Clinical data
ATC code None
CAS Number 38183-03-8
PubChem (CID) 1880
ChemSpider 1809
Chemical and physical data
Formula C15H10O4
Molar mass 254.238 g/mol
3D model (Jmol) Interactive image

7,8-Dihydroxyflavone (7,8-DHF) is a naturally-occurring flavone found in Godmania aesculifolia, Tridax procumbens, and primula tree leaves.[1][2][3] It has been found to act as a potent and selective small-molecule agonist of the TrkB receptor (Kd ≈ 320 nM), the main signaling receptor of brain-derived neurotrophic factor (BDNF).[4][5][6] 7,8-DHF is both orally-bioavailable and able to penetrate the blood-brain-barrier.[7][8]

7,8-DHF has demonstrated remarkable therapeutic efficacy in animal models of a variety of central nervous system disorders,[6] including depression,[7] Alzheimer's disease,[9][10][11] cognitive deficits in schizophrenia,[12] Parkinson's disease,[4] Huntington's disease,[13] amyotrophic lateral sclerosis,[14] traumatic brain injury,[15] cerebral ischemia,[16][17] fragile X syndrome,[18] and Rett syndrome.[19] 7,8-DHF also shows efficacy in animal models of age-associated cognitive impairment[20] and enhances memory consolidation and emotional learning in healthy rodents.[21][22] In addition, 7,8-DHF possesses powerful antioxidant activity independent of its actions on the TrkB receptor,[23] and protects against glutamate-induced excitotoxicity,[24] 6-hydroxydopamine-induced dopaminergic neurotoxicity,[25] and oxidative stress-induced genotoxicity.[26] It was also found to block methamphetamine-induced dopaminergic neurotoxicity, an effect which, in contrast to the preceding, was found to be TrkB-dependent.[27]

7,8-DHF has been found to act as a weak aromatase inhibitor in vitro (Ki = 10 μM),[28] though there is evidence to suggest that this might not be the case in vivo.[4] In addition, it has been found to inhibit aldehyde dehydrogenase and estrogen sulfotransferase in vitro (Ki = 35 μM and 1–3 μM, respectively), though similarly to the case of aromatase, these activities have not been confirmed in vivo.[4] Unlike many other flavonoids, 7,8-DHF does not show any inhibitory activity on 17β-hydroxysteroid dehydrogenase.[29] 7,8-DHF has also been observed to possess in vitro antiestrogenic effects at very high concentrations (Ki = 50 μM).[30][31]

A variety of close structural analogs of 7,8-DHF have also been found to act as TrkB agonists in vitro, including diosmetin (5,7,3'-trihydroxy-4'-methoxyflavone), norwogonin (5,7,8-trihydroxyflavone), 4'-dimethylamino-7,8-dihydroxyflavone, 7,8,3'-trihydroxyflavone, 7,3'-dihydroxyflavone, 7,8,2'-trihydroxyflavone, 3,7,8,2'-tetrahydroxyflavone, and 3,7-dihydroxyflavone.[32] The highly hydroxylated gossypetin (3,5,7,8,3',4'-hexahydroxyflavone), conversely, appears to be an antagonist of TrkB in vitro.[32]

A prodrug of 7,8-DHF, R7, is under development for the treatment of Alzheimer's disease.[33]

See also


  1. Andero, R.; Ressler, K.J. (2012). "Fear extinction and BDNF: translating animal models of PTSD to the clinic". Genes, Brain and Behavior. 11 (5): 503–512. doi:10.1111/j.1601-183X.2012.00801.x. ISSN 1601-1848.
  2. Colombo, Paola S.; Flamini, Guido; Christodoulou, Michael S.; Rodondi, Graziella; Vitalini, Sara; Passarella, Daniele; Fico, Gelsomina (2014). "Farinose alpine Primula species: Phytochemical and morphological investigations". Phytochemistry. 98: 151–159. doi:10.1016/j.phytochem.2013.11.018. ISSN 0031-9422.
  3. Cell Press (2015). "Molecule found in tree leaves helps female mice combat weight gain; males unaffected". ScienceDaily. Retrieved 2015-03-19.
  4. 1 2 3 4 Jang SW, Liu X, Yepes M, Shepherd KR, Miller GW, Liu Y, Wilson WD, Xiao G, Blanchi B, Sun YE, Ye K (2010). "A selective TrkB agonist with potent neurotrophic activities by 7,8-dihydroxyflavone". Proc. Natl. Acad. Sci. U.S.A. 107 (6): 2687–92. doi:10.1073/pnas.0913572107. PMC 2823863Freely accessible. PMID 20133810.
  5. Liu X, Obianyo O, Chan CB, Huang J, Xue S, Yang JJ, Zeng F, Goodman M, Ye K (2014). "Biochemical and biophysical investigation of the brain-derived neurotrophic factor mimetic 7,8-dihydroxyflavone in the binding and activation of the TrkB receptor". J. Biol. Chem. 289 (40): 27571–84. doi:10.1074/jbc.M114.562561. PMID 25143381.
  6. 1 2 Zeng Y, Wang X, Wang Q, Liu S, Hu X, McClintock SM (2013). "Small molecules activating TrkB receptor for treating a variety of CNS disorders". CNS Neurol Disord Drug Targets. 12 (7): 1066–77. doi:10.2174/18715273113129990089. PMID 23844685.
  7. 1 2 Liu X, Chan CB, Jang SW, Pradoldej S, Huang J, He K, Phun LH, France S, Xiao G, Jia Y, Luo HR, Ye K (2010). "A synthetic 7,8-dihydroxyflavone derivative promotes neurogenesis and exhibits potent antidepressant effect". J. Med. Chem. 53 (23): 8274–86. doi:10.1021/jm101206p. PMC 3150605Freely accessible. PMID 21073191.
  8. Liu X, Chan CB, Qi Q, Xiao G, Luo HR, He X, Ye K (2012). "Optimization of a small tropomyosin-related kinase B (TrkB) agonist 7,8-dihydroxyflavone active in mouse models of depression". J. Med. Chem. 55 (19): 8524–37. doi:10.1021/jm301099x. PMC 3491656Freely accessible. PMID 22984948.
  9. Castello NA, Nguyen MH, Tran JD, Cheng D, Green KN, LaFerla FM (2014). "7,8-Dihydroxyflavone, a small molecule TrkB agonist, improves spatial memory and increases thin spine density in a mouse model of Alzheimer disease-like neuronal loss". PLoS ONE. 9 (3): e91453. doi:10.1371/journal.pone.0091453. PMC 3948846Freely accessible. PMID 24614170.
  10. Chen C, Li XH, Zhang S, Tu Y, Wang YM, Sun HT (2014). "7,8-dihydroxyflavone ameliorates scopolamine-induced Alzheimer-like pathologic dysfunction". Rejuvenation Res. 17 (3): 249–54. doi:10.1089/rej.2013.1519. PMID 24325271.
  11. Zhang Z, Liu X, Schroeder JP, Chan CB, Song M, Yu SP, Weinshenker D, Ye K (2014). "7,8-dihydroxyflavone prevents synaptic loss and memory deficits in a mouse model of Alzheimer's disease". Neuropsychopharmacology. 39 (3): 638–50. doi:10.1038/npp.2013.243. PMID 24022672.
  12. Yang YJ, Li YK, Wang W, Wan JG, Yu B, Wang MZ, Hu B (2014). "Small-molecule TrkB agonist 7,8-dihydroxyflavone reverses cognitive and synaptic plasticity deficits in a rat model of schizophrenia". Pharmacol. Biochem. Behav. 122: 30–6. doi:10.1016/j.pbb.2014.03.013. PMID 24662915.
  13. Jiang M, Peng Q, Liu X, Jin J, Hou Z, Zhang J, Mori S, Ross CA, Ye K, Duan W (2013). "Small-molecule TrkB receptor agonists improve motor function and extend survival in a mouse model of Huntington's disease". Hum. Mol. Genet. 22 (12): 2462–70. doi:10.1093/hmg/ddt098. PMC 3658168Freely accessible. PMID 23446639.
  14. Korkmaz OT, Aytan N, Carreras I, Choi JK, Kowall NW, Jenkins BG, Dedeoglu A (2014). "7,8-Dihydroxyflavone improves motor performance and enhances lower motor neuronal survival in a mouse model of amyotrophic lateral sclerosis". Neurosci. Lett. 566: 286–91. doi:10.1016/j.neulet.2014.02.058. PMID 24637017.
  15. Wu CH, Hung TH, Chen CC, Ke CH, Lee CY, Wang PY, Chen SF (2014). "Post-injury treatment with 7,8-dihydroxyflavone, a TrkB receptor agonist, protects against experimental traumatic brain injury via PI3K/Akt signaling". PLoS ONE. 9 (11): e113397. doi:10.1371/journal.pone.0113397. PMC 4240709Freely accessible. PMID 25415296.
  16. Wang B, Wu N, Liang F, Zhang S, Ni W, Cao Y, Xia D, Xi H (2014). "7,8-dihydroxyflavone, a small-molecule tropomyosin-related kinase B (TrkB) agonist, attenuates cerebral ischemia and reperfusion injury in rats". J. Mol. Histol. 45 (2): 129–40. doi:10.1007/s10735-013-9539-y. PMID 24045895.
  17. Uluc K, Kendigelen P, Fidan E, Zhang L, Chanana V, Kintner D, Akture E, Song C, Ye K, Sun D, Ferrazzano P, Cengiz P (2013). "TrkB receptor agonist 7, 8 dihydroxyflavone triggers profound gender- dependent neuroprotection in mice after perinatal hypoxia and ischemia". CNS Neurol Disord Drug Targets. 12 (3): 360–70. doi:10.2174/18715273113129990061. PMC 3674109Freely accessible. PMID 23469848.
  18. Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM (2015). "7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome". Neuropharmacology. 89: 43–53. doi:10.1016/j.neuropharm.2014.09.006. PMID 25229717.
  19. Johnson RA, Lam M, Punzo AM, Li H, Lin BR, Ye K, Mitchell GS, Chang Q (2012). "7,8-dihydroxyflavone exhibits therapeutic efficacy in a mouse model of Rett syndrome". J. Appl. Physiol. 112 (5): 704–10. doi:10.1152/japplphysiol.01361.2011. PMC 3643819Freely accessible. PMID 22194327.
  20. Zeng Y, Lv F, Li L, Yu H, Dong M, Fu Q (2012). "7,8-dihydroxyflavone rescues spatial memory and synaptic plasticity in cognitively impaired aged rats". J. Neurochem. 122 (4): 800–11. doi:10.1111/j.1471-4159.2012.07830.x. PMID 22694088.
  21. Bollen E, Vanmierlo T, Akkerman S, Wouters C, Steinbusch HM, Prickaerts J (2013). "7,8-Dihydroxyflavone improves memory consolidation processes in rats and mice". Behav. Brain Res. 257: 8–12. doi:10.1016/j.bbr.2013.09.029. PMID 24070857.
  22. Andero R, Heldt SA, Ye K, Liu X, Armario A, Ressler KJ (2011). "Effect of 7,8-dihydroxyflavone, a small-molecule TrkB agonist, on emotional learning". Am J Psychiatry. 168 (2): 163–72. doi:10.1176/appi.ajp.2010.10030326. PMC 3770732Freely accessible. PMID 21123312.
  23. Foti, Mario; Piattelli, Mario; Baratta, Maria Tiziana; Ruberto, Giuseppe (1996). "Flavonoids, Coumarins, and Cinnamic Acids as Antioxidants in a Micellar System. Structure−Activity Relationship†". Journal of Agricultural and Food Chemistry. 44 (2): 497–501. doi:10.1021/jf950378u. ISSN 0021-8561.
  24. Chen J, Chua KW, Chua CC, Yu H, Pei A, Chua BH, Hamdy RC, Xu X, Liu CF (2011). "Antioxidant activity of 7,8-dihydroxyflavone provides neuroprotection against glutamate-induced toxicity". Neurosci. Lett. 499 (3): 181–5. doi:10.1016/j.neulet.2011.05.054. PMID 21651962.
  25. Han X, Zhu S, Wang B, Chen L, Li R, Yao W, Qu Z (2014). "Antioxidant action of 7,8-dihydroxyflavone protects PC12 cells against 6-hydroxydopamine-induced cytotoxicity". Neurochem. Int. 64: 18–23. doi:10.1016/j.neuint.2013.10.018. PMID 24220540.
  26. Zhang R, Kang KA, Piao MJ, Ko DO, Wang ZH, Chang WY, You HJ, Lee IK, Kim BJ, Kang SS, Hyun JW (2009). "Preventive effect of 7,8-dihydroxyflavone against oxidative stress induced genotoxicity". Biol. Pharm. Bull. 32 (2): 166–71. doi:10.1248/bpb.32.166. PMID 19182370.
  27. Ren Q, Zhang JC, Ma M, Fujita Y, Wu J, Hashimoto K (2014). "7,8-Dihydroxyflavone, a TrkB agonist, attenuates behavioral abnormalities and neurotoxicity in mice after administration of methamphetamine". Psychopharmacology (Berl.). 231 (1): 159–66. doi:10.1007/s00213-013-3221-7. PMID 23934209.
  28. Kao YC, Zhou C, Sherman M, Laughton CA, Chen S (1998). "Molecular basis of the inhibition of human aromatase (estrogen synthetase) by flavone and isoflavone phytoestrogens: A site-directed mutagenesis study". Environ. Health Perspect. 106 (2): 85–92. doi:10.1289/ehp.9810685. PMC 1533021Freely accessible. PMID 9435150.
  29. Le Bail, J.C; Laroche, T; Marre-Fournier, F; Habrioux, G (1998). "Aromatase and 17β-hydroxysteroid dehydrogenase inhibition by flavonoids". Cancer Letters. 133 (1): 101–106. doi:10.1016/S0304-3835(98)00211-0. ISSN 0304-3835. PMID 9929167.
  30. Le Bail JC, Varnat F, Nicolas JC, Habrioux G (1998). "Estrogenic and antiproliferative activities on MCF-7 human breast cancer cells by flavonoids". Cancer Lett. 130 (1-2): 209–16. doi:10.1016/S0304-3835(98)00141-4. PMID 9751276.
  31. Pouget C, Lauthier F, Simon A, Fagnere C, Basly JP, Delage C, Chulia AJ (2001). "Flavonoids: structural requirements for antiproliferative activity on breast cancer cells". Bioorg. Med. Chem. Lett. 11 (24): 3095–7. doi:10.1016/S0960-894X(01)00617-5. PMID 11720850.
  32. 1 2 Liu, Xia; Chan, Chi-Bun; Jang, Sung-Wuk; Pradoldej, Sompol; Huang, Junjian; He, Kunyan; Phun, Lien H.; France, Stefan; Xiao, Ge; Jia, Yonghui; Luo, Hongbo R.; Ye, Keqiang (2010). "A Synthetic 7,8-Dihydroxyflavone Derivative Promotes Neurogenesis and Exhibits Potent Antidepressant Effect". Journal of Medicinal Chemistry. 53 (23): 8274–8286. doi:10.1021/jm101206p. ISSN 0022-2623.
  33. Liu, Chaoyang; Chan, Chi Bun; Ye, Keqiang (2016). "7,8-dihydroxyflavone, a small molecular TrkB agonist, is useful for treating various BDNF-implicated human disorders". Translational Neurodegeneration. 5 (1). doi:10.1186/s40035-015-0048-7. ISSN 2047-9158.
This article is issued from Wikipedia - version of the 5/30/2016. The text is available under the Creative Commons Attribution/Share Alike but additional terms may apply for the media files.