Antimony trifluoride

Antimony trifluoride
Preferred IUPAC name
Antimony(III) fluoride
Systematic IUPAC name
Other names
7783-56-4 N
3D model (Jmol) Interactive image
ChemSpider 22960 YesY
ECHA InfoCard 100.029.099
EC Number 232-009-2
PubChem 24554
RTECS number CC5150000
UN number UN 2923
Molar mass 178.76 g/mol
Appearance light gray to white crystals
Odor pungent
Density 4.379 g/cm3
Melting point 292 °C (558 °F; 565 K)
Boiling point 376 °C (709 °F; 649 K)
385 g/100 mL (0 °C)
443 g/100 mL (20 °C)
562 g/100 mL (30 °C)
Solubility soluble in methanol, acetone
insoluble in ammonia
Orthorhombic, oS16
Ama2, No. 40
NFPA 704
Flammability code 0: Will not burn. E.g., water Health code 3: Short exposure could cause serious temporary or residual injury. E.g., chlorine gas Reactivity code 0: Normally stable, even under fire exposure conditions, and is not reactive with water. E.g., liquid nitrogen Special hazards (white): no codeNFPA 704 four-colored diamond
Lethal dose or concentration (LD, LC):
100 mg/kg
US health exposure limits (NIOSH):
PEL (Permissible)
TWA 0.5 mg/m3 (as Sb)[1]
REL (Recommended)
TWA 0.5 mg/m3 (as Sb)[1]
Related compounds
Related compounds
antimony pentafluoride, antimony trichloride
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
N verify (what is YesYN ?)
Infobox references

Antimony trifluoride is the inorganic compound with the formula SbF3. Sometimes called Swart's reagent, is one of two principal fluorides of antimony, the other being SbF5. It appears as a white solid. As well as some industrial applications,[2] it is used as a reagent in inorganic and organofluorine chemistry.

Preparation and structure

In solid SbF3, the Sb centres have octahedral molecular geometry and are linked by bridging fluoride ligands. Three Sb–F bonds are short (192 pm) and three are long (261 pm). Because it is a polymer, SbF3 is far less volatile than related compounds AsF3 and SbCl3.[3]

SbF3 is prepared by treating antimony trioxide with hydrogen fluoride:[4]

Sb2O3 + 6 HF → 2 SbF3 + 3 H2O

The compound is a mild Lewis acid, hydrolyzing slowly in water. With fluorine, it is oxidized to give antimony pentafluoride.

SbF3 + F2 → SbF5


It is used as a fluorination reagent in organic chemistry.[5] This application was reported by the Belgium chemist Frédéric Jean Edmond Swarts in 1892,[6] who demonstrated its usefulness for converting chloride compounds to fluorides. The method involved treatment with antimony trifluoride with chlorine or with antimony pentachloride to give the active species antimony trifluorodichloride (SbCl2F3). This compound can also be produced in bulk.[7] The Swarts reaction is generally applied to the synthesis of organofluorine compounds, but experiments have been performed using silanes.[8] It was once used for the industrial production of freon. Other fluorine-containing Lewis acids serve as fluorinating agents in conjunction with hydrogen fluoride.

SbF3 is used in dyeing and in pottery, to make ceramic enamels and glazes.


The lethal minimum dose (guinea pig, oral) is 100 mg/kg.[9]


  1. 1 2 "NIOSH Pocket Guide to Chemical Hazards #0036". National Institute for Occupational Safety and Health (NIOSH).
  2. Sabina C. Grund, Kunibert Hanusch, Hans J. Breunig, Hans Uwe Wolf "Antimony and Antimony Compounds" in Ullmann's Encyclopedia of Industrial Chemistry, 2006, Wiley-VCH, Weinheim. doi:10.1002/14356007.a03_055.pub2
  3. Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. ISBN 0-08-037941-9.
  4. Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, NY. Vol. 1. p. 199.
  5. Tariq Mahmood and Charles B. Lindahl Fluorine Compounds, Inorganic, Antimony in Kirk‑Othmer Encyclopedia of Chemical Technology.doi:10.1002/0471238961.0114200913010813.a01
  6. Swarts (1892). Acad. Roy. Belg. 3 (24): 474.
  7. US 4438088
  8. Booth, Harold Simmons; Suttle, John Francis (1946). "IV. The Preparation and Fluorination of Dimethyl and Trimethyl Chlorosilanes". J. Ac. Chem. Soc. 68 (12): 2658–2660. doi:10.1021/ja01216a072.
  9. Sabina C. Grund, Kunibert Hanusch, Hans J. Breunig, Hans Uwe Wolf “Antimony and Antimony Compounds” in Ullmann's Encyclopedia of Industrial Chemistry 2006, Wiley-VCH, Weinheim. doi: 10.1002/14356007.a03_055.pub2

External links

This article is issued from Wikipedia - version of the 7/4/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.