mg/kg (mouse, oral)
1720 mg/kg (hamster, oral)
200 mg/kg (rat, oral)[2]
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.5 mg/m3 [skin][1]
REL (Recommended)
Ca TWA 0.5 mg/m3 [skin][1]
IDLH (Immediate danger)
100 mg/m3[1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
YesY verify (what is YesYN ?)
Infobox references

Chlordane, or chlordan, is an organochlorine compound used as a pesticide. This white solid was sold in the U.S. until 1988 as an insecticide for treating approximately 30 million homes for termites [3] for crops like corn and citrus, and on lawns and domestic gardens.[4] Technical grade chlordane is a complex mixture of over 120 structurally related chemical compounds.[5]

Production, composition and uses

Chlordane is one so-called cyclodiene pesticide, meaning that it is derived from hexachlorocyclopentadiene.

Synthesis of cis- (above) and trans-chlordane (below)

Hexachlorocyclopentadiene forms an adduct with cyclopentadiene, and chlorination of this adduct gives predominantly two isomers, α and β, in addition to other products such as trans-nonachlor and heptachlor.[6] The β-isomer is popularly known as gamma and is more bioactive.[4] The mixture that is composed of 147 components is called technical chlordane.[7]

It was sold in the United States from 1948 to 1988, both as a dust and an emulsified solution.

Because of concern about damage to the environment and harm to human health, the United States Environmental Protection Agency (EPA) banned all uses of chlordane in 1983, except termite control. The EPA banned all uses of chlordane in 1988.[8] The EPA recommends that children should not drink water with more than 60 parts of chlordane per billion parts of drinking water (60 ppb) for longer than 1 day. EPA has set a limit in drinking water of 2 ppb.

Chlordane is very persistent in the environment because it does not break down easily. Recent tests of the air in the residence of U.S. government housing, 32 years after chlordane treatment, showed levels of chlordane and heptachlor 10-15 times the Minimal Risk Levels (20 nanograms/cubic meter of air) published by the Centers for Disease Control. It has an environmental half-life of 10 to 20 years.[9]

Origin, pathways of exposure, and processes of excretion

In the years 19481988 chlordane was a common pesticide for corn and citrus crops, as well as a method of home termite control.[10] Pathways of exposure to chlordane include ingestion of crops grown in chlordane-contaminated soil, inhalation of air near chlordane-treated homes and landfills, and ingestion of high-fat foods such as meat, fish, and dairy, as chlordane builds up in fatty tissue.[11] The United States Environmental Protection Agency reported that over 30 million homes were treated with technical chlordane or technical chlordane with heptachlor. Depending on the site of home treatment, the indoor air levels of chlordane can still exceed the Minimal Risks Levels (MRLs) for both cancer and chronic disease by orders of magnitude.[12] Chlordane is excreted slowly through feces, urine elimination, and through breast milk in nursing mothers. It is able to cross the placenta and become absorbed by developing fetuses in pregnant women.[13] A breakdown product of chlordane, the metabolite oxychlordane, accumulates in blood and adipose tissue with age.[14]

Environmental impact

Being hydrophobic, chlordane adheres to soil particles and enters groundwater only slowly, owing to its low solubility (0.009 ppm). It degrades only over the course of years.[15] Chlordane bioaccumulates in animals. It is highly toxic to fish, with an LD50 of 0.022–0.095 mg/kg (oral).

Two components of the chlordane mixture, cis-nonachlor and trans-nonachlor, are the main bioaccumulating constituents.[5] trans-Nonachlor is more toxic than technical chlordane and cis-nonachlor is less toxic.[5] Oxychlordane (C10H4Cl8O) is the primary metabolite of chlordane.[5]

Chlordane is a known persistent organic pollutants (POP), classified among the "dirty dozen" and banned by the 2001 Stockholm Convention on Persistent Organic Pollutants.[16]

Health effects

Multiple studies published in the last five years that measured metabolites of chlordane/heptachlor in the blood of U. S. citizens during the U.S. National Health and Examination Surveys (NHANES)(1999-2006) reported that higher concentrations of heptachlor epoxide and oxychlordane increase the risk of cognitive decline,[17] liver damage (liver enzymes),[18] peripheral arterial disease,[19] prostate cancer (trans-nonachlor),[20] type 2 diabetes,[21][22] and obesity ( waist circumference),[23]

In other large epidemiological surveys, higher levels of oxychlordane in both blood and adipose increased the risk of non-Hodgkin lymphoma,[24][25] and likewise higher concentrations of heptachlor epoxide in brain tissues increase the risk of Parkinson diseases,[26]

Exposure to chlordane metabolites may be associated with testicular cancer. The incidence of seminoma in men with the highest blood levels of cis-nonachlor was almost double that of men with the lowest levels.[27] Japanese workers who used chlordane over a long period of time had minor changes in liver function.[28]

Heptachlor and chlordane are some of the most potent carcinogens tested in animal models. No human epidemiological study has been conducted to determine the relationship between levels of chlordane/heptachlor in indoor air and rates of cancer in inhabitants. However, studies have linked chlordane/heptachlor in human tissues with cancers of the breast, prostate, brain, and cancer of blood cells—leukemia and lymphoma.[29][30] Breathing chlordane in indoor air is the main route of exposure for these levels in human tissues. Currently, USEPA has defined a concentration of 24 nanogram per cubic meter of air (ng/M3) for chlordane compounds over a 20-year exposure period as the concentration that will increase the probability of cancer by 1 in 1,000,000 persons. This probability of developing cancer increases to 10 in 1,000,000 persons with an exposure of 100 ng/M3 and 100 in 1,000,000 with an exposure of 1000 ng/M3.[31]

The non-cancer health effects of chlordane compounds, which include diabetes, insulin resistance, migraines, respiratory infections, immune-system activation, anxiety, depression, blurry vision, confusion, intractable seizures as well as permanent neurological damage,[32] probably affects more people than cancer. Recently, trans-nonachlor and oxychlordane in serum of mothers during gestation has been linked with behaviors associated with autism in offspring at age 4-5.[33] The Agency for Toxic Substances and Disease Registry (ATSDR) has defined a concentration of chlordane compounds of 20 ng/M3 as the Minimal Risk Level (MRLs). ATSDR defines Minimal Risk Level as an estimate of daily human exposure to a dose of a chemical that is likely to be without an appreciable risk of adverse non-cancerous effects over a specific duration of exposure.[34] Recent results from 8 large epidemiological studies in the United States, using CDC's NHANES data, have consistently shown of all the chemicals found in the blood of Americans, heptachlor epoxides and oxychlordane have the highest associated risk with insulin resistance and diabetes.[35][36][37]


Chlordane was applied under the home/building during treatment for termites and the half-life can be up to 30 years. Chlordane has a low vapor pressure and volitizes slowly into the air of home/building above. To remove chlordane from indoor air requires either ventilation (Heat Exchange Ventilation) or activated carbon filtration. Chemical remediation of chlordane in soils was attempted by the US Army Corps of Engineers by mixing chlordane with aqueous lime and persulfate. In a phytoremediation study, Kentucky bluegrass and Perennial ryegrass were found to be minimally affected by chlordane, and both were found to take it up into their roots and shoots.[38] Mycoremediation of chlordane in soil have found that contamination levels were reduced.[38] The fungus Phanerochaete chrysosporium has been found to reduce concentrations by 21% in water in 30 days and in solids in 60 days.[39]


  1. 1 2 3 4 5 6 "NIOSH Pocket Guide to Chemical Hazards #0112". National Institute for Occupational Safety and Health (NIOSH).
  2. "Chlordane". Immediately Dangerous to Life and Health. National Institute for Occupational Safety and Health (NIOSH).
  3. Toxicological Profile for Chlordane, U.S. Department Of Health and Human Services, Agency for Toxic Substances and Disease Registry
  4. 1 2 Robert L. Metcalf "Insect Control" in Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim, 2002. doi:10.1002/14356007.a14_263
  5. 1 2 3 4 Bondy, G. S.; Newsome, WH; Armstrong, CL; Suzuki, CA; Doucet, J; Fernie, S; Hierlihy, SL; Feeley, MM; Barker, MG (2000). "Trans-Nonachlor and cis-Nonachlor Toxicity in Sprague-Dawley Rats: Comparison with Technical Chlordane". Toxicological Sciences. 58 (2): 386–98. doi:10.1093/toxsci/58.2.386. PMID 11099650.
  6. Dearth Mark A.; Hites Ronald A. (1991). "Complete analysis of technical chlordane using negative ionization mass spectrometry.". Environ. Sci. Technol. 25 (2): 245–254. doi:10.1021/es00014a005.
  7. Liu W.; Ye J.; Jin M. (2009). "Enantioselective phytoeffects of chiral pesticides.". J Agric Food Chem. 57 (6): 2087–2095. doi:10.1021/jf900079y. PMID 19292458.
  8. Pesticides and Breast Cancer Risk: Chlordane, Fact Sheet #11, March 1998, Program on Breast Cancer and Environmental Risk Factors Cornell University
  9. Bennett, G. W.; Ballee, D. L.; Hall, R. C.; Fahey, J. F.; Butts, W. L. & Osmun, J. V. (1974). "Persistence and distribution of chlordane and dieldrin applied as termiticides". Bull. Environ. Contam. Toxicol. 11 (1): 64–9. doi:10.1007/BF01685030. PMID 4433785.
  10. Agency for Toxic Substances & Disease Registry (ATSDR). Toxic Substances Portal: Chlordane. Last updated September, 2010 [online]. Available at URL:
  11. Agency for Toxic Substances & Disease Registry (ATSDR). ToxFaqs: September, 1995. Available at URL:
  12. Whitmore R. W.; et al. (1994). "Non-occupational exposures to pesticides for residents of two U.S. cities". Archives of Environmental Contamination and Toxicology. 26: 47–59. doi:10.1007/bf00212793.
  13. Center for Disease Control and Prevention (CDC). National Report on Human Exposure to Environmental Chemicals: Chemical Information: Chlordane. Last updated November, 2010 [online].
  14. Lee D.; et al. (2007). "Association between serum concentrations of persistent organic pollutants and insulin resistance among nondiabetic adults: Results from the National Health and Nutrition Examination Survey". Diabetic Care. 30: 622–628. doi:10.2337/dc06-2190.
  16. The 12 initial POPs under the Stockholm Convention
  17. Kim, Se-A; et al. (2015). "Greater cognitive decline with aging among elders with high serum concentrations of organochlorine pesticides,". PLOS ONE. 10: 1–9. doi:10.1371/journal.pone.0130623.
  18. Serdar, B; et al. (2014). "Potential effects of polychlorinated biphenyls(PCBs) and selected organochlorine pesticides (OCPs) on immune cells and blood biochemistry measures: a cross-sectional assessment of the NHANES 2003-2004 data". Environmental Health. 14: 1–12. doi:10.1186/1476-069x-13-114.
  19. Min, JY; et al. (2011). "Potential role of organochlorine pesticides in the prevalence of peripheral arterial diseases in obese persons: results from the National Health and Nutrition Examination Survey 1999-2004". Atherosclerosis. 218: 200–206. doi:10.1016/j.atherosclerosis.2011.04.044. PMID 21620405.
  20. KXu, X; et al. (2010). "Association of serum concentrations of organochlorine pesticides with breast cancer and prostate cancer in U.S. Adults". Environmental Health Perspectives: 60–66. doi:10.1289/ehp.0900919.
  21. Patel, CJ; et al. (2010). "An Environmental-wide association study (EWAS) on type 2 diabetes mellitus". PLOS ONE. 5: 1–10. doi:10.1371/journal.pone.0010746. PMC 2873978Freely accessible. PMID 20505766.
  22. Lee, D; et al. (2010). "Low dose of some organic pollutants predicts type 2 diabetes: A nested case-control study". Environmental Health Perspectives. 118: 1235–1242. doi:10.1289/ehp.0901480.
  23. Elobeid, MA; et al. (2010). "Endocrine disruptors and obesity: An examination of selected persistent organic pollutants in the NHANES 1999-20002 data". Int. J. Environ Res. Public Health. 7: 2988–3005. doi:10.3390/ijerph7072988.
  24. Spinell, JJ; et al. (2007). "Organochlorines and risk of non-Hodgkin lymphoma". Int. J. Cancer. 121: 2767–2775. doi:10.1002/ijc.23005. PMID 17722095.
  25. Quintana, PJE; et al. (2004). "Adipose tissue levels of organochlorine pesticides and polychlorinated biphenyls and risk of non-Hodgkin's lymphoma" Check |url= value (help). Environmental Health Perspectives. 112: 854–861. doi:10.1289/ehp.6726.
  26. Abbott, RD; et al. (2015). "Midlife milk consumption and substania nigra neuron density at death". Neurology. doi:10.1212/WNL.0000000000002254.
  27. McGlynn, Katherine A.; Quraishi, Sabah M.; Graubard, BI; Weber, JP; Rubertone, MV; Erickson, RL (April 29, 2008). "Persistent Organochlorine Pesticides and Risk of Testicular Germ Cell Tumors". Journal of the National Cancer Institute. 100 (9): 663–71. doi:10.1093/jnci/djn101. PMID 18445826..
  28. ATSDR - Redirect - ToxFAQs™: Chlordane
  29. Cassidy R.A.; et al. ", (2005). The Link Between the Insecticide Heptachlor Epoxide, Estradiol, and Breast Cancer". Breast Cancer Research and Treatment. 90: 55–64. doi:10.1007/s10549-004-2755-0.
  30. Cassidy Richard A (2010). "Cancer and chlordane-treated homes: a pinch of prevention is worth a pound of cure". Leukemia & Lymphoma. 51: 1368–1369. doi:10.3109/10428194.2010.483304.
  31. Chlordane (Technical) (CASRN 12789-03-6) | IRIS | US EPA
  32. ATSDR - Medical Management Guidelines (MMGs): Chlordane
  33. J. M. Braun (2014). "Gestational Exposure to Endocrine-Disrupting Chemicals and Reciprocal Social, Repetitive, and Stereotypic Behaviors in 4-and 5-Year-Old Children:The HOME Study". Environmental Health Perspectives. 122: 513–520. doi:10.1289/ehp130761.
  34. ATSDR - Redirect - Toxicological Profile: Chlordane
  35. Lee D.; et al. (2006). "A strong dose-response relation between serum concentrations of persistent organic pollutants and diabetes". Diabetes Care. 29: 1638–1644. doi:10.2337/dc06-0543. PMID 16801591.
  36. C. J. Patel, et al. (2010). An Environment-Wide Association Study (EWAS) on type 2 diabetes mellitus. Plos One 5(5);e10746
  37. Everett C. J.; et al. (2010). "Biomarkers of pesticide exposure and diabetes in the 1999-2004 National Health and Nutrition Examination Survey". Environment International. 36: 398–401. doi:10.1016/j.envint.2010.02.010.
  38. 1 2 Medina, Victor F.; Scott A. Waisner; Agnes B. Morrow; Afrachanna D. Butler; David R. Johnson; Allyson Harrison; Catherine C. Nestler. "Legacy Chlordane in Soils from Housing Areas Treated with Organochlorine Pesticides" (PDF). US Army Corps of Engineers. Retrieved 10 October 2012.
  39. Kennedy, D.W.; S. D. Aust; J. A. Bumpus (1990). "Comparative biodegradation of alkyl halide insecticides by the White Rot fungus, Phanerochaete chrysosporium". Appl. Environ. Microbiol. 56:2347–2353.
This article is issued from Wikipedia - version of the 11/11/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.