Cerebral cortex

For the scientific journal, see Cerebral Cortex (journal).
Cerebral cortex

The cerebral cortex is the outer layer
depicted in dark violet.

Golgi-stained neurons in the cortex
Part of Telencephalon
Latin Cortex cerebri
NeuroLex ID Cerebral cortex
TA A14.1.09.003
FMA 61830

Anatomical terms of neuroanatomy

The cerebral cortex is the cerebrum's (brain) outer layer of neural tissue in humans and other mammals. It is divided into two cortices, along the sagittal plane: the left and right cerebral hemispheres divided by the medial longitudinal fissure. The cerebral cortex plays a key role in memory, attention, perception, awareness, thought, language, and consciousness. The human cerebral cortex is 2 to 4 millimetres (0.079 to 0.157 in) thick.[1]

In large mammals, the cerebral cortex is folded, giving a much greater surface area in the confined volume of the skull. A fold or ridge in the cortex is termed a gyrus (plural gyri) and a groove or fissure is termed a sulcus (plural sulci). In the human brain more than two-thirds of the cerebral cortex is buried in the sulci.

The cerebral cortex is composed of gray matter, consisting mainly of cell bodies (with astrocytes being the most abundant cell type in the cortex as well as the human brain in general) and capillaries. It contrasts with the underlying white matter, consisting mainly of the white myelinated sheaths of neuronal axons. The most recent part of the cerebral cortex to develop in the evolutionary history of mammals is the neocortex (also called isocortex), which differentiated into six horizontal layers; the more ancient part of the cerebral cortex, the hippocampus, has at most three cellular layers. Neurons in various layers connect vertically to form small microcircuits, called cortical columns. Different neocortical regions known as Brodmann areas are distinguished by variations in their cytoarchitectonics (histological structure) and functional roles in sensation, cognition and behavior.


Layered structure

Cerebral cortex. (Poirier.) To the left, the groups of cells; to the right, the systems of fibers. Quite to the left of the figure a sensory nerve fiber is shown. Cell body layers are labeled on the left, and fiber layers are labeled on the right.
Three drawings of cortical lamination by Santiago Ramon y Cajal, each showing a vertical cross-section, with the surface of the cortex at the top. Left: Nissl-stained visual cortex of a human adult. Middle: Nissl-stained motor cortex of a human adult. Right: Golgi-stained cortex of a 1½ month old infant. The Nissl stain shows the cell bodies of neurons; the Golgi stain shows the dendrites and axons of a random subset of neurons.
Micrograph showing the visual cortex (predominantly pink). Subcortical white matter (predominantly blue) is seen at the bottom of the image. HE-LFB stain.

The different cortical layers each contain a characteristic distribution of neuronal cell types and connections with other cortical and subcortical regions. There are direct connections between different cortical areas and indirect connections via the thalamus, for example. One of the clearest examples of cortical layering is the stria of Gennari in the primary visual cortex. This is a band of whiter tissue that can be observed with the naked eye in the fundus of the calcarine sulcus of the occipital lobe. The Stria of Gennari is composed of axons bringing visual information from the thalamus into layer four of the visual cortex.

Staining cross-sections of the cortex to reveal the position of neuronal cell bodies and the intracortical axon tracts allowed neuroanatomists in the early 20th century to produce a detailed description of the laminar structure of the cortex in different species. After the work of Korbinian Brodmann (1909) the neurons of the cerebral cortex are grouped into six main layers, from outside (pial surface) to inside (white matter):

  1. Layer I, the molecular layer, contains few scattered neurons and consists mainly of extensions of apical dendritic tufts of pyramidal neurons and horizontally oriented axons, as well as glial cells.[2] During development Cajal-Retzius[3] and subpial granular layer cells[4] are present in this layer. Also, some spiny stellate cells can be found here. Inputs to the apical tufts are thought to be crucial for the ‘‘feedback’’ interactions in the cerebral cortex involved in associative learning and attention.[5] While it was once thought that the input to layer I came from the cortex itself,[6] it is now realized that layer I across the cerebral cortex mantle receives substantial input from ‘‘matrix’’ or M-type thalamus cells[7] (in contrast to ‘‘core’’ or C-type that go to layer IV).[8]
  2. Layer II, the external granular layer, contains small pyramidal neurons and numerous stellate neurons.
  3. Layer III, the external pyramidal layer, contains predominantly small and medium-size pyramidal neurons, as well as non-pyramidal neurons with vertically oriented intracortical axons; layers I through III are the main target of interhemispheric corticocortical afferents, and layer III is the principal source of corticocortical efferents.
  4. Layer IV, the internal granular layer, contains different types of stellate and pyramidal neurons, and is the main target of thalamocortical afferents from thalamus type C neurons[8] as well as intra-hemispheric corticocortical afferents.
  5. Layer V, the internal pyramidal layer, contains large pyramidal neurons which give rise to axons leaving the cortex and running down to subcortical structures (such as the basal ganglia). In the primary motor cortex of the frontal lobe, layer V contains Betz cells, whose axons travel through the internal capsule, the brain stem and the spinal cord forming the corticospinal tract, which is the main pathway for voluntary motor control.
  6. Layer VI, the polymorphic or multiform layer, contains few large pyramidal neurons and many small spindle-like pyramidal and multiform neurons; layer VI sends efferent fibers to the thalamus, establishing a very precise reciprocal interconnection between the cortex and the thalamus.[9] That is, layer VI neurons from one cortical column connect with thalamus neurons that provide input to the same cortical column. These connections are both excitatory and inhibitory. Neurons send excitatory fibers to neurons in the thalamus and also send collaterals to the thalamic reticular nucleus that inhibit these same thalamus neurons or ones adjacent to them.[10] One theory is that because the inhibitory output is reduced by cholinergic input to the cerebral cortex, this provides the brainstem with adjustable "gain control for the relay of lemniscal inputs".[10]

The cortical layers are not simply stacked one over the other; there exist characteristic connections between different layers and neuronal types, which span all the thickness of the cortex. These cortical microcircuits are grouped into cortical columns and minicolumns. It has been proposed that the minicolumns are the basic functional units of the cortex.[11] In 1957, Vernon Mountcastle showed that the functional properties of the cortex change abruptly between laterally adjacent points; however, they are continuous in the direction perpendicular to the surface. Later works have provided evidence of the presence of functionally distinct cortical columns in the visual cortex (Hubel and Wiesel, 1959),[12] auditory cortex, and associative cortex.

Cortical areas that lack a layer IV are called agranular. Cortical areas that have only a rudimentary layer IV are called dysgranular.[13] Information processing within each layer is determined by different temporal dynamics with that in the layers II/III having a slow 2 Hz oscillation while that in layer V having a fast 10–15 Hz one.[14]


Based on the differences in lamination the cerebral cortex can be classified into two parts, the large area of neocortex and the much smaller area of allocortex:

There is a transitional area between the neocortex and the allocortex called the paralimbic cortex, where layers 2, 3 and 4 are merged. This area incorporates the proisocortex of the neocortex and the periallocortex of the allocortex. In addition, the cerebral cortex may be classified on the basis of gross topographical conventions into four lobes: the temporal lobe, the occipital lobe, the parietal lobe, and the frontal lobe.


Human cortical development between 26 and 39 week gestational age

The ontogenic development of the cerebral cortex is a complex and finely tuned process influenced by the interplay between genes and environment.[15] The cerebral cortex develops from the most anterior part of the neural plate, a specialized part of the embryonic ectoderm.[16] The neural plate folds and closes to form the neural tube. From the cavity inside the neural tube develops the ventricular system, and, from the epithelial cells of its walls, the neurons and glia of the nervous system. The most anterior (front, or cranial) part of the neural plate, the prosencephalon, which is evident before neurulation begins, gives rise to the cerebral hemispheres and its later cortex.[17]

Cortical neurons are generated within the ventricular zone, next to the ventricles. At first, this zone contains progenitor cells, which divide to produce glial cells and neurons.[18] The glial fibers produced in the first divisions of the progenitor cells are radially oriented, spanning the thickness of the cortex from the ventricular zone to the outer, pial surface, and provide scaffolding for the migration of neurons outwards from the ventricular zone.[19][20] The first divisions of the progenitor cells are symmetric, which duplicates the total number of progenitor cells at each mitotic cycle. Then, some progenitor cells begin to divide asymmetrically, producing one postmitotic cell that migrates along the radial glial fibers, leaving the ventricular zone, and one progenitor cell, which continues to divide until the end of development, when it differentiates into a glial cell or an ependymal cell. As the G1 phase of mitosis is elongated, in what is seen as selective cell-cycle lengthening, the newly-born neurons migrate to more superficial layers of the cortex.[21] The migrating daughter cells become the pyramidal cells of the cerebral cortex.[22] The development process is time ordered and regulated by hundreds of genes and epigenetic regulatory mechanisms.[23]

The layered structure of the mature cerebral cortex is formed during development. The first pyramidal neurons generated migrate out of the ventricular zone and subventricular zone, together with reelin producing Cajal–Retzius neurons, from the preplate. Next, a cohort of neurons migrating into the middle of the preplate divides this transient layer into the superficial marginal zone, which will become layer one of the mature neocortex, and the subplate,[24] forming a middle layer called the cortical plate. These cells will form the deep layers of the mature cortex, layers five and six. Later born neurons migrate radially into the cortical plate past the deep layer neurons, and become the upper layers (two to four). Thus, the layers of the cortex are created in an inside-out order.[25] The only exception to this inside-out sequence of neurogenesis occurs in the layer I of primates, in which, in contrast to rodents, neurogenesis continues throughout the entire period of corticogenesis.[26]

The map of functional cortical areas, which include primary motor and visual cortex, originates from a 'protomap',[27] which is regulated by molecular signals such as fibroblast growth factor FGF8 early in embryonic development.[28][29] These signals regulate the size, shape, and position of cortical areas on the surface of the cortical primordium, in part by regulating gradients of transcription factor expression, through a process called cortical patterning. Examples of such transcription factors include the genes EMX2 and PAX6.[30] Rapid expansion of the cortical surface area is regulated by the amount of self-renewal of radial glial cells and is partly regulated by FGF and Notch genes.[31] During the period of cortical neurogenesis and layer formation, many higher mammals begin the process of gyrification, which generates the characteristic folds of the cerebral cortex.[32][33] Gyrification is regulated by the gene Trnp1[34] and by FGF and SHH signaling[35][36]


For mammals, species with larger brains (in absolute terms, not just in relation to body size) tend to have thicker cortices.[37] The range, however, is not very great; only a factor of 7 differentiates between the thickest and thinnest cortices. The smallest mammals, such as shrews, have a neocortical thickness of about 0.5 mm; the ones with the largest brains, such as humans and fin whales, have thicknesses of 2.3–2.8 mm. There is an approximately logarithmic relationship between brain weight and cortical thickness.[37]

Cortical blood supply

Magnetic resonance imaging (MRI) of the brain makes it possible to get a measure for the thickness of the human cerebral cortex and relate it to other measures. The thickness of different cortical areas varies but in general, sensory cortex is thinner than motor cortex.[38] One study has found some positive association between the cortical thickness and intelligence.[39] Another study has found that the somatosensory cortex is thicker in migraine sufferers, though it is not known if this is the result of migraine attacks or the cause of them.[40][41] A later study using a larger patient population reports no change in the cortical thickness in migraine sufferers.[42] A genetic disorder of the cerebral cortex, whereby decreased folding in certain areas results in a microgyrus, where there are four layers instead of six, is in some instances seen to be related to dyslexia.[43]

Blood supply

Blood is supplied to the cerebral cortex via the cerebral circulation.



The cerebral cortex is connected to various subcortical structures such as the thalamus and the basal ganglia, sending information to them along efferent connections and receiving information from them via afferent connections. Most sensory information is routed to the cerebral cortex via the thalamus. Olfactory information, however, passes through the olfactory bulb to the olfactory cortex (piriform cortex). The vast majority of connections are from one area of the cortex to another, rather than to subcortical areas; Braitenberg and Schüz (1991) put the figure as high as 99%.[44]

Cortical areas

Lateral surface of the human cerebral cortex
Medial surface of the human cerebral cortex

The cortex is commonly described as comprising three parts: sensory, motor, and association areas.

Sensory areas

The sensory areas are the cortical areas that receive and process information from the senses. Parts of the cortex that receive sensory inputs from the thalamus are called primary sensory areas. The senses of vision, audition, and touch are served by the primary visual cortex, primary auditory cortex and primary somatosensory cortex respectively. In general, the two hemispheres receive information from the opposite (contralateral) side of the body. For example, the right primary somatosensory cortex receives information from the left limbs, and the right visual cortex receives information from the left visual field. The organization of sensory maps in the cortex reflects that of the corresponding sensing organ, in what is known as a topographic map. Neighboring points in the primary visual cortex, for example, correspond to neighboring points in the retina. This topographic map is called a retinotopic map. In the same way, there exists a tonotopic map in the primary auditory cortex and a somatotopic map in the primary sensory cortex. This last topographic map of the body onto the posterior central gyrus has been illustrated as a deformed human representation, the somatosensory homunculus, where the size of different body parts reflects the relative density of their innervation. Areas with lots of sensory innervation, such as the fingertips and the lips, require more cortical area to process finer sensation.

Motor areas

The motor areas are located in both hemispheres of the cortex. They are shaped like a pair of headphones stretching from ear to ear. The motor areas are very closely related to the control of voluntary movements, especially fine fragmented movements performed by the hand. The right half of the motor area controls the left side of the body, and vice versa.

Two areas of the cortex are commonly referred to as motor:

In addition, motor functions have been described for:

Just underneath the cerebral cortex are interconnected subcortical masses of grey matter called basal ganglia (or nuclei). The basal ganglia receive input from the substantia nigra of the midbrain and motor areas of the cerebral cortex, and send signals back to both of these locations. They are involved in motor control. They are found lateral to the thalamus. The main components of the basal ganglia are the caudate nucleus, the putamen, the globus pallidus, the substantia nigra, the nucleus accumbens, and the subthalamic nucleus. The putamen and globus pallidus are also collectively known as the lentiform nucleus, because together they form a lens-shaped body. The putamen and caudate nucleus are also collectively called the corpus striatum after their striped appearance.[45][46]

Association areas

The association areas are the parts of the cerebral cortex that do not belong to the primary regions. They function to produce a meaningful perceptual experience of the world, enable us to interact effectively, and support abstract thinking and language. The parietal, temporal, and occipital lobes - all located in the posterior part of the cortex - integrate sensory information and information stored in memory. The frontal lobe or prefrontal association complex is involved in planning actions and movement, as well as abstract thought. Globally, the association areas are organized as distributed networks.[47] Each network connects areas distributed across widely spaced regions of the cortex. Distinct networks are positioned adjacent to one another yielding a complex series of interwoven networks. The specific organization of the association networks is debated with evidence for interactions, hierarchical relationships, and competition between networks.[48] In humans, association networks are particularly important to language function. In the past it was theorized that language abilities are localized in the left hemisphere in areas 44/45, the Broca's area, for language expression and area 22, the Wernicke's area, for language reception. However, language is no longer limited to easily identifiable areas. More recent research suggests that the processes of language expression and reception occur in areas other than just those structures around the lateral sulcus, including the frontal lobe, basal ganglia, cerebellum, and pons.[49]

Clinical significance

There is marked cortical atrophy in Alzheimer's disease, associated with loss of gyri and sulci in the temporal lobe and parietal lobe, and parts of the frontal cortex and cingulate gyrus.

Neurodegenerative diseases such as Alzheimer's disease and Lafora disease, show as a marker, an atrophy of the grey matter of the cerebral cortex.[50]

Other animals

The cerebral cortex is derived from the pallium, a layered structure found in the forebrain of all vertebrates. The basic form of the pallium is a cylindrical layer enclosing fluid-filled ventricles. Around the circumference of the cylinder are four zones, the dorsal pallium, medial pallium, ventral pallium, and lateral pallium, which are thought respectively to give rise to the neocortex, hippocampus, amygdala, and olfactory cortex.

Until recently no counterpart to the cerebral cortex had been recognized in invertebrates. However, a study published in the journal Cell in 2010, based on gene expression profiles, reported strong affinities between the cerebral cortex and the mushroom bodies of ragworms.[51] Mushroom bodies are structures in the brains of many types of worms and arthropods that are known to play important roles in learning and memory; the genetic evidence indicates a common evolutionary origin, and therefore indicates that the origins of the earliest precursors of the cerebral cortex date back to the early Precambrian era.

Additional images

See also


  1. Kandel, Eric R.; Schwartz, James H.; Jessell, Thomas M. (2000). Principles of Neural Science (Fourth ed.). United State of America: McGraw-Hill. p. 324. ISBN 0-8385-7701-6.
  2. Shipp, Stewart (2007-06-17). "Structure and function of the cerebral cortex". Current Biology. 17 (12): R443–9. doi:10.1016/j.cub.2007.03.044. PMID 17580069. Retrieved 2009-02-17.
  3. Meyer, Gundela; Goffinet, André M.; Fairén, Alfonso (1999). "Feature Article: What is a Cajal–Retzius cell? A Reassessment of a Classical Cell Type Based on Recent Observations in the Developing Neocortex". Cereb. Cortex. 9 (8): 765–775. doi:10.1093/cercor/9.8.765.
  4. Judaš, Miloš; Pletikos, Mihovil (2010). "The discovery of the subpial granular layer in the human cerebral cortex". Translational Neuroscience. 1 (3): 255–260. doi:10.2478/v10134-010-0037-4.
  5. Gilbert CD, Sigman M (2007). "Brain states: top-down influences in sensory processing". Neuron. 54 (5): 677–96. doi:10.1016/j.neuron.2007.05.019. PMID 17553419.
  6. Cauller L (1995). "Layer I of primary sensory neocortex: where top-down converges upon bottom-up". Behav Brain Res. 71 (1–2): 163–70. doi:10.1016/0166-4328(95)00032-1. PMID 8747184.
  7. Rubio-Garrido P, Pérez-de-Manzo F, Porrero C, Galazo MJ, Clascá F (2009). "Thalamic input to distal apical dendrites in neocortical layer 1 is massive and highly convergent". Cereb Cortex. 19 (10): 2380–95. doi:10.1093/cercor/bhn259. PMID 19188274.
  8. 1 2 Jones EG (1998). "Viewpoint: the core and matrix of thalamic organization". Neuroscience. 85 (2): 331–45. doi:10.1016/S0306-4522(97)00581-2. PMID 9622234.
  9. Creutzfeldt, O. 1995. Cortex Cerebri. Springer-Verlag.
  10. 1 2 Lam YW, Sherman SM (2010). "Functional Organization of the Somatosensory Cortical Layer 6 Feedback to the Thalamus". Cereb Cortex. 20 (1): 13–24. doi:10.1093/cercor/bhp077. PMC 2792186Freely accessible. PMID 19447861.
  11. Mountcastle V (1997). "The columnar organization of the neocortex". Brain. 120 (4): 701–722. doi:10.1093/brain/120.4.701. PMID 9153131.
  12. HUBEL DH, WIESEL TN (October 1959). "Receptive fields of single neurones in the cat's striate cortex". J. Physiol. (Lond.). 148 (3): 574–91. doi:10.1113/jphysiol.1959.sp006308. PMC 1363130Freely accessible. PMID 14403679.
  13. S.M. Dombrowski , C.C. Hilgetag , and H. Barbas. Quantitative Architecture Distinguishes Prefrontal Cortical Systems in the Rhesus Monkey.Cereb. Cortex 11: 975-988. "...they either lack (agranular) or have only a rudimentary granular layer IV (dysgranular)."
  14. Sun W, Dan Y (2009). "Layer-specific network oscillation and spatiotemporal receptive field in the visual cortex". Proc Natl Acad Sci U S A. 106 (42): 17986–17991. doi:10.1073/pnas.0903962106. PMC 2764922Freely accessible. PMID 19805197.
  15. Pletikos, Mihovil; Sousa, Andre MM; et al. (22 January 2014). "Temporal Specification and Bilaterality of Human Neocortical Topographic Gene Expression". Neuron. 81 (2): 321–332. doi:10.1016/j.neuron.2013.11.018.
  16. Natasha Warren; Damira Caric; Thomas Pratt; Julia A. Clausen; Pundit Asavaritikrai; John O. Mason; Robert E. Hill; David J. Price; Oxford Journals (1999). "The transcription factor, Pax6, is required for cell proliferation and differentiation in the developing cerebral cortex". National Institutes of Health. pp. 627–635. PMID 10498281.
  17. Larsen, W J. Human Embryology 3rd edition 2001. pp 421-422 ISBN 0-443-06583-7
  18. Stephen C. Noctor; Alexander C. Flint; Tamily A. Weissman; Ryan S. Dammerman & Arnold R. Kriegstein (2001). "Neurons derived from radial glial cells establish radial units in neocortex". Nature. 409 (6821): 714720. doi:10.1038/35055553. PMID 11217860.
  19. Rakic, P (October 2009). "Evolution of the neocortex: a perspective from developmental biology.". Nature reviews. Neuroscience. 10 (10): 724–35. doi:10.1038/nrn2719. PMC 2913577Freely accessible. PMID 19763105.
  20. Rakic, P (November 1972). "Extrinsic cytological determinants of basket and stellate cell dendritic pattern in the cerebellar molecular layer.". The Journal of Comparative Neurology. 146 (3): 335–54. doi:10.1002/cne.901460304. PMID 4628749.
  21. Calegari, F; Haubensack W; Haffner C; Huttner WB (2005). "Selective lengthening of the cell cycle in the neurogenic subpopulation of neural progenitor cells during mouse brain development.". J Neurosci. 25 (28): 6533–8. doi:10.1523/jneurosci.0778-05.2005.
  22. P. Rakic (1988). "Specification of cerebral cortical areas". Science. 241 (4862): 170176. doi:10.1126/science.3291116. PMID 3291116.
  23. Hu, X.L.; Wang,Y.; Shen, Q. (2012). "Epigenetic control on cell fate choice in neural stem cells". Protein & Cell. 3 (4): 278–290. doi:10.1007/s13238-012-2916-6. PMID 22549586.
  24. Kostović, Ivica. "Developmental history of the transient subplate zone in the visual and somatosensory cortex of the macaque monkey and human brain". Journal of Comparative Neurology. 297 (3): 441–470. doi:10.1002/cne.902970309.
  25. Rakic, P (1 February 1974). "Neurons in rhesus monkey visual cortex: systematic relation between time of origin and eventual disposition.". Science. 183 (4123): 425–7. doi:10.1126/science.183.4123.425. PMID 4203022.
  26. Zecevic N, Rakic P (2001). "Development of layer I neurons in the primate cerebral cortex". J Neurosci. 21 (15): 5607–19. PMID 11466432.
  27. Rakic, P (8 July 1988). "Specification of cerebral cortical areas.". Science. 241 (4862): 170–6. doi:10.1126/science.3291116. PMID 3291116.
  28. Fukuchi-Shimogori, T; Grove, EA (2 November 2001). "Neocortex patterning by the secreted signaling molecule FGF8.". Science. 294 (5544): 1071–4. doi:10.1126/science.1064252. PMID 11567107.
  29. Garel, S; Huffman, KJ; Rubenstein, JL (May 2003). "Molecular regionalization of the neocortex is disrupted in Fgf8 hypomorphic mutants.". Development (Cambridge, England). 130 (9): 1903–14. doi:10.1242/dev.00416. PMID 12642494.
  30. Bishop, KM; Goudreau, G; O'Leary, DD (14 April 2000). "Regulation of area identity in the mammalian neocortex by Emx2 and Pax6.". Science. 288 (5464): 344–9. doi:10.1126/science.288.5464.344. PMID 10764649.
  31. Rash, BG; Lim, HD; Breunig, JJ; Vaccarino, FM (26 October 2011). "FGF signaling expands embryonic cortical surface area by regulating Notch-dependent neurogenesis.". The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 (43): 15604–17. doi:10.1523/jneurosci.4439-11.2011. PMID 22031906.
  32. Rajagopalan, V; Scott, J; Habas, PA; Kim, K; Corbett-Detig, J; Rousseau, F; Barkovich, AJ; Glenn, OA; Studholme, C (23 February 2011). "Local tissue growth patterns underlying normal fetal human brain gyrification quantified in utero.". The Journal of neuroscience : the official journal of the Society for Neuroscience. 31 (8): 2878–87. doi:10.1523/jneurosci.5458-10.2011. PMID 21414909.
  33. Lui, Jan H.; Hansen, David V.; Kriegstein, Arnold R. (2011-07-08). "Development and evolution of the human neocortex". Cell. 146 (1): 18–36. doi:10.1016/j.cell.2011.06.030. ISSN 1097-4172. PMC 3610574Freely accessible. PMID 21729779.
  34. Stahl, Ronny; Walcher, Tessa; De Juan Romero, Camino; Pilz, Gregor Alexander; Cappello, Silvia; Irmler, Martin; Sanz-Aquela, José Miguel; Beckers, Johannes; Blum, Robert (2013-04-25). "Trnp1 regulates expansion and folding of the mammalian cerebral cortex by control of radial glial fate". Cell. 153 (3): 535–549. doi:10.1016/j.cell.2013.03.027. ISSN 1097-4172. PMID 23622239.
  35. Wang, Lei; Hou, Shirui; Han, Young-Goo (2016-05-23). "Hedgehog signaling promotes basal progenitor expansion and the growth and folding of the neocortex". Nature Neuroscience. 19: 888–96. doi:10.1038/nn.4307. ISSN 1546-1726. PMID 27214567.
  36. Rash, Brian G.; Tomasi, Simone; Lim, H. David; Suh, Carol Y.; Vaccarino, Flora M. (2013-06-26). "Cortical gyrification induced by fibroblast growth factor 2 in the mouse brain". The Journal of Neuroscience: The Official Journal of the Society for Neuroscience. 33 (26): 10802–10814. doi:10.1523/JNEUROSCI.3621-12.2013. ISSN 1529-2401. PMC 3693057Freely accessible. PMID 23804101.
  37. 1 2 Nieuwenhuys R, Donkelaar HJ, Nicholson C (1998). The central nervous system of vertebrates, Volume 1. Springer. pp. 2011–2012. ISBN 978-3-540-56013-5.
  38. Frithjof Kruggel; Martina K. Brückner; Thomas Arendt; Christopher J. Wiggins; D. Yves von Cramon (2003). "Analyzing the neocortical fine-structure". Medical Image Analysis. 7 (3): 251264. doi:10.1016/S1361-8415(03)00006-9.
  39. Katherine L. Narr; Roger P. Woods; Paul M. Thompson; Philip Szeszko; Delbert Robinson; Teodora Dimtcheva; Mala Gurbani; Arthur W. Toga; Robert M. Bilder (2007). "Relationships between IQ and Regional Cortical Grey Matter Thickness in Healthy Adults". Cerebral Cortex. 17 (9): 21632171. doi:10.1093/cercor/bhl125. PMID 17118969.
  40. Alexandre F.M. DaSilva; Cristina Granziera; Josh Snyder; Nouchine Hadjikhani (2007). "Thickening in the somatosensory cortex of patients with migraine". Neurology. 69 (21): 19901995. doi:10.1212/01.wnl.0000291618.32247.2d. PMID 18025393.
  41. Catharine Paddock (2007-11-20). "Migraine Sufferers Have Thicker Brain Cortex". Medical News Today.
  42. Datte R, Detre JA, et al. (Oct 2011). "Absence of changes in cortical thickness in patients with migraine". Cephalagia. 31 (14): 1452–8. doi:10.1177/0333102411421025. PMID 21911412.
  43. Habib M (2000). "The neurological basis of developmental dyslexia: an overview and working hypothesis". Brain. 123 (12): 2373–99. doi:10.1093/brain/123.12.2373. PMID 11099442.
  44. Braitenberg, V and Schüz, A 1991. "Anatomy of the Cortex: Statistics and Geometry" NY: Springer-Verlag
  45. Saladin, Kenneth. Anatomy and Physiology: The Unity of Form and Function, 5th Ed. New York: McGraw-Hill Companies Inc., 2010. Print.
  46. Dorland’s Medical Dictionary for Health Consumers, 2008.
  47. Yeo BT, Krienen FM, Sepulcre J, Sabuncu MR, Lashkari D, Hollinshead M, Roffman JL, Smoller JW, Zöllei L, Polimeni JR, Fischl B, Liu H, Buckner RL (2011). "The organization of the human cerebral cortex estimated by intrinsic functional connectivity". Journal of Neurophysiology. 106 (3): 1125–1165. doi:10.1152/jn.00338.2011. PMC 3174820Freely accessible. PMID 21653723.
  48. Rupesh Kumar Srivastava; Jürgen Schmidhuber (2014). "Understanding Locally Competitive Networks". arXiv.org. arXiv:1410.1165Freely accessible.
  49. Cathy J. Price (2000). "The anatomy of language: contributions from functional neuroimaging". Journal of Anatomy. 197 (3): 335–359. doi:10.1046/j.1469-7580.2000.19730335.x.
  50. Ortolano S, Vieitez I, et al. (2014). "Loss of cortical neurons underlies the neuropathology of Lafora disease". Mol Brain. 7: 7. doi:10.1186/1756-6606-7-7. PMC 3917365Freely accessible. PMID 24472629.
  51. Tomer, R; Denes, AS; Tessmar-Raible, K; Arendt, D; Tomer R; Denes AS; Tessmar-Raible K; Arendt D (2010). "Profiling by image registration reveals common origin of annelid mushroom bodies and vertebrate pallium". Cell. 142 (5): 800–809. doi:10.1016/j.cell.2010.07.043. PMID 20813265.

External links

This article is issued from Wikipedia - version of the 11/7/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.