Biofuel

A bus fueled by biodiesel
Information on pump regarding ethanol fuel blend up to 10%, California

A biofuel is a fuel that is produced through contemporary biological processes, such as agriculture and anaerobic digestion, rather than a fuel produced by geological processes such as those involved in the formation of fossil fuels, such as coal and petroleum, from prehistoric biological matter. Biofuels can be derived directly from plants, or indirectly from agricultural, commercial, domestic, and/or industrial wastes.[1] Renewable biofuels generally involve contemporary carbon fixation, such as those that occur in plants or microalgae through the process of photosynthesis. Other renewable biofuels are made through the use or conversion of biomass (referring to recently living organisms, most often referring to plants or plant-derived materials). This biomass can be converted to convenient energy-containing substances in three different ways: thermal conversion, chemical conversion, and biochemical conversion. This biomass conversion can result in fuel in solid, liquid, or gas form. This new biomass can also be used directly for biofuels.

Bioethanol is an alcohol made by fermentation, mostly from carbohydrates produced in sugar or starch crops such as corn, sugarcane, or sweet sorghum. Cellulosic biomass, derived from non-food sources, such as trees and grasses, is also being developed as a feedstock for ethanol production. Ethanol can be used as a fuel for vehicles in its pure form, but it is usually used as a gasoline additive to increase octane and improve vehicle emissions. Bioethanol is widely used in the USA and in Brazil. Current plant design does not provide for converting the lignin portion of plant raw materials to fuel components by fermentation.

Biodiesel can be used as a fuel for vehicles in its pure form, but it is usually used as a diesel additive to reduce levels of particulates, carbon monoxide, and hydrocarbons from diesel-powered vehicles. Biodiesel is produced from oils or fats using transesterification and is the most common biofuel in Europe.

In 2010, worldwide biofuel production reached 105 billion liters (28 billion gallons US), up 17% from 2009,[2] and biofuels provided 2.7% of the world's fuels for road transport. Global ethanol fuel production reached 86 billion liters (23 billion gallons US) in 2010, with the United States and Brazil as the world's top producers, accounting together for about 90% of global production. The world's largest biodiesel producer is the European Union, accounting for 53% of all biodiesel production in 2010.[2] As of 2011, mandates for blending biofuels exist in 31 countries at the national level and in 29 states or provinces.[3] The International Energy Agency has a goal for biofuels to meet more than a quarter of world demand for transportation fuels by 2050 to reduce dependence on petroleum and coal.[4] The production of biofuels also led into a flourishing automotive industry, where by 2010, 79% of all cars produced in Brazil were made with a hybrid fuel system of bioethanol and gasoline.[5]

There are various social, economic, environmental and technical issues relating to biofuels production and use, which have been debated in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, poverty reduction potential, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity, impact on water resources, rural social exclusion and injustice, shantytown migration, rural unskilled unemployment, and nitrous oxide (NO2) emissions.

Liquid fuels for transportation

Most transportation fuels are liquids, because vehicles usually require high energy density. This occurs naturally in liquids and solids. High energy density can also be provided by an internal combustion engine. These engines require clean-burning fuels. The fuels that are easiest to burn cleanly are typically liquids and gases. Thus, liquids meet the requirements of being both energy-dense and clean-burning. In addition, liquids (and gases) can be pumped, which means handling is easily mechanized, and thus less laborious.

First-generation biofuels

"First-generation" or conventional biofuels are made from sugar, starch, or vegetable oil.

Ethanol

Main article: Ethanol fuel
Neat ethanol on the left (A), gasoline on the right (G) at a filling station in Brazil

Biologically produced alcohols, most commonly ethanol, and less commonly propanol and butanol, are produced by the action of microorganisms and enzymes through the fermentation of sugars or starches (easiest), or cellulose (which is more difficult). Biobutanol (also called biogasoline) is often claimed to provide a direct replacement for gasoline, because it can be used directly in a gasoline engine.

U.S. President George W. Bush looks at sugar cane, a source of biofuel, with Brazilian President Luiz Inácio Lula da Silva during a tour on biofuel technology at Petrobras in São Paulo, Brazil, 9 March 2007.

Ethanol fuel is the most common biofuel worldwide, particularly in Brazil. Alcohol fuels are produced by fermentation of sugars derived from wheat, corn, sugar beets, sugar cane, molasses and any sugar or starch from which alcoholic beverages such as whiskey, can be made (such as potato and fruit waste, etc.). The ethanol production methods used are enzyme digestion (to release sugars from stored starches), fermentation of the sugars, distillation and drying. The distillation process requires significant energy input for heat (sometimes unsustainable natural gas fossil fuel, but cellulosic biomass such as bagasse, the waste left after sugar cane is pressed to extract its juice, is the most common fuel in Brazil, while pellets, wood chips and also waste heat are more common in Europe) Waste steam fuels ethanol factory[6] - where waste heat from the factories also is used in the district heating grid.

Ethanol can be used in petrol engines as a replacement for gasoline; it can be mixed with gasoline to any percentage. Most existing car petrol engines can run on blends of up to 15% bioethanol with petroleum/gasoline. Ethanol has a smaller energy density than that of gasoline; this means it takes more fuel (volume and mass) to produce the same amount of work. An advantage of ethanol (CH
3
CH
2
OH
) is that it has a higher octane rating than ethanol-free gasoline available at roadside gas stations, which allows an increase of an engine's compression ratio for increased thermal efficiency. In high-altitude (thin air) locations, some states mandate a mix of gasoline and ethanol as a winter oxidizer to reduce atmospheric pollution emissions.

Ethanol is also used to fuel bioethanol fireplaces. As they do not require a chimney and are "flueless", bioethanol fires[7] are extremely useful for newly built homes and apartments without a flue. The downsides to these fireplaces is that their heat output is slightly less than electric heat or gas fires, and precautions must be taken to avoid carbon monoxide poisoning.

Corn-to-ethanol and other food stocks has led to the development of cellulosic ethanol. According to a joint research agenda conducted through the US Department of Energy,[8] the fossil energy ratios (FER) for cellulosic ethanol, corn ethanol, and gasoline are 10.3, 1.36, and 0.81, respectively.[9][10][11]

Ethanol has roughly one-third lower energy content per unit of volume compared to gasoline. This is partly counteracted by the better efficiency when using ethanol (in a long-term test of more than 2.1 million km, the BEST project found FFV vehicles to be 1-26 % more energy efficient than petrol cars, but the volumetric consumption increases by approximately 30%, so more fuel stops are required.

With current subsidies, ethanol fuel is slightly cheaper per distance traveled in the United States.

Biodiesel

Biodiesel is the most common biofuel in Europe. It is produced from oils or fats using transesterification and is a liquid similar in composition to fossil/mineral diesel. Chemically, it consists mostly of fatty acid methyl (or ethyl) esters (FAMEs). Feedstocks for biodiesel include animal fats, vegetable oils, soy, rapeseed, jatropha, mahua, mustard, flax, sunflower, palm oil, hemp, field pennycress, Pongamia pinnata and algae. Pure biodiesel (B100) currently reduces emissions with up to 60% compared to diesel Second generation B100.[12]

Biodiesel can be used in any diesel engine when mixed with mineral diesel. In some countries, manufacturers cover their diesel engines under warranty for B100 use, although Volkswagen of Germany, for example, asks drivers to check by telephone with the VW environmental services department before switching to B100. B100 may become more viscous at lower temperatures, depending on the feedstock used. In most cases, biodiesel is compatible with diesel engines from 1994 onwards, which use 'Viton' (by DuPont) synthetic rubber in their mechanical fuel injection systems. Note however, that no vehicles are certified for using neat biodiesel before 2014, as there was no emission control protocol available for biodiesel before this date.

Electronically controlled 'common rail' and 'unit injector' type systems from the late 1990s onwards may only use biodiesel blended with conventional diesel fuel. These engines have finely metered and atomized multiple-stage injection systems that are very sensitive to the viscosity of the fuel. Many current-generation diesel engines are made so that they can run on B100 without altering the engine itself, although this depends on the fuel rail design. Since biodiesel is an effective solvent and cleans residues deposited by mineral diesel, engine filters may need to be replaced more often, as the biofuel dissolves old deposits in the fuel tank and pipes. It also effectively cleans the engine combustion chamber of carbon deposits, helping to maintain efficiency. In many European countries, a 5% biodiesel blend is widely used and is available at thousands of gas stations.[13][14] Biodiesel is also an oxygenated fuel, meaning it contains a reduced amount of carbon and higher hydrogen and oxygen content than fossil diesel. This improves the combustion of biodiesel and reduces the particulate emissions from unburnt carbon. However, using neat biodiesel may increase NOx-emissions[15]

Biodiesel is also safe to handle and transport because it is non-toxic and biodegradable, and has a high flash point of about 300 °F (148 °C) compared to petroleum diesel fuel, which has a flash point of 125 °F (52 °C).[16]

In the USA, more than 80% of commercial trucks and city buses run on diesel. The emerging US biodiesel market is estimated to have grown 200% from 2004 to 2005. "By the end of 2006 biodiesel production was estimated to increase fourfold [from 2004] to more than" 1 billion US gallons (3,800,000 m3).[17]

In France, biodiesel is incorporated at a rate of 8% in the fuel used by all French diesel vehicles.[18] Avril Group produces under the brand Diester, a fifth of 11 million tons of biodiesel consumed annually by the European Union.[19] It is the leading European producer of biodiesel.[18]

Other bioalcohols

Methanol is currently produced from natural gas, a non-renewable fossil fuel. In the future it is hoped to be produced from biomass as biomethanol. This is technically feasible, but the production is currently being postponed for concerns of Jacob S. Gibbs and Brinsley Coleberd that the economic viability is still pending.[20] The methanol economy is an alternative to the hydrogen economy, compared to today's hydrogen production from natural gas.

Butanol (C
4
H
9
OH
) is formed by ABE fermentation (acetone, butanol, ethanol) and experimental modifications of the process show potentially high net energy gains with butanol as the only liquid product. Butanol will produce more energy and allegedly can be burned "straight" in existing gasoline engines (without modification to the engine or car),[21] and is less corrosive and less water-soluble than ethanol, and could be distributed via existing infrastructures. DuPont and BP are working together to help develop butanol. E. coli strains have also been successfully engineered to produce butanol by modifying their amino acid metabolism.[22]

Green diesel

Green diesel is produced through hydrocracking biological oil feedstocks, such as vegetable oils and animal fats.[23][24] Hydrocracking is a refinery method that uses elevated temperatures and pressure in the presence of a catalyst to break down larger molecules, such as those found in vegetable oils, into shorter hydrocarbon chains used in diesel engines.[25] It may also be called renewable diesel, hydrotreated vegetable oil[25] or hydrogen-derived renewable diesel.[24] Green diesel has the same chemical properties as petroleum-based diesel.[25] It does not require new engines, pipelines or infrastructure to distribute and use, but has not been produced at a cost that is competitive with petroleum.[24] Gasoline versions are also being developed.[26] Green diesel is being developed in Louisiana and Singapore by ConocoPhillips, Neste Oil, Valero, Dynamic Fuels, and Honeywell UOP[24][27] as well as Preem in Gothenburg, Sweden, creating what is known as Evolution Diesel.[28]

Biofuel gasoline

In 2013 UK researchers developed a genetically modified strain of Escherichia coli (E.Coli), which could transform glucose into biofuel gasoline that does not need to be blended.[29] Later in 2013 UCLA researchers engineered a new metabolic pathway to bypass glycolysis and increase the rate of conversion of sugars into biofuel,[30] while KAIST researchers developed a strain capable of producing short-chain alkanes, free fatty acids, fatty esters and fatty alcohols through the fatty acyl (acyl carrier protein (ACP)) to fatty acid to fatty acyl-CoA pathway in vivo.[31] It is believed that in the future it will be possible to "tweak" the genes to make gasoline from straw or animal manure.

Vegetable oil

Filtered waste vegetable oil
Walmart's truck fleet logs millions of miles each year, and the company planned to double the fleet's efficiency between 2005 and 2015.[32] This truck is one of 15 based at Walmart's Buckeye, Arizona distribution center that was converted to run on a biofuel made from reclaimed cooking grease produced during food preparation at Walmart stores.[33]
Main article: Vegetable oil fuel

Straight unmodified edible vegetable oil is generally not used as fuel, but lower-quality oil can and has been used for this purpose. Used vegetable oil is increasingly being processed into biodiesel, or (more rarely) cleaned of water and particulates and used as a fuel.

As with 100% biodiesel (B100), to ensure the fuel injectors atomize the vegetable oil in the correct pattern for efficient combustion, vegetable oil fuel must be heated to reduce its viscosity to that of diesel, either by electric coils or heat exchangers. This is easier in warm or temperate climates. MAN B&W Diesel, Wärtsilä, and Deutz AG, as well as a number of smaller companies, such as Elsbett, offer engines that are compatible with straight vegetable oil, without the need for after-market modifications.

Vegetable oil can also be used in many older diesel engines that do not use common rail or unit injection electronic diesel injection systems. Due to the design of the combustion chambers in indirect injection engines, these are the best engines for use with vegetable oil. This system allows the relatively larger oil molecules more time to burn. Some older engines, especially Mercedes, are driven experimentally by enthusiasts without any conversion, a handful of drivers have experienced limited success with earlier pre-"Pumpe Duse" VW TDI engines and other similar engines with direct injection. Several companies, such as Elsbett or Wolf, have developed professional conversion kits and successfully installed hundreds of them over the last decades.

Oils and fats can be hydrogenated to give a diesel substitute. The resulting product is a straight-chain hydrocarbon with a high cetane number, low in aromatics and sulfur and does not contain oxygen. Hydrogenated oils can be blended with diesel in all proportions. They have several advantages over biodiesel, including good performance at low temperatures, no storage stability problems and no susceptibility to microbial attack.[34]

Bioethers

Bioethers (also referred to as fuel ethers or oxygenated fuels) are cost-effective compounds that act as octane rating enhancers."Bioethers are produced by the reaction of reactive iso-olefins, such as iso-butylene, with bioethanol."[35] Bioethers are created by wheat or sugar beet.[36] They also enhance engine performance, whilst significantly reducing engine wear and toxic exhaust emissions. Though bioethers are likely to replace petroethers in the UK, it is highly unlikely they will become a fuel in and of itself due to the low energy density.[37] Greatly reducing the amount of ground-level ozone emissions, they contribute to air quality.[38][39]

When it comes to transportation fuel there are six ether additives: dimethyl ether (DME), diethyl ether (DEE), methyl teritiary-butyl ether (MTBE), ethyl ter-butyl ether (ETBE), ter-amyl methyl ether (TAME), and ter-amyl ethyl ether (TAEE)[40]

The European Fuel Oxygenates Association (EFOA) credits methyl Ttertiary-butyl ether (MTBE) and ethyl ter-butyl ether (ETBE) as the most commonly used ethers in fuel to replace lead. Ethers were introduced in Europe in the 1970s to replace the highly toxic compound.[41] Although Europeans still use bio-ether additives, the US no longer has an oxygenate requirement therefore bio-ethers are no longer used as the main fuel additive.[42]

Biogas

Pipes carrying biogas
Main article: Biogas

Biogas is methane produced by the process of anaerobic digestion of organic material by anaerobes.[43] It can be produced either from biodegradable waste materials or by the use of energy crops fed into anaerobic digesters to supplement gas yields. The solid byproduct, digestate, can be used as a biofuel or a fertilizer.

Biogas can be recovered from mechanical biological treatment waste processing systems. Landfill gas, a less clean form of biogas, is produced in landfills through naturally occurring anaerobic digestion. If it escapes into the atmosphere, it is a potential greenhouse gas.

Farmers can produce biogas from manure from their cattle by using anaerobic digesters.[44]

Syngas

Main article: Gasification

Syngas, a mixture of carbon monoxide, hydrogen and other hydrocarbons, is produced by partial combustion of biomass, that is, combustion with an amount of oxygen that is not sufficient to convert the biomass completely to carbon dioxide and water.[34] Before partial combustion, the biomass is dried, and sometimes pyrolysed. The resulting gas mixture, syngas, is more efficient than direct combustion of the original biofuel; more of the energy contained in the fuel is extracted.

Syngas may be burned directly in internal combustion engines, turbines or high-temperature fuel cells.[45] The wood gas generator, a wood-fueled gasification reactor, can be connected to an internal combustion engine.

Syngas can be used to produce methanol, DME and hydrogen, or converted via the Fischer-Tropsch process to produce a diesel substitute, or a mixture of alcohols that can be blended into gasoline. Gasification normally relies on temperatures greater than 700 °C.

Lower-temperature gasification is desirable when co-producing biochar, but results in syngas polluted with tar.

Solid biofuels

Examples include wood, sawdust, grass trimmings, domestic refuse, charcoal, agricultural waste, nonfood energy crops, and dried manure.

When raw biomass is already in a suitable form (such as firewood), it can burn directly in a stove or furnace to provide heat or raise steam. When raw biomass is in an inconvenient form (such as sawdust, wood chips, grass, urban waste wood, agricultural residues), the typical process is to densify the biomass. This process includes grinding the raw biomass to an appropriate particulate size (known as hogfuel), which, depending on the densification type, can be from 1 to 3 cm (0.4 to 1.2 in), which is then concentrated into a fuel product. The current processes produce wood pellets, cubes, or pucks. The pellet process is most common in Europe, and is typically a pure wood product. The other types of densification are larger in size compared to a pellet, and are compatible with a broad range of input feedstocks. The resulting densified fuel is easier to transport and feed into thermal generation systems, such as boilers.

Industry has used sawdust, bark and chips for fuel for decades, primary in the pulp and paper industry, and also bagasse (spent sugar cane) fueled boilers in the sugar cane industry. Boilers in the range of 500,000 lb/hr of steam, and larger, are in routine operation, using grate, spreader stoker, suspension burning and fluid bed combustion. Utilities generate power, typically in the range of 5 to 50 MW, using locally available fuel. Other industries have also installed wood waste fueled boilers and dryers in areas with low cost fuel.[46]

One of the advantages of biomass fuel is that it is often a byproduct, residue or waste-product of other processes, such as farming, animal husbandry and forestry.[47] In theory, this means fuel and food production do not compete for resources, although this is not always the case.[47]

A problem with the combustion of raw biomass is that it emits considerable amounts of pollutants, such as particulates and polycyclic aromatic hydrocarbons. Even modern pellet boilers generate much more pollutants than oil or natural gas boilers. Pellets made from agricultural residues are usually worse than wood pellets, producing much larger emissions of dioxins and chlorophenols.[48]

In spite of the above noted study, numerous studies have shown biomass fuels have significantly less impact on the environment than fossil based fuels. Of note is the US Department of Energy Laboratory, operated by Midwest Research Institute Biomass Power and Conventional Fossil Systems with and without CO2 Sequestration – Comparing the Energy Balance, Greenhouse Gas Emissions and Economics Study. Power generation emits significant amounts of greenhouse gases (GHGs), mainly carbon dioxide (CO2). Sequestering CO2 from the power plant flue gas can significantly reduce the GHGs from the power plant itself, but this is not the total picture. CO2 capture and sequestration consumes additional energy, thus lowering the plant's fuel-to-electricity efficiency. To compensate for this, more fossil fuel must be procured and consumed to make up for lost capacity.

Taking this into consideration, the global warming potential (GWP), which is a combination of CO2, methane (CH4), and nitrous oxide (N2O) emissions, and energy balance of the system need to be examined using a life cycle assessment. This takes into account the upstream processes which remain constant after CO2 sequestration, as well as the steps required for additional power generation. Firing biomass instead of coal led to a 148% reduction in GWP.

A derivative of solid biofuel is biochar, which is produced by biomass pyrolysis. Biochar made from agricultural waste can substitute for wood charcoal. As wood stock becomes scarce, this alternative is gaining ground. In eastern Democratic Republic of Congo, for example, biomass briquettes are being marketed as an alternative to charcoal to protect Virunga National Park from deforestation associated with charcoal production.[49]

Second-generation (advanced) biofuels

Second generation biofuels, also known as advanced biofuels, are fuels that can be manufactured from various types of biomass. Biomass is a wide-ranging term meaning any source of organic carbon that is renewed rapidly as part of the carbon cycle. Biomass is derived from plant materials but can also include animal materials.

First generation biofuels are made from the sugars and vegetable oils found in arable crops, which can be easily extracted using conventional technology. In comparison, second generation biofuels are made from lignocellulosic biomass or woody crops, agricultural residues or waste, which makes it harder to extract the required fuel. A series of physical and chemical treatments might be required to convert lignocellulosic biomass to liquid fuels suitable for transportation.[50][51]

Sustainable biofuels

Main article: Sustainable biofuels

Biofuels in the form of liquid fuels derived from plant materials are entering the market, driven mainly by the perception that they reduce climate gas emissions, and also by factors such as oil price spikes and the need for increased energy security. However, many of the biofuels that are currently being supplied have been criticised for their adverse impacts on the natural environment, food security, and land use.[52][53] In 2008, the Nobel-prize winning chemist Paul J. Crutzen published findings that the release of nitrous oxide (N2O) emissions in the production of biofuels means that overall they contribute more to global warming than the fossil fuels they replace.[54]

The challenge is to support biofuel development, including the development of new cellulosic technologies, with responsible policies and economic instruments to help ensure that biofuel commercialization is sustainable. Responsible commercialization of biofuels represents an opportunity to enhance sustainable economic prospects in Africa, Latin America and Asia.[52][53][55]

According to the Rocky Mountain Institute, sound biofuel production practices would not hamper food and fibre production, nor cause water or environmental problems, and would enhance soil fertility.[56] The selection of land on which to grow the feedstocks is a critical component of the ability of biofuels to deliver sustainable solutions. A key consideration is the minimisation of biofuel competition for prime cropland.[57][58]

Biofuels by region

Main article: Biofuels by region
Bio Diesel Powered Fast Attack Craft Of Indian Navy patrolling during IFR 2016.The green bands on the vessels are indicative of the fact that the vessels are powered by bio-diesel

There are international organizations such as IEA Bioenergy,[59] established in 1978 by the OECD International Energy Agency (IEA), with the aim of improving cooperation and information exchange between countries that have national programs in bioenergy research, development and deployment. The UN International Biofuels Forum is formed by Brazil, China, India, Pakistan, South Africa, the United States and the European Commission.[60] The world leaders in biofuel development and use are Brazil, the United States, France, Sweden and Germany. Russia also has 22% of world's forest,[61] and is a big biomass (solid biofuels) supplier. In 2010, Russian pulp and paper maker, Vyborgskaya Cellulose, said they would be producing pellets that can be used in heat and electricity generation from its plant in Vyborg by the end of the year.[62] The plant will eventually produce about 900,000 tons of pellets per year, making it the largest in the world once operational.

Biofuels currently make up 3.1%[63] of the total road transport fuel in the UK or 1,440 million litres. By 2020, 10% of the energy used in UK road and rail transport must come from renewable sources – this is the equivalent of replacing 4.3 million tonnes of fossil oil each year. Conventional biofuels are likely to produce between 3.7 and 6.6% of the energy needed in road and rail transport, while advanced biofuels could meet up to 4.3% of the UK’s renewable transport fuel target by 2020.[64]

Air pollution

Biofuels are different from fossil fuels in regard to greenhouse gases but are similar to fossil fuels in that biofuels contribute to air pollution. Burning produces airborne carbon particulates, carbon monoxide and nitrous oxides.[65] The WHO estimates 3.7 million premature deaths worldwide in 2012 due to air pollution.[66] Brazil burns significant amounts of ethanol biofuel. Gas chromatograph studies were performed of ambient air in São Paulo, Brazil, and compared to Osaka, Japan, which does not burn ethanol fuel. Atmospheric Formaldehyde was 160% higher in Brazil, and Acetaldehyde was 260% higher.[67]

Debates regarding the production and use of biofuel

There are various social, economic, environmental and technical issues with biofuel production and use, which have been discussed in the popular media and scientific journals. These include: the effect of moderating oil prices, the "food vs fuel" debate, food prices, poverty reduction potential, energy ratio, energy requirements, carbon emissions levels, sustainable biofuel production, deforestation and soil erosion, loss of biodiversity,[68] impact on water resources, the possible modifications necessary to run the engine on biofuel, as well as energy balance and efficiency.[69] The International Resource Panel, which provides independent scientific assessments and expert advice on a variety of resource-related themes, assessed the issues relating to biofuel use in its first report Towards sustainable production and use of resources: Assessing Biofuels.[70] "Assessing Biofuels" outlined the wider and interrelated factors that need to be considered when deciding on the relative merits of pursuing one biofuel over another. It concluded that not all biofuels perform equally in terms of their impact on climate, energy security and ecosystems, and suggested that environmental and social impacts need to be assessed throughout the entire life-cycle.

Another issue with biofuel use and production is the US has changed mandates many times because the production has been taking longer than expected. The Renewable Fuel Standard (RFS) set by congress for 2010 was pushed back to at best 2012 to produce 100 million gallons of pure ethanol (not blended with a fossil fuel).[71]

Current research

Research is ongoing into finding more suitable biofuel crops and improving the oil yields of these crops. Using the current yields, vast amounts of land and fresh water would be needed to produce enough oil to completely replace fossil fuel usage. It would require twice the land area of the US to be devoted to soybean production, or two-thirds to be devoted to rapeseed production, to meet current US heating and transportation needs.

Specially bred mustard varieties can produce reasonably high oil yields and are very useful in crop rotation with cereals, and have the added benefit that the meal left over after the oil has been pressed out can act as an effective and biodegradable pesticide.[72]

The NFESC, with Santa Barbara-based Biodiesel Industries, is working to develop biofuels technologies for the US navy and military, one of the largest diesel fuel users in the world.[73] A group of Spanish developers working for a company called Ecofasa announced a new biofuel made from trash. The fuel is created from general urban waste which is treated by bacteria to produce fatty acids, which can be used to make biofuels.[74]

Ethanol biofuels

As the primary source of biofuels in North America, many organizations are conducting research in the area of ethanol production. The National Corn-to-Ethanol Research Center (NCERC) is a research division of Southern Illinois University Edwardsville dedicated solely to ethanol-based biofuel research projects.[75] On the federal level, the USDA conducts a large amount of research regarding ethanol production in the United States. Much of this research is targeted toward the effect of ethanol production on domestic food markets.[76] A division of the U.S. Department of Energy, the National Renewable Energy Laboratory (NREL), has also conducted various ethanol research projects, mainly in the area of cellulosic ethanol.[77]

Cellulosic ethanol commercialization is the process of building an industry out of methods of turning cellulose-containing organic matter into fuel. Companies, such as Iogen, POET, and Abengoa, are building refineries that can process biomass and turn it into bioethanol. Companies, such as Diversa, Novozymes, and Dyadic, are producing enzymes that could enable a cellulosic ethanol future. The shift from food crop feedstocks to waste residues and native grasses offers significant opportunities for a range of players, from farmers to biotechnology firms, and from project developers to investors.[78]

As of 2013, the first commercial-scale plants to produce cellulosic biofuels have begun operating. Multiple pathways for the conversion of different biofuel feedstocks are being used. In the next few years, the cost data of these technologies operating at commercial scale, and their relative performance, will become available. Lessons learnt will lower the costs of the industrial processes involved.[79]

In parts of Asia and Africa where drylands prevail, sweet sorghum is being investigated as a potential source of food, feed and fuel combined. The crop is particularly suitable for growing in arid conditions, as it only extracts one seventh of the water used by sugarcane. In India, and other places, sweet sorghum stalks are used to produce biofuel by squeezing the juice and then fermenting into ethanol.[80]

A study by researchers at the International Crops Research Institute for the Semi-Arid Tropics (ICRISAT) found that growing sweet sorghum instead of grain sorghum could increase farmers incomes by US$40 per hectare per crop because it can provide fuel in addition to food and animal feed. With grain sorghum currently grown on over 11 million hectares (ha) in Asia and on 23.4 million ha in Africa, a switch to sweet sorghum could have a considerable economic impact.[81]

Algae biofuels

Main articles: Algaculture and Algae fuel

From 1978 to 1996, the US NREL experimented with using algae as a biofuels source in the "Aquatic Species Program".[82] A self-published article by Michael Briggs, at the UNH Biofuels Group, offers estimates for the realistic replacement of all vehicular fuel with biofuels by using algae that have a natural oil content greater than 50%, which Briggs suggests can be grown on algae ponds at wastewater treatment plants.[83] This oil-rich algae can then be extracted from the system and processed into biofuels, with the dried remainder further reprocessed to create ethanol. The production of algae to harvest oil for biofuels has not yet been undertaken on a commercial scale, but feasibility studies have been conducted to arrive at the above yield estimate. In addition to its projected high yield, algaculture — unlike crop-based biofuels — does not entail a decrease in food production, since it requires neither farmland nor fresh water. Many companies are pursuing algae bioreactors for various purposes, including scaling up biofuels production to commercial levels.[84][85] Prof. Rodrigo E. Teixeira from the University of Alabama in Huntsville demonstrated the extraction of biofuels lipids from wet algae using a simple and economical reaction in ionic liquids.[86]

Jatropha

Main article: Jatropha curcas

Several groups in various sectors are conducting research on Jatropha curcas, a poisonous shrub-like tree that produces seeds considered by many to be a viable source of biofuels feedstock oil.[87] Much of this research focuses on improving the overall per acre oil yield of Jatropha through advancements in genetics, soil science, and horticultural practices.

SG Biofuels, a San Diego-based jatropha developer, has used molecular breeding and biotechnology to produce elite hybrid seeds that show significant yield improvements over first-generation varieties.[88] SG Biofuels also claims additional benefits have arisen from such strains, including improved flowering synchronicity, higher resistance to pests and diseases, and increased cold-weather tolerance.[89]

Plant Research International, a department of the Wageningen University and Research Centre in the Netherlands, maintains an ongoing Jatropha Evaluation Project that examines the feasibility of large-scale jatropha cultivation through field and laboratory experiments.[90] The Center for Sustainable Energy Farming (CfSEF) is a Los Angeles-based nonprofit research organization dedicated to jatropha research in the areas of plant science, agronomy, and horticulture. Successful exploration of these disciplines is projected to increase jatropha farm production yields by 200-300% in the next 10 years.[91]

Fungi

A group at the Russian Academy of Sciences in Moscow, in a 2008 paper, stated they had isolated large amounts of lipids from single-celled fungi and turned it into biofuels in an economically efficient manner. More research on this fungal species, Cunninghamella japonica, and others, is likely to appear in the near future.[92] The recent discovery of a variant of the fungus Gliocladium roseum (later renamed Ascocoryne sarcoides) points toward the production of so-called myco-diesel from cellulose. This organism was recently discovered in the rainforests of northern Patagonia, and has the unique capability of converting cellulose into medium-length hydrocarbons typically found in diesel fuel.[93] Many other fungi that can degrade cellulose and other polymers have been observed to produce molecules that are currently being engineered using organisms from other kingdoms, suggesting that fungi may play a large role in the bio-production of fuels in the future (reviewed in [94]).

Animal gut bacteria

Microbial gastrointestinal flora in a variety of animals have shown potential for the production of biofuels. Recent research has shown that TU-103, a strain of Clostridium bacteria found in Zebra feces, can convert nearly any form of cellulose into butanol fuel.[95] Microbes in panda waste are being investigated for their use in creating biofuels from bamboo and other plant materials.[96] There has also been substantial research into the technology of using the gut microbiomes of wood-feeding insects for the conversion of lignocellulotic material into biofuel.[97]

Greenhouse gas emissions

Some scientists have expressed concerns about land-use change in response to greater demand for crops to use for biofuel and the subsequent carbon emissions.[98] The payback period, that is, the time it will take biofuels to pay back the carbon debt they acquire due to land-use change, has been estimated to be between 100 and 1000 years, depending on the specific instance and location of land-use change. However, no-till practices combined with cover-crop practices can reduce the payback period to three years for grassland conversion and 14 years for forest conversion.[99]

A study conducted in the Tocantis State, in northern Brazil, found that many families were cutting down forests in order to produce two conglomerates of oilseed plants, the J. curcas (JC group) and the R. communis (RC group). This region is composed of 15% Amazonian rainforest with high biodiversity, and 80% Cerrado forest with lower biodiversity. During the study, the farmers that planted the JC group released over 2193 Mg CO2, while losing 53-105 Mg CO2 sequestration from deforestation; and the RC group farmers released 562 Mg CO2, while losing 48-90 Mg CO2 to be sequestered from forest depletion.[100] The production of these types of biofuels not only led into an increased emission of carbon dioxide, but also to lower efficiency of forests to absorb the gases that these farms were emitting. This has to do with the amount of fossil fuel the production of fuel crops involves. In addition, the intensive use of monocropping agriculture requires large amounts of water irrigation, as well as of fertilizers, herbicides and pesticides. This does not only lead to poisonous chemicals to disperse on water runoff, but also to the emission of nitrous oxide (NO2) as a fertilizer byproduct, which is three hundred times more efficient in producing a greenhouse effect than carbon dioxide (CO2).[101]

Converting rainforests, peatlands, savannas, or grasslands to produce food crop–based biofuels in Brazil, Southeast Asia, and the United States creates a “biofuel carbon debt” by releasing 17 to 420 times more CO2 than the annual greenhouse gas (GHG) reductions that these biofuels would provide by displacing fossil fuels. Biofuels made from waste biomass or from biomass grown on abandoned agricultural lands incur little to no carbon debt.[102]

Water Use

In addition to water required to grow crops, biofuel facilities require significant process water.[103]

See also

References

  1. "What is biofuel? definition and meaning". BusinessDictionary.com. Retrieved 30 May 2015.
  2. 1 2 "Biofuels Make a Comeback Despite Tough Economy". Worldwatch Institute. 2011-08-31. Retrieved 2011-08-31.
  3. REN21 (2011). "Renewables 2011: Global Status Report" (PDF). pp. 13–14. Archived from the original (PDF) on 2011-09-05. Retrieved 2015-01-03.
  4. "Technology Roadmap, Biofuels for Transport" (PDF). 2011.
  5. Hall, Jeremy, Stelvia Matos, Bruno Silvestre, and Michael Martin. “Managing Technological and Social Uncertainties of Innovation: The Evolution of Brazilian Energy and Agriculture” Technological Forecasting and Social Change 78 (2011): 1147-1157. Accessed October 30, 2014. doi: 10.1016/j.techfore.2011.02.005
  6. Energikunskap | Lär dig mer om energi - E.ON
  7. Bio ethanol fires information bio ethanol fireplace. (2009)
  8. see "Breaking the Biological Barriers to Cellulosic Ethanol"
  9. Brinkman, N. et al., "Well-to-Wheels Analysis of Advanced/Vehicle Systems", 2005.
  10. Farrell, A.E. et al. (2006) "Ethanol can Contribute to Energy and Environmental Goals", Science, 311, 506-8.
  11. Hammerschlag, R. 2006. "Ethanol's Energy Return on Investment: A Survey of the Literature 1999-Present", Environ. Sci. Technol., 40, 1744-50.
  12. Verdis Polaris Aura – second generation B100 – The advanced green one - Welcome to Perstorp - World leader in several sectors of the specialty chemicals market
  13. "ADM Biodiesel: Hamburg, Leer, Mainz". Biodiesel.de. Retrieved 2010-07-14.
  14. RRI Limited for Biodiesel Filling Stations. "Welcome to Biodiesel Filling Stations". Biodieselfillingstations.co.uk. Retrieved 2010-07-14.
  15. http://www.vtt.fi/inf/pdf/technology/2012/T46.pdf Nylund.N-O & Koponen.K. 2013. Fuel and Technology Alternatives for Buses. Overall Energy Efficiency and Emission Performance. IEA Bioenergy Task 46]. Possibly the new emission standards Euro VI/EPA 10 will lead to reduced NOx-levels also when using B100.
  16. "Biofuels Facts". Hempcar.org. Retrieved 2010-07-14.
  17. THE FUTURIST, Will Thurmond. July–August 2007
  18. 1 2 (Avril Group : Activity Report 2014, p. 58)
  19. (EurObserv’ER 2014, p. 4)
  20. Börjesson.P. et al. 2013, REPORT f3 2013:13, p 170
  21. "ButylFuel, LLC Main Page". Butanol.com. 2005-08-15. Retrieved 2010-07-14.
  22. Evans, Jon (14 January 2008). "Biofuels aim higher". Biofuels, Bioproducts and Biorefining (BioFPR). Retrieved 2008-12-03.
  23. Brown, Robert; Jennifer Holmgren. "Fast Pyrolysis and Bio-Oil Upgrading" (PDF). Retrieved 15 March 2012.
  24. 1 2 3 4 "Alternative & Advanced Fuels". US Department of Energy. Retrieved 7 March 2012.
  25. 1 2 3 Knothe, Gerhard (2010). "Biodiesel and renewable diesel: A comparison". Progress in Energy and Combustion Science
  26. Jessica, Ebert. "Breakthroughs in Green Gasoline Production". Biomass Magazine. Retrieved 14 August 2012.
  27. Albrecht, KO; Hallen, RT (March 2011). "A Brief Literature Overview of Various Routes to Biorenewable Fuels from Lipids for the National Alliance of Advanced Biofuels and Bio-products NAAB Consortium" (PDF). Prepared by the US Department of Energy
  28. Summers, Rebecca (24 April 2013) Bacteria churn out first ever petrol-like biofuel New Scientist, Retrieved 27 April 2013
  29. Bogorad, I. W.; Lin, T. S.; Liao, J. C. (2013). "Synthetic non-oxidative glycolysis enables complete carbon conservation". Nature. doi:10.1038/nature12575.
  30. Choi, Y. J.; Lee, S. Y. (2013). "Microbial production of short-chain alkanes". Nature. 502: 571–4. doi:10.1038/nature12536. PMID 24077097.
  31. Nishimoto, Alex (March 10, 2014). "Walmart Debuts Turbine-Powered WAVE Semi Truck Prototype". Motor Trend.
  32. "Wal-Mart To Test Hybrid Trucks". Sustainable Business. February 3, 2009.
  33. 1 2 Evans, G. "Liquid Transport Biofuels - Technology Status Report", National Non-Food Crops Centre, 2008-04-14. Retrieved on 2009-05-11. Archived 19 September 2008 at the Wayback Machine.
  34. Rock, Kerry; Maurice Korpelshoek (2007). "Bioethers Impact on the Gasoline Pool". Digital Refining. Retrieved 15 February 2014.
  35. Biofuels - Types of Biofuels - Bioethers
  36. "Biofuels - Types of Biofuels - Bioethers". Retrieved 30 May 2015.
  37. "Council Directive 85/536/EEC of 5 December 1985 on crude-oil savings through the use of substitute fuel components in petrol". Eur-lex.europa.eu. Retrieved 2010-07-14.
  38. "Microsoft Word - IA 55 EN.doc" (PDF). Retrieved 2010-07-14.
  39. Sukla, Mirtunjay Kumar; Thallada Bhaskar; A.K. Jain; S.K. Singal; M.O. Garg. [<> "Bio-Ethers as Transportation Fuel: A Review"] Check |url= value (help) (PDF). Indian Institute of Petroleum Dehradun. Retrieved 15 February 2014.
  40. "What are Bio-Ethers?" (PDF). . The European Fuel Oxygenates Association.
  41. "Gasoline". Environmental Protection Agency.
  42. Redman, G., The Andersons Centre. "Assessment of on-farm AD in the UK", National Non-Food Crops Centre, 2008-06-09. Retrieved on 2009-05-11. Archived 13 November 2010 at the Wayback Machine.
  43. "BIOGAS: No bull, manure can power your farm." Farmers Guardian (25 September 2009): 12. General OneFile. Gale.
  44. Electricity from wood through the combination of gasification and solid oxide fuel cells, Ph.D. Thesis by Florian Nagel, Swiss Federal Institute of Technology Zurich, 2008
  45. Biomass and Alternate Energy Fuel Systems: An Engineering and Economic Guide
  46. 1 2 Frauke Urban and Tom Mitchell 2011. Climate change, disasters and electricity generation Archived 20 September 2012 at the Wayback Machine.. London: Overseas Development Institute and Institute of Development Studies
  47. Cedric Briens, Jan Piskorz and Franco Berruti, "Biomass Valorization for Fuel and Chemicals Production -- A Review," 2008. International Journal of Chemical Reactor Engineering, 6, R2
  48. "Threat to Great Apes Highlighted at Virunga Meeting". America.gov. Archived from the original on 28 August 2010. Retrieved 2010-07-14.
  49. Ramirez, Jerome; Brown, Richard; Rainey, Thomas (1 July 2015). "A Review of Hydrothermal Liquefaction Bio-Crude Properties and Prospects for Upgrading to Transportation Fuels". Energies. 8: 6765–6794. doi:10.3390/en8076765.
  50. "The potential and challenges of drop-in fuels (members only) | IEA Bioenergy Task 39 – Commercializing Liquid Biofuels". task39.sites.olt.ubc.ca. Retrieved 2015-09-10.
  51. 1 2 The Royal Society (January 2008). Sustainable biofuels: prospects and challenges, ISBN 978-0-85403-662-2, p. 61.
  52. 1 2 Gordon Quaiattini. Biofuels are part of the solution Canada.com, April 25, 2008. Retrieved December 23, 2009.
  53. Crutzen, P. J.; Mosier, A. R.; Smith, K. A.; Winiwarter, W. (2008). "N2O release from agro-biofuel production negates global warming reduction by replacing fossil fuels". Atmos. Chem. Phys. 8: 389–395. doi:10.5194/acp-8-389-2008.
  54. EPFL Energy Center (c2007). Roundtable on Sustainable Biofuels Retrieved December 23, 2009.
  55. Rocky Mountain Institute (2005). Winning the Oil Endgame p. 107. Retrieved December 23, 2009.
  56. The Royal Society (2008). p. 2.
  57. Growing Sustainable Biofuels: Common Sense on Biofuels, part 2 World Changing, March 12, 2008. Retrieved December 24, 2008.
  58. "IEA bioenergy". IEA bioenergy. Archived from the original on 26 May 2010. Retrieved 2010-07-14.
  59. "Press Conference Launching International Biofuels Forum". United Nations Department of Public Information. 2007-03-02. Retrieved 2008-01-15.
  60. Greenpeace - The Russian Forests Archived 25 August 2010 at the Wayback Machine.
  61. "World's Largest Pellet Plant to Start by Year-End". Moscow Times
  62. "UK falls short of biofuel targets for 2010/2011". Retrieved 30 May 2015.
  63. National Non-Food Crops Centre. "Advanced Biofuels: The Potential for a UK Industry, NNFCC 11-011", Retrieved on 2011-11-17
  64. http://www.who.int/indoorair/interventions/antiguamod21.pdf
  65. WHO | Ambient (outdoor) air quality and health
  66. Atmospheric alcohols and aldehydes concentrations measured in Osaka, Japan and in Sao Paulo, Brazil
  67. Fletcher Jr., Robert J.; Bruce A Robertson; Jason Evans; Patrick J Doran; Janaki RR Alavalapati; Douglas W Schemske (2011). "Biodiversity conservation in the era of biofuels: risks and opportunities". Frontiers in Ecology and the Environment. 9 (3): 161–168. doi:10.1890/090091. Retrieved 10 December 2013.
  68. Cotton, Charles A. R.; Jeffrey S. Douglass; Sven De Causmaeker; Katharina Brinkert; Tanai Cardona; Andrea Fantuzzi; A. William Rutherford; James W. Murray (2015). "Photosynthetic constraints on fuel from microbes". Frontiers in Bioengineering and Biotechnology. 3. doi:10.3389/fbioe.2015.00036. Retrieved 18 March 2015.
  69. "Publications - International Resource Panel". Archived from the original on 1 January 2016. Retrieved 30 May 2015.
  70. Bracmort, Kelsi. "Meeting the Renewable Fuel Standard (RFS) Mandate for Cellulosic Biofuels:Questions and Answers" (PDF). Washington, DC: Congressional Research Service.
  71. "Mustard Hybrids for Low-Cost Biofuels and Organic Pesticides" (PDF). Archived from the original (PDF) on 26 July 2011. Retrieved 2010-03-15.
  72. Future Energies (2003-10-30). "PORT HUENEME, Calif: U.S. Navy to Produce its Own Biofuels :: Future Energies :: The future of energy". Future Energies. Retrieved 2009-10-17.
  73. "Newsvine - Ecofasa turns waste to biofuels using bacteria". Lele.newsvine.com. 2008-10-18. Retrieved 2009-10-17.
  74. Ethanol Research (2012-04-02). "National Corn-to-Ethanol Research Center (NCERC)". Ethanol Research. Archived from the original on 20 March 2012. Retrieved 2012-04-02.
  75. American Coalition for Ethanol (2008-06-02). "Responses to Questions from Senator Bingaman" (PDF). American Coalition for Ethanol. Archived from the original (PDF) on 4 October 2011. Retrieved 2012-04-02.
  76. National Renewable Energy Laboratory (2 March 2007). "Research Advantages: Cellulosic Ethanol" (PDF). National Renewable Energy Laboratory. Archived from the original (PDF) on 25 January 2012. Retrieved 2012-04-02.
  77. Pernick, Ron and Wilder, Clint (2007). The Clean Tech Revolution p. 96.
  78. HLPE (2013). "Biofuels and food security" (PDF).
  79. "Sweet Sorghum : A New "Smart Biofuel Crop"". Agriculture Business Week. 30 June 2008. Archived from the original on 27 May 2015.
  80. Sweet sorghum for food, feed and fuel New Agriculturalist, January 2008.
  81. Sheehan, John; et al. (July 1998). "A Look Back at the U. S. Department of Energy's Aquatic Species Program: Biofuels from Algae" (PDF). National Renewable Energy Laboratory. Retrieved 16 June 2012.
  82. Briggs, Michael (August 2004). "Widescale Biodiesel Production from Algae". UNH Biodiesel Group (University of New Hampshire). Archived from the original on 24 March 2006. Retrieved 2007-01-02.
  83. "Valcent Products Inc. Develops "Clean Green" Vertical Bio-Reactor". Valcent Products. Archived from the original on 18 June 2008. Retrieved 2008-07-09.
  84. "Technology: High Yield Carbon Recycling". GreenFuel Technologies Corporation. Archived from the original on 21 August 2007. Retrieved 2008-07-09.
  85. R. E. Teixeira (2012). "Energy-efficient extraction of fuel and chemical feedstocks from algae". Green Chemistry. 14 (2): 419–427. doi:10.1039/C2GC16225C.
  86. B.N. Divakara; H.D. Upadhyaya; S.P. Wani; C.L. Laxmipathi Gowda (2010). "Biology and genetic improvement of Jatropha curcas L.: A review". Applied Energy. 87 (3): 732–742. doi:10.1016/j.apenergy.2009.07.013.
  87. Biofuels Digest (2011-05-16). "Jatropha blooms again: SG Biofuels secures 250K acres for hybrids". Biofuels Digest. Retrieved 2012-03-08.
  88. SG Biofuels (2012-03-08). "Jmax Hybrid Seeds". SG Biofuels. Retrieved 2012-03-08.
  89. Plant Research International (2012-03-08). "JATROPT (Jatropha curcas): Applied and technical research into plant properties". Plant Research International. Retrieved 2012-03-08.
  90. Biofuels Magazine (2011-04-11). "Energy Farming Methods Mature, Improve". Biofuels Magazine. Retrieved 2012-03-08.
  91. Sergeeva, Y. E.; Galanina, L. A.; Andrianova, D. A.; Feofilova, E. P. (2008). "Lipids of filamentous fungi as a material for producing biodiesel fuel". Applied Biochemistry and Microbiology. 44 (5): 523. doi:10.1134/S0003683808050128.
  92. Strobel, G.; Knighton, B.; Kluck, K.; Ren, Y.; Livinghouse, T.; Griffin, M.; Spakowicz, D.; Sears, J. (2008). "The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072)". Microbiology (Reading, England). 154 (Pt 11): 3319–3328. doi:10.1099/mic.0.2008/022186-0. PMID 18957585.
  93. Spakowicz, Daniel J.; Strobel, Scott A. (2015). "Biosynthesis of hydrocarbons and volatile organic compounds by fungi: bioengineering potential". Applied microbiology and biotechnology. 99 (12): 4943–4951. Retrieved 2016-02-22.
  94. Kathryn Hobgood Ray (August 25, 2011). "Cars Could Run on Recycled Newspaper, Tulane Scientists Say". Tulane University news webpage. Tulane University. Retrieved March 14, 2012.
  95. "Panda Poop Might Help Turn Plants Into Fuel". News.nationalgeographic.com. 2013-09-10. Retrieved 2013-10-02.
  96. Sun, Jian-Zhong; Scharf, Michael E. (2010). "Exploring and integrating cellulolytic systems of insects to advance biofuel technology". Insect Science. 17: 163–165.
  97. Searchinger, Timothy; Ralph Heimlich; R.A. Houghton; Fengxia Dong; Amani Elobeid; Jacinto Fabiosa; Simla Tokgoz; Dermot Hayes; Tun-Hsiang Yu (2011). "Use of U.S. Croplands for Biofuels Increases Greenhouse Gases Through Emissions from Land-Use Change". Science. pp. 1238–1240. doi:10.1126/science.1151861. Retrieved 8 November 2011.
  98. Kim, Hyungtae; Seungdo Kim; Bruce E. Dale (2009). "Biofuels, Land Use Change, and Greenhouse Gas Emissions: Some Unexplored Variables". Environmental Science. pp. 961–967. doi:10.1021/es802681k.
  99. Alves Finco, Marcus V., and Werner Doppler. “Bioenergy and Sustainable Development: The Dilemma of Food Security and Climate Change in the Brazilian Savannah.” Energy for Sustainable Development 12 (2010): 194-199. Accessed October 30, 2014. doi: 10.1016/j.esd.2010.04.006
  100. Runge, Ford, and Benjamin Senauer. “How Biofuels Could Starve the Poor” Foreign Affairs 86 (2007): 41-53. Accessed October 30, 2014. from: http://www.jstor.org/stable/20032348
  101. fargione, Joseph; Jason Hill; David Tilman; Stephen Polasky; Peter Hawthorne (2008). "Land Clearing and the Biofuel Carbon Debt". Science. pp. 1235–1238. doi:10.1126/science.1152747. Retrieved 12 November 2011.
  102. The National Academies Press (2008). "Water Issues of Biofuel Production Plants". The National Academies Press. Retrieved 18 June 2015.

Further reading

External links

Look up biofuel in Wiktionary, the free dictionary.
This article is issued from Wikipedia - version of the 12/2/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.