NGULA

tutomalspomt

I MPLY EASY LEARNINLDLG

www.tutorialspoint.com

ﬂ https://www.facebook.com/tutorialspointindia J https://twitter.com/tutorialspoint

Angular 8

About the Tutonial

Angular 8 is an open source, TypeScript based frontend web application framework.
Angular 8 has been released by Google’'s Angular community. This tutorial starts with
the architecture of Angular 8,setup simple project, data binding, then walks through forms,
templates, routing and explains about Angular 8 new features. Finally, conclude with step
by step working example.

Audience

This tutorial is prepared for professionals who are aspiring to make a career in the field of
Web application developer. This tutorial is intended to make you comfortable in getting
started with the Angular8 concepts with examples.

Prerequisites

Before proceeding with the various types of concepts given in this tutorial, we assume that
the readers have the basic knowledge on HTML, CSS and OOPS concepts. In addition to
this, it will be very helpful, if the readers have a sound knowledge on TypeScript and
JavaScript.

Copyright & Disclaimer

© Copyright 2020 by Tutorials Point (I) Pvt. Ltd.

All the content and graphics published in this e-book are the property of Tutorials Point (I)
Pvt. Ltd. The user of this e-book is prohibited to reuse, retain, copy, distribute or republish
any contents or a part of contents of this e-book in any manner without written consent
of the publisher.

We strive to update the contents of our website and tutorials as timely and as precisely as
possible, however, the contents may contain inaccuracies or errors. Tutorials Point (I) Pvt.
Ltd. provides no guarantee regarding the accuracy, timeliness or completeness of our
website or its contents including this tutorial. If you discover any errors on our website or
in this tutorial, please notify us at contact@tutorialspoint.com

tutorialspoint

EIMPLYEAEBEYLEARMNINTIG

)

mailto:contact@tutorialspoint.com

Angular 8

Table of Contents

TabIE OFf CONTENTS ...ttt st e e st e st e st e et e e st e e eabeesabeeeabeesabeesaneenas i

1. Angular 8 = INErodUCLIONeeeeiiiiiiiiiretinc s aas e e s s 1
CompParison Of ANGUIAE VEISIONSeeiiiiiiiiiiieitee ettt sttt et e et e sabe e s b e s b e e sneesabeesneesane 1

F Yo o] [Tt 1 4o o T30SOt 2

PR Vo T- 0| T ot Bl [1S - 1 - 4 o] N 3
ANGUIAE 8 INSTAIIATION....cutiie ettt e e e e s e tte e e st e e e e ataeeeessteeessaeeeastaeesanstaeesnseeeansteeeeanes 3

3. Angular 8 — Creating First APPliCAtioncceeeeeeeeeieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeesssessessessesssssssssssssssssssssssssssssssssnnnns 5
L D Y V-] =T g Tl of 0 T3 =Y o 1] o - 9
(00T a1 o Yo aT=1 o 1 S PP OO OOPTPPPTTRRPIRE 9
=T 00] 0] L T TP PP P PO PPPORUPPPRRRUPROt 10
7o To 1] L= SRR 11
Y] Y (ol LSS PPPUPPPPRROPINY 13
Workflow of ANgUIar @pPliCatioN........couuiii i e e e et r e e s e e e e st b e e e eateeeseasaeeesabraaaans 13

5. Angular 8 — Angular Components and TemPplates.........ceeeseeeeeeeeeeeseessssssssssmnnnn. 16
Fi¥e o I I oloY 1 4o Y] o T=1 o | A0 PSPPSR 16
=110 o] = TSR 17
TaT ol [U]e [l oToTo) 4 d =Y IO USRI 19

6. Angular 8 — Data BiNAiNgccccueiiiiiiiiiiiiiiiiiiieieiieiieeieeeeeeseeeeeesssnns 24
(O a1 R = LYo - | = I o g Vo L1 = PSSR 24
Y=Y oY] [T L1 =SSR 25

[o 1T AV ¢ 112 T 11 o= S 26
AEIIDULE DINAING oo et e e e e e s e et e e e e e e e seabataeeeeeesesassraeseeeesensnstanseeeseanns 27
(01T o1 Ve [TV - PURPRNS 28
V2Ll o1 [T 1o Y-S 30
TWO-WAY data DINAING ... e e e e et e e e e e s e s et b e e e e e e eesaabaaseaeeeesnstaaneaaens 31

7. ANBUIAr 8 — DirChIVeS..cuuuuciiiiiieeieeieiireirerieeieeeeseeeennsssssseseeesnnsssssssseeesnnsssssssssessnnssssssssssesnnnssssssssseennnnssnnns 36
i

tutorialspoint

EIMPLYEAGSY LEARMNING

10.

11.

Angular 8

D10 1Y@ =T o= PN 37
SEIUCLUIAL GIFECHIVES ettt s e s e sbe e sbe e et et e emeeereesbe e reenrens 37
ATLFIDULE dITECTIVES ...eueeeiieieee ettt ettt e et ea e s she e sbeesbe e bt e et emeesreesbe e neenreas 42
CUSEOM GIFECEIVES ...ttt ettt et et sh bt e e bt e e s a bt e e ae e e s e bt e e ab e e sabeesnbeesabeesnneesabeesnneens 45
COMPONENT IFECHIVES ettt ettt st e st e e st e s bt e sabe e e it e e sabeeeabeesabeesaseesabeennneens 47
LT T Bl T =N 53
AAING PArAMELETS ...eeiteiitee ettt et e e bt e et e s bt s bt e sab et e bt e sabe e e abbesbeeesbee e bt e esnbeebeeennneeneas 53
(0011 =Yoo 1T o T<T3 S USUSR RSN 54
SO T T AT oY= SR 54
Creating CUSTOM PP oo e e e e e e e e e e e e eeees 59
Angular 8 — Reactive Programming........cccciiieiiiiiiiiiiiiisiiisisssssessnes 62
OBSEIVADIE. ...ttt bbbttt e ae e e b e e b e e bt et e e b saaesheenreenbe e bt eneeene 62
SUDSCIIDING PrOCESS ..ttt ettt s e st e st e st e e st e e s st e e sabeeeabeesabeeeaseesabeesabeesabeesnseesabeesaneesn 63
(0] o111 1o 1o F- 3PP PP PP P OPPUTTPTRTROR: 64
Angular 8 — Services and Dependency INJECEIONcccevviiiiiiiiiiiiiii 69
CrEate ANGUIAE SEIVICE. ..ttt ettt et s et e et esab e e s it e e st e e sae e e sabeeeaseesabeesabeesabeesnseesabeennneesn 69
e I =Y QAN = U1 E T g T oV ol SRR 69
o] AV N T= U1 E T =T oY ol USSP 71
[DL=T o1l o [T o [olV A Lo =Tt do) gl ad o1V [[T SRR 74
AN GUIAT SEIVICE USAEE . uuiiiieiiieiiiiiiieeeeeeiiiittreeeeeeiettteeeeeeesattatreeeeeesaassataaseaessasssstaaseesssasassraeseesssanssstanesesssannns 75
Fi¥e o I e 1] o TU = Y=Y Vi o <RSP USRS 76
Angular 8 — Http Client Programmingccccciiiiiiiiiiiiiiiiiiiiissenes 82
EXPENSE REST AP ..eeeeitiiieitieititttittetetetttet ettt ettt ateta s te st s b sttt st s s st st 85 st st s st s s s s s st sbsssssssbssnssbnsssnnnnn 82
(@0oT oY 7 ={ = o o Je] 1 =T o USSR 88
HTTP GET ¢ttt sttt et ettt r e r et et e e s eee s bee s bt e se e e st e et e me e e meeen e e r e e reearesmnesenenmeennee 89
[I I o O 1 TP PP PPPT PO 95
L I I I o = O PP PP P PPN 95
HTTP DELETE ...eeetetttittitttttttttttttt ettt bbbttt bbbt bbbttt bbbttt bttt bbbt bbbt bbb bbb bababebabsbabnns 96

ii

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

12. Angular 8 — Angular Material.......cccoeiiiiiiiiiiiiiiiiiiii e s s s s s e s e s e e e e e e e e 97
Configure ANGUIAr MAtErIalcoccueei et e e et e e e etee e e s tteeeessteeeesasaeeesnaeseenstaeesnnnes 97

13. Angular 8 — Routing and Navigationccccviiiiiiiiiiiiiiiiiiii e e s s e s s e e e s e e eees 102
CONFIGUIE ROULING ...ttt ettt ettt ettt sb e e bt e s bt e e bt e e sbbe s bt e e sabe e bt e e sbbeebeeesnneenees 102
CrEaAtING FOUTES .ottt et s et st e e s s b e e e s e ba e e e s b e e e s sb e e e s e sre e e senbneessnaeeeeas 104
AACCESSING FOUTES ..ciiiiiiitee ettt s e e et e s e bt e e s b b e e s saba e e s e b b e e et aba e e s sbbe e e e anbaeesenneeesnnaeas 104
ACCESS ROULE PAramMETEIS ..ccoiiiiiiiiiiiiiiiiiiiiieeee ettt et et et et et et et et et et et et e e e e etese s et eseserasarasasanasanans 106

N =T =Te I oYU 1] ¥ -SSR 107

14. ANUIAr 8 — ANIMALIONS cccciiiiiiiiiiiiiiiiiiiicecrrre e e e e s e e s s s e s e s s s e e e e s s s e s e s s sessessssssssnsssssssnsnnnnns 113
Configuring animMation MOGUIE........coociiii it eeree e st e e e e stte e e s eataeeesbaeeeestaeesensaaeesnsaeaaans 113

(6] Tol=] o) £ P PP PP PP PPPPPPPPURE 114

15. ANBUIAI 8 — FOIMS .ciiiiiiiiiiiiiiiccccesesrs sssssssssssssssssssssssnsssssssnssssnsnsssnsnnnnnnns 121
TemMPIate driveN FOMMS ..cooiiiie ettt st e st s bt e st e e sabeesab e e sabeesateesabeenaneens 121
REACTIVE FOIIMS .eiiiiiiiiiiittee ettt ettt et e e e sttt et e e e s e bbbt e e e e e s seaaabbeeeeessesannbbaaeaessasasbabaeeessesannssnaeaeens 124

16. Angular 8 — Form Validationcccvviiiiiiiiiiiiiiiiiiiiiinssnns 128
REQUIFEAVAIIAALON ettt ettt e he e e be e e s bt e e s st e e sabeesaeeesabeesaneesaneesaneesn 128
PAtEErNVAlIdator ...cooeeiiiie e e s s eenee s 130

17. Angular 8 — Authentication and AUthorizationcceeeciiiiiiiiieciiiirrrr e e e s e e e nnnes 133
[TV T e T T e 10 4 1Y =P URURN 133

18. ANGUIAr 8 — Webh WOKKETS.....ccciiieeeeeiiiiiiiienneniiiiiireennnssssessesesnnssssssssssssnnssssssssssssnnssssssssssssnnnsssssssssssnnnns 143
19. Angular 8 — Service Workers and PWAiiiiiiieeeeiiiiiiiierieneseessseeennssssssssssesnmssssssssssssnnsssssssssssennnns 149
20. Angular 8 — Server Side RENAEriNG.......cecveeeeeeeeeeeieiieieeiieieieeeimeeeieeessess 151
F N g Y U] T T AT Y- | PSP 153

21. Angular 8 — Internationalization (i18N)cceeeeeeeereeeeeeeeeeeeeeeeeemmeeeeeessssessns 154
22. ANGUIar 8 — ACCESSIDIlItY .cccceiiiiiiiiiiiiiiiiiiieiiiiitiieeieeeeeieeeteeeeeeeeeeeeeeesssnnnns 159
23. ANgular 8 — CLI COMMANASceeeeeeeeciiriiieiieeeeeisrreeeneesseeesreeennnssssssssesennnssssssssseesnnnssssssssesennnnsssssssseennnnns 160
RV L= 4 £V 1 X PSRRI 160

24. ANBUIAr 8 — T@SEING . ccceeeeeeiiiiiiiieeieiieiereretneeeeeeerereennnssssessseeennnsssssssseeennnsssssssssessnnnssssssssssssnnnsssssssseennnnns 167
iii

tutorialspoint

EIMPLYEAGSY LEARMNING

25.

26.

27.

28.

29.

Angular 8

L o 1= PP 167
[Yo I o I o oo I o T =T T Y-S 168
ANgular 8 — IVY COMPIIEK ... e e e e e s e e e s s s s s e s s s s s s s e s s s e eees 169
Advantages Of IVY COMPILET ..ottt sttt s e s bt e sab e e e bt e sabeesneenane 169
HOW B0 USE VY2 <ttt e rh ettt b e et e s bt e e bt e e s bt e e bt e e sab e e bt e e sabeeeneeesabeesaneesabeesnneess 169
Angular 8 — Building With Bazelccoovvuiiiiiiiiiiiiiiiiiiiinncereensnres s 171
Angular 8 — Backward Compatibility........ccccceiiiiiiiiiiiiiiiiiiin 172
Angular 8 — WorKing EXamPIe......ccciiiiiiiiiiiiiiiiiiiiiiiicsininssssssssssssssssssssssssssssesssssssssssssssssssssssssssssssssssnsnnans 173
(O I Ta 1T o] o] [Tor= Y o o J SRS 173
Pi¥e o I I olo T 1 4o Yo o T=1 o 1 A0S PP 175
Ta T[0T [l Yo Yo} £y { - o USSR 176
A AN TNEEITACE .ttt st st s bt ettt e ae e eb e s bt e bt e b e et e e st e satesbeesheenbe e bt enbeeneeens 180
USING QIFECLIVES .ttt ettt sa e e bt e s bt e et e e sa bt e eabeesa bt e eabeesabeeeaseesabeesnseesabeesaneess 182
LU o1 o 1= PP PP PP R OPPRTPPPTIIN 186
A DEDUE SEIVICE ..ottt ettt st e et e st e et esa b e e s bt e sabeesabeesabeesabeesabeeeaseesabeesaneesane 187
CrEate EXPENSE SEIVICE ...eiiiiiiiieiiitteeiitee e ettt e e sttt e see e e e e sa et e s e be et e ssaee e s s be e e s enne e e sanbaeessabaeesesneeesansneessaranenaas 192
Http programming using HttPClIENt SEIVICEcuiiii it e e s e e s aareae s 194
P ¥ [o I 3o TU a1 Y= UPUP P 198
Enable 108iN and l0GOUL FEALUIEeiieiiiie e ettt e e et e e e et te e e et ae e e s abbeeeesteeeennaeas 203
Add / Edit / DEIELE EXPENSES ...eeeuveeereeeteeeteeeteeeeteeeteeeteeeebeeereesbeeebeeebeeesseeatessseestessseesateseseestesenseeants 211
ANGUIAr 9 — What’s NEW?cccciiiiiiiiiiiccceiceesessesssssssesssesssnsssssnnnnnns 224
T T =Y LN =V = SR 224
F AN g YU T U T oo £ o PSP 224
L6 o Tol [V] T o ISP VPSR PRO PR 225

iv

tutorialspoint

EIMPLYEAGSY LEARMNING

1. Angular 8 — Introduction

Angular 8 is a TypeScript based full-stack web framework for building web and mobile
applications. One of the major advantage is that the Angular 8 support for web application
that can fit in any screen resolution. Angular application is fully compatible for mobiles,
tablets, laptops or desktops. Angular 8 has an excellent user interface library for web
developers which contains reusable UI components.

This functionality helps us to create Single Page Applications (SPA). SPA is reactive and
fast application. For example, if you have a button in single page and click on the button
then the action performs dynamically in the current page without loading the new page
from the server. Angular 8 is Typescript based object oriented programming and support
features for server side programming as well.

Comparison of angular versions

As we know already, Google releases the version of Angular for the improvement of
mobile and web development capabilities. All the released versions are backward
compatible and can be updated easily to the newer version. Let's go through the
comparison of released versions.

AngularJdS

Angularls is very powerful JavaScript framework. It was released in October 2010.
Angular]S based on Model View Controller (MVC) architecture and automatically handles
JavaScript code suitable for each browser.

Angular 2.0

Angular 2.0 was released in September 2016. It is re-engineered and rewritten version of
Angular]S. Angular]s had a focus on controllers but, version 2 has changed focus on
components. Components are the main building block of application. It supports features
for speed in rendering, updating pages and building cross-platform native mobile apps for
Google Android and iOS.

Angular 4.0

Angular 4.0 was released in March 2017. It is updated to TypeScript 2.2, supports ng if-
else conditions whereas Angular 2 supported only if conditions. Angular 4.0 introduces
animation packages, Http search parameters and finally angular 4 applications are smaller
and faster.

Angular 5.0

Angular 5.0 was released in November 2017. It supported some of the salient features
such as HTTPClient API, Lambda support, Improved Compiler and build optimizer.

Angular 6.0

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Angular 6.0 was released in May 2018. Features added to this version are updated Angular
CLI, updated CDK, updated Angular Material, multiple validators and usage of reactive]S

library.

Angular 7.0

Angular 7.0 was released in October 2018. Some of salient features are Google supported
community, POJO based development, modular structure, declarative user interface and
modular structure.

Angular 8 New features

Angular 8 comes up with the following new attractive features:

Bazel support - If your application uses several modules and libraries, Bazel
concurrent builds helps to load faster in your application.

Lazy loading - Angular 8 splits AppRoutingModule into smaller bundles and
loads the data in the DOM.

Differential loading - When you create an application, Angular CLI generates
modules and this will be loaded automatically then browser will render the data.
Web worker - It is running in the background, without affecting the performance
of a page.

Improvement of CLI workflow - Angular 8 CLI commands ng-build, ng-test
and ng-run are extended to third party libraries.

Router Backward Compatibility - Angular router backward compatibility feature
helps to create path for larger projects so user can easily add their coding with the
help of lazy coding.

Opt-in usage sharing - User can opt into share Angular CLI usage data.

Applications

Some of the popular website using Angular Framework are listed below:

¥

Weather.com - It is one of the leading forecasting weather report website.
Youtube - It is a video and sharing website hosted by Google.

Netflix - It is a technology and media services provider.

PayPal - It is an online payment system.

tutorialspoint

EIMPLYEAGSY LEARMING

2. Angular 8 — Installation

This chapter explains about how to install Angular 8 on your machine. Before moving to
the installation, let’s verify the prerequisite first.

Prerequisite

As we know already, Angular is written in TypeScript. We need Node and npm to compile
the files into JavaScript after that, we can deploy our application. For this purpose,
Node.js must be installed in your system. Hopefully, you have installed Node.js on your
machine.

We can check it using the below command:

node --version

You could see the version of node. It is show below:

vi4.2.0

If Node is not installed, you can download and install by visiting the following link:

https://nodejs.org/en/download/.

Angular 8 installation

Angular 8 CLI installation is based on very simple steps. It will take not more than five
minutes to install.

npm is used to install Angular 8 CLI. Once Node.js is installed, npm is also installed. If
you want verify it, type the below command:

npm -v

You could see the version below:

6.14.4

Let’s install Angular 8 CLI using npm as follows:

npm install -g @angular/cli@"8.0.0

To verify Angular 8 is properly installed on your machine, type the below command:

ng version

You could see the following response:

Angular CLI: 8.3.26

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Node: 14.2.0

0S: win32 x64

Angular:

Package Version
@angular-devkit/architect 0.803.26
@angular-devkit/core 8.3.26
@angular-devkit/schematics 8.3.26
@schematics/angular 8.3.26
@schematics/update 0.803.26

6

rxjs

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

3. Angular 8 — Creating First Application

Let us create a simple angular application and analyse the structure of the basic angular
application.

Let us check whether the Angular Framework is installed in our system and the version of
the installed Angular version using below command:

ng --version

Here,

ng is the CLI application used to create, manage and run Angular Application. It written
in JavaScript and runs in NodelS environment.

The result will show the details of the Angular version as specified below:

Angular CLI: 8.3.26
Node: 14.2.0
0S: win32 x64

Angular:

Package Version
@angular-devkit/architect 0.803.26
@angular-devkit/core 8.3.26
@angular-devkit/schematics 8.3.26
@schematics/angular 8.3.26
@schematics/update 0.803.26
rxjs 6.4.0

So, Angular is installed in our system and the version is 8.3.26.

Let us create an Angular application to check our day to day expenses. Let us give
ExpenseManager as our choice for our new application. Use below command to create
the new application.

cd /path/to/workspace
ng new expense-manager

Here,

new is one of the command of the ng CLI application. It will be used to create new
application. It will ask some basic question in order to create new application. It is enough
to let the application choose the default choices. Regarding routing question as mentioned
below, specify No. We will see how to create routing later in the Routing chapter.

Would you like to add Angular routing? No

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Once the basic questions are answered, the ng CLI application create a new Angular
application under expense-manager folder.

Let us move into the our newly created application folder.

cd expense-manager

Let us check the partial structure of the application. The structure of the application is as
follows:

favicon.ico
index.html
main.ts
polyfills.ts
styles.css

|

|

|

|

|

|

+---app

| app.component.css

| app.component.html

| app.component.spec.ts

| app.component.ts

| app.module.ts

|

+---assets

| .gitkeep

|

+---environments
environment.prod.ts
environment.ts

Here,

¢ We have shown, only the most important file and folder of the application.

¢ favicon.ico and assets are application’s icon and application’s root asset folder.

¢ polyfills.ts contains standard code useful for browser compatibility.

¢ environments folder will have the application’s setting. It includes production and
development setup.

¢ main.ts file contains the startup code.

¢ index.html is the application base HTML code.

o styles.css is the base CSS code.

o app folder contains the Angular application code, which will be learn elaborately
in the upcoming chapters.

Let us start the application using below command:

ng serve

10% building 3/3 modules © activei wds: Project is running at
http://localhost:4200/webpack-dev-server/

i wds: webpack output is served from /

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

i wds: 404s will fallback to //index.html

chunk {main} main.js, main.js.map (main) 49.2 kB [initial] [rendered]

chunk {polyfills} polyfills.js, polyfills.js.map (polyfills) 269 kB [initial]
[rendered]

chunk {runtime} runtime.js, runtime.js.map (runtime) 6.15 kB [entry] [rendered]
chunk {styles} styles.js, styles.js.map (styles) 9.75 kB [initial] [rendered]
chunk {vendor} vendor.js, vendor.js.map (vendor) 3.81 MB [initial] [rendered]
Date: 2020-05-26T05:02:14.134Z - Hash: @dec2ff62a4247d58fe2 - Time: 12330ms

** Angular Live Development Server is listening on localhost:4200, open your
browser on http://localhost:4200/ **

i wdm: Compiled successfully.

Here, serve is the sub command used to compile and run the Angular application using
a local development web server. ng server will start a development web server and
serves the application under port, 4200.

Let us fire up a browser and opens http://localhost:4200. The browser will show the
application as shown below:

a ExpenseManager X +

<« C' @ localhost:4200 * @B v O

g expense-manager app is running!

Resources

Here are some links to help you get started:

® Learn Angular » <> CU Documentation » 6 Angular Blog >

Next Steps

What do you want to do next with your app?

+ New Component + Angular Material -+ Add Dependency + Run and Watch Tests
=+ Build for Production

ng generate component xyz

@ 0 @ @ @

Love Angular? Give our repo a star. % Star | >

Let us change the title of the application to better reflect our application. Open
src/app/app.component.ts and change the code as specified below:

m tutorialspoint

Angular 8

export class AppComponent {
title = 'Expense Manager';

}

Our final application will be rendered in the browser as shown below:

- O X
“ ExpenseManager X +

< C @ localhost:4200 % ® v @

Resources

Here are some links to help you get started:

® Learn Angular > <> CLl Documentation > d Angular Blog >

Next Steps

What do you want to do next with your app?

+ New Component -+ Angular Material -+ Add Dependency 4+ Run and Watch Tests

=+ Build for Production

ng generate component xyz

) ® 0 ® @ @

Love Angular? Give our repo a star. ¥ Star | >

We will change the application and learn how to code an Angular application in the
upcoming chapters.

@ tutorialspoint

EIMPLYEAGSY LEARMNING

4. Angular 8 — Architecture

Let us see the architecture of the Angular framework in this chapter.
Angular framework is based on four core concepts and they are as follows:

¢ Components.
e Templates with Data binding and Directives.
e Modules.

e Services and dependency injection.

Component

The core of the Angular framework architecture is Angular Component. Angular
Component is the building block of every Angular application. Every angular application is
made up of one more Angular Component. It is basically a plain JavaScript / Typescript
class along with a HTML template and an associated name.

The HTML template can access the data from its corresponding JavaScript / Typescript
class. Component’s HTML template may include other component using its selector’s value
(name). The Angular Component may have an optional CSS Styles associated it and the
HTML template may access the CSS Styles as well.

Component
Renders
Y
GOther Component < Template > Stylesheet
Uses through
Directives Uses

Let us analyse the AppComponent component in our ExpenseManager application. The
AppComponent code is as follows:

// src/app/app.component.ts
import { Component } from '@angular/core’;

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

})

export class AppComponent {
title = 'Expense Manager';

}

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

@Component is a decorator and it is used to convert a normal Typescript class to Angular
Component.

app-root is the selector / name of the component and it is specified using selector meta
data of the component’s decorator. app-root can be used by application root document,
src/index.html as specified below:

<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>ExpenseManager</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
<app-root></app-root>
</body>
</html>

app.component.html is the HTML template document associated with the component.
The component template is specified using templateUrl meta data of the @Component
decorator.

app.component.css is the CSS style document associated with the component. The
component style is specified using styleUrls meta data of the @Component decorator.

AppComponent property (title) can be used in the HTML template as mentioned below:

{{ title }}

Template

Template is basically a super set of HTML. Template includes all the features of HTML and
provides additional functionality to bind the component data into the HTML and to
dynamically generate HTML DOM elements.

The core concept of the template can be categorised into two items and they are as follows:
Data binding

Used to bind the data from the component to the template.

{{ title }}

Here, title is a property in AppComponent and it is bind to template using
Interpolation.

Directives

Used to include logic as well as enable creation of complex HTML DOM elements.

<p *ngIf="canShow">

10

tutorialspoint

EIMPLYEAGSY LEARMNING

i}

Angular 8

This sectiom will be shown only when the *canShow* propery's value in
the corresponding component is *true*

</p>

<p [showToolTip]="tips"' />

Here, ngIf and showToolTip (just an example) are directives. ngIf create the paragraph
DOM element only when canShow is true. Similarly, showToolTip is Attribute
Directives, which adds the tooltip functionality to the paragraph element.

When user mouse over the paragraph, a tooltip with be shown. The content of the tooltip
comes from tips property of its corresponding component.

Modules

Angular Module is basically a collection of related features / functionality. Angular
Module groups multiple components and services under a single context.

For example, animations related functionality can be grouped into single module and
Angular already provides a module for the animation related functionality,
BrowserAnimationModule module.

An Angular application can have any number of modules but only one module can be set
as root module, which will bootstrap the application and then call other modules as and
when necessary. A module can be configured to access functionality from other module as
well. In short, components from any modules can access component and services from
any other modules.

Following diagram depicts the interaction between modules and its components.

11

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

Calls
App (bootstrap)
Module 1!
¥ !
I
Bootstrap —» Root Components E
I
Cals |
i
:r _____ = Componentl - :
| I
i T !
I
| ¥ A !
| i
- <
i Component 2 Servicel <
: :
T ee——_—_——————— - ———_——_———————————— 4
i
|
|
___________ ':'___________"I e | e e 1
: MMMBQ Module 4! Module 4/
I
| i ! !
- | | |
I
Component 3 I Componenth i Component 7 i
I
! I I
| I I
I | |
i Component 6 l l
| I I
Yo | |
! I I
Compenent4 i Service? «—1 Component 8 <
| | |
! I I

__

Let us check the root module of our Expense Manager application.

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppComponent } from './app.component';

@NgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule

1,

providers: [],

bootstrap: [AppComponent]

}
export class AppModule { }

Here,

¢ NgModule decorator is used to convert a plain Typescript / JavaScript class into
Angular module.

12

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

e declarations option is used to include components into the AppModule module.
e bootstrap option is used to set the root component of the AppModule module.
e providers option is used to include the services for the AppModule module.

e imports option is used to import other modules into the AppModule module.

The following diagram depicts the relationship between Module, Component and Services.

Services

Services are plain Typescript / JavaScript class providing a very specific functionality.
Services will do a single task and do it best. The main purpose of the service is reusability.
Instead of writing a functionality inside a component, separating it into a service will make
it useable in other component as well.

Also, Services enables the developer to organise the business logic of the application.
Basically, component uses services to do its own job. Dependency Injection is used to
properly initialise the service in the component so that the component can access the
services as and when necessary without any setup.

Workflow of Angular application

We have learned the core concepts of Angular application. Let us see the complete flow of
a typical Angular application.

Calls other components through

Directives / Routing

Components B . Modules
Entry Point [src/main.ts]

AppComponent BrowserModule
(root component) Emgfmpg (buift-in module)
Loads
HomePageComponent AppModule [src/app.module.ts] Apptodule
Load [src/app.component .ts]
— s
Q bootstraps
AppRoutingModule

ensens ey AppComponent [src/app.companent ts] [src/app-routing.module.ts]

Uses,

src/app.component.ts

Built-In & User defined

User Defined Components Modules like Forms Modules

src/app.component.html
Access & Callusing
ependency Injection Uses,

- src/app.component.css L R VDII"ECHVES
Services (Built-ins & Components)

Data Service

[=]

Calls other comp ts, if needed

APT Service Access Services

Utility Service

User defined Services

src/main.ts is the entry point of Angular application.

src/main.ts bootstraps the AppModule (src/app.module.ts), which is the root module for
every Angular application.

13

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

platformBrowserDynamic().bootstrapModule(AppModule)
.catch(err => console.error(err));

AppModule bootstraps the AppComponent (src/app.component.ts), which is the root
component of every Angular application.

@NgModule ({
declarations: [
AppComponent
1
imports: [
BrowserModule
1

providers: [],
bootstrap: [AppComponent]

})
export class AppModule { }

Here,
AppModule loads modules through imports option.

AppModule also loads all the registered service using Dependency Injection (DI)
framework.

AppComponent renders its template (src/app.component.html) and uses the
corresponding styles (src/app.component.css). AppComponent name, app-root is
used to place it inside the src/index.html.

<ldoctype html>
<html lang="en">

<head>
<meta charset="utf-8">
<title>ExpenseManager</title>
<base href="/">
<meta name="viewport" content="width=device-width, initial-
scale=1">
<link rel="icon" type="image/x-icon" href="favicon.ico">
</head>
<body>
<app-root></app-root>
</body>
</html>

AppComponent can use any other components registered in the application.

@NgModule ({
declarations: [

AppComponent
AnyOtherComponent
14
8 g - .
w tutorialspoint
EIMPLYEAGSY LEARMNING

Angular 8

1,

imports: [
BrowserModule

1,

providers: [],
bootstrap: [AppComponent]

}
export class AppModule { }

Component use other component through directive
component’s selector name.

in its template using target

<component-selector-name></component-selector-name>

Also, all registered services are accessible to all
Dependency Injection (DI) framework.

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular components through

15

5. Angular 8 — Angular Components and

Templates

As we learned earlier, Components are building block of Angular application. The main
job of Angular Component is to generate a section of web page called view. Every
component will have an associated template and it will be used to generate views.

Let us learn the basic concept of component and template in this chapter.

Add a component

Let us create a new component in our ExpenseManager application.

Open command prompt and go to ExpenseManager application.

cd /go/to/expense-manager

Create a new component using ng generate component command as specified below:

ng generate component expense-entry

Output

The output is mentioned below:

CREATE src/app/expense-entry/expense-entry.component.html (28 bytes)
CREATE src/app/expense-entry/expense-entry.component.spec.ts (671 bytes)
CREATE src/app/expense-entry/expense-entry.component.ts (296 bytes)
CREATE src/app/expense-entry/expense-entry.component.css (0 bytes)
UPDATE src/app/app.module.ts (431 bytes)

Here,

¢ ExpenseEntryComponent is created under src/app/expense-entry folder.
¢ Component class, Template and stylesheet are created.
e AppModule is updated with new component.

Add title property to ExpenseEntryComponent (src/app/expense-entry/expense-
entry.component.ts) component.

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-expense-entry’,
templateUrl: './expense-entry.component.html’,

styleUrls: ['./expense-entry.component.css']

1)

export class ExpenseEntryComponent implements OnInit {

16

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

title: string;

constructor() { }

ngOnInit() {
this.title = "Expense Entry"
}
}

Update template, src/app/expense-entry/expense-entry.component.html with
below content.

<p>{{ title }}«</p>

Open src/app/app.component.html and include newly created component.

<h1>{{ title }}</h1>
<app-expense-entry></app-expense-entry>

Here,
app-expense-entry is the selector value and it can be used as regular HTML Tag.

Finally, the output of the application is as shown below:

w ExpenseManager x +

< C ® localhost:4200

%
al
<
Q

Expense Manager

Expense Entry

We will update the content of the component during the course of learning more about
templates.

Templates

The integral part of Angular component is Template. It is used to generate the HTML
content. Templates are plain HTML with additional functionality.

Attach a template

17

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Template can be attached to Angular component using @component decorator’'s meta
data. Angular provides two meta data to attach template to components.

templateUrl

We already know how to use templateUrl. It expects the relative path of the template file.
For example, AppComponent set its template as app.component.html.

templateUrl: './app.component.html’,

template

template enables to place the HTML string inside the component itself. If the template
content is minimal, then it will be easy to have it Component class itself for easy tracking
and maintenance purpose.

@Component ({
selector: 'app-root',
templateUrl: “<h1>{{ title }}</h1>",
styleUrls: ['./app.component.css']

b

export class AppComponent implements OnInit {
title = 'Expense Manager';

constructor(private debugService : DebugService) {}

ngonInit() {
this.debugService.info("Angular Application starts");
}
}

Attach Stylesheet

Angular Templates can use CSS styles similar to HTML. Template gets its style information
from two sources, a) from its component b) from application configuration.

Component configuration

Component decorator provides two option, styles and styleUrls to provide CSS style
information to its template.

e Styles: styles option is used to place the CSS inside the component itself.

styles: ['hl { color: '#ffeee0'; }']

e styleUrls: styleUrls is used to refer external CSS stylesheet. We can use multiple
stylesheet as well.

styleUrls: ['./app.component.css', './custom_style.css']

Application configuration

Angular provides an option in project configuration (angular.json) to specify the CSS
stylesheets. The styles specified in angular.json will be applicable for all templates. Let
us check our angular.json as shown below:

18

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

{
"projects": {
"expense-manager": {
"architect": {
"build": {
"builder": "@angular-devkit/build-angular:browser",
"options": {
"outputPath": "dist/expense-manager",
"index": "src/index.html",
"main": "src/main.ts",
"polyfills": "src/polyfills.ts",
"tsConfig": "tsconfig.app.json”,
"aot": false,
"assets": [
"src/favicon.ico",
"src/assets"”
])
"styles": [
"src/styles.css"
])
"scripts": []
¥
}J
}
I3
"defaultProject"”: "expense-manager"
}
Here,

styles option sets src/styles.css as global CSS stylesheet. We can include any number
of CSS stylesheets as it supports multiple values.

Include bootstrap

Let us include bootstrap into our ExpenseManager application using styles option and
change the default template to use bootstrap components.

Open command prompt and go to ExpenseManager application.

cd /go/to/expense-manager

Install bootstrap and JQuery library using below commands:

npm install --save bootstrap@4.5.0 jquery@3.5.1

Here,

We have installed JQuery, because, bootstrap uses jquery extensively for advanced
components.

Option angular.json and set bootstrap and jquery library path.
19

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

"projects": {
"expense-manager": {
"architect": {
"build": {
"builder": "@angular-devkit/build-angular:browser",
"options": {

"outputPath": "dist/expense-manager",

"index": "src/index.html",

"main": "src/main.ts",

"polyfills": "src/polyfills.ts",

"tsConfig": "tsconfig.app.json”,

"aot": false,

"assets": [

"src/favicon.ico",
"src/assets™

1

"styles": [
"./node_modules/bootstrap/dist/css/bootstrap.css”,
"src/styles.css"

])

"scripts": [
"./node_modules/jquery/dist/jquery.js",
"./node_modules/bootstrap/dist/js/bootstrap.js”

]

¥
}J
}
I3

"defaultProject"”: "expense-manager"

}

Here,

scripts option is used to include JavaScript library. JavaScript registered through scripts

will be available to all Angular components in the application.

Open app.component.html and change the content as specified below:

<!-- Navigation -->
<nav class="navbar navbar-expand-1lg navbar-dark bg-dark static-top">
<div class="container">
{{ title }}
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarResponsive" aria-controls="navbarResponsive" aria-
expanded="false" aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home

(current)

tutorialspoint

EIMPLYEAGSY LEARMNING

20

Angular 8

</1i>
<1li class="nav-item">
Report
</1i>
<1li class="nav-item">
Add Expense
</1i>
<1li class="nav-item">
About
</1li>

</div>
</div>
</nav>

<app-expense-entry></app-expense-entry>

Here,
Used bootstrap navigation and containers.

Open src/app/expense-entry/expense-entry.component.html and place
content.

below

<l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: Opx;
padding-right: opx;">
<div class="row">

{{ title }}

</div>
<button type="button"
class="btn btn-primary">Edit</button>
</div>
</div>
</div>

<div class="row">

Item:

<div class="row">

</div>

<div class="col" style="text-align: left;">
Pizza

</div>

</div>

<div class="col-sm" style="text-align: left;">

<div class="col-sm" style="text-align: right;">

<div class="container box" style="margin-top: 10px;">

<div class="col-2" style="text-align: right;">

<div class="col-2" style="text-align: right;">

tutorialspoint

EIMPLYEAGSY LEARMNING

21

Angular 8

</div>
</div>
</div>
</div>

Amount:

</div>

<div class="col" style="text-align: left;">
20

</div>

</div>

<div class="row">
<div class="col-2" style="text-align: right;">
Category:

</div>

<div class="col" style="text-align: left;">
Food

</div>

</div>

<div class="row">
<div class="col-2" style="text-align: right;">
Location:

</div>

<div class="col" style="text-align: left;">
Zomato

</div>

</div>

<div class="row">

<div class="col-2" style="text-align: right;">
Spend On:

</div>

<div class="col" style="text-align: left;">
June 20, 2020

</div>

</div>

Restart the application.

The output of the application is as follows:

tutorialspoint

EIMPLYEAGSY LEARMNING

22

Angular 8

e

B ExpenseManager

X+

C © localhost:4200

Expense Entry

Item:
Amount:
Category:
Location:
Spend On:

Pizza

20

Food

Zomato

June 20, 2020

¥

]|

vy | O

Expense Manager Home

We will improve the application to handle dynamic expense entry in next chapter.

¥

tutor

EIMPLYE

ialspoint

ASYLEARMNINIG

23

6. Angular 8 — Data Binding

Data binding deals with how to bind your data from component to HTML DOM elements
(Templates). We can easily interact with application without worrying about how to insert
your data. We can make connections in two different ways one way and two-way binding.

Before moving to this topic, let’s create a component in Angular 8.

Open command prompt and create new Angular application using below command:

cd /go/to/workspace
ng new databind-app
cd databind-app

Create a test component using Angular CLI as mentioned below:

ng generate component test

The above create a new component and the output is as follows:

CREATE src/app/test/test.component.scss (@ bytes)
CREATE src/app/test/test.component.html (19 bytes)
CREATE src/app/test/test.component.spec.ts (614 bytes)
CREATE src/app/test/test.component.ts (262 bytes)
UPDATE src/app/app.module.ts (545 bytes)

Run the application using below command:

ng serve

One-way data binding

One-way data binding is a one-way interaction between component and its template. If
you perform any changes in your component, then it will reflect the HTML elements. It
supports the following types:

String interpolation

In general, String interpolation is the process of formatting or manipulating strings. In
Angular, Interpolation is used to display data from component to view (DOM). It is
denoted by the expression of {{ }} and also known as mustache syntax.

Let’s create a simple string property in component and bind the data to view.

Add the below code in test.component.ts file as follows:

export class TestComponent implements OnInit {
appName = "My first app in Angular 8";

}

24

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Move to test.component.html file and add the below code:

<h1>{{appName}}</h1>

Add the test component in your app.component.html file by replacing the existing
content as follows:

<app-test></app-test>

Finally, start your application (if not done already) using the below command:

ng serve

You could see the following output on your screen:

¥Y DatabindApp X +

& C @ localhost:4200 % ¢ Y » e

My first app in Angular 8

Event binding

Events are actions like mouse click, double click, hover or any keyboard and mouse
actions. If a user interacts with an application and performs some actions, then event will
be raised. It is denoted by either parenthesis () or on-. We have different ways to bind
an event to DOM element. Let’s understand one by one in brief.

Component to view binding
Let’s understand how simple button click even handling works.

Add the following code in test.component.ts file as follows:

export class TestComponent {

showData($event: any){
console.log("button is clicked!");
if($event) {
console.log($event.target);
console.log($event.target.value);

25

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

event x refersthefiredevent. Inthisscenario,* click = istheevent.xevent has all the
information about event and the target element. Here, the target is button.
$event.target property will have the target information.

We have two approaches to call the component method to view
(test.component.html). First one is defined below:

<h2>Event Binding</h2>

<button (click)="showData($event)">Click here</button>

Alternatively, you can use prefix - on using canonical form as shown below:

<button on-click = "showData()">Click here</button>

Here, we have not used $event as it is optional.

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

— O X
a DatabindApp X +
¢ C @ localhost:4200 * © v » O
My first app in Angular 8
Event Binding
| Click here |
‘ Click here ‘
[w j] Elements Console Sources Network Performance Memory Application Security Lighthouse e X
Pl ® top ¥ | © Filter Custom levels ¥
Angular is running in the development mode. Call enableProdMode() to enable the production mode. core.js:38781
[WDS] Live Reloading enabled. client:52
button is clicked! test.component.ts:20
<button _ngcontent-bep-c13Click here</button> test.component.ts:22
test.component.ts:23
button is clicked! test.component.ts:20
>
Console What's New Request blocking x

Here, when the user clicks on the button, event binding understands to button click action
and call component showData() method so we can conclude it is one-way binding.

Property binding

Property binding is used to bind the data from property of a component to DOM
elements. It is denoted by [].

26

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Let's understand with a simple example.

Add the below code in test.component.ts file.

export class TestComponent {
userName:string = "Peter";

}

Add the below changes in view test.component.html,

<input type="text" [value]="userName">

Here,
userName property is bind to an attribute of a DOM element <input> tag.

Finally, start your application (if not done already) using the below command:

ng serve

@ DatabindApp X +

< C ©® localhost:4200 * © v * O :

My first app in Angular 8

Event Binding
| Click here |

| Click here |

| Peter

Attribute binding

Attribute binding is used to bind the data from component to HTML attributes. The
syntax is as follows:

<HTMLTag [attr.ATTR]="Component data">

For example,

<td [attr.colspan]="columnSpan"> ... </td>

Let’s understand with a simple example.
27

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

Add the below code in test.component.ts file.

export class TestComponent {
userName:string = "Peter";

}

Add the below changes in view test.component.html,

<input type="text" [value]="userName">

Here,
userName property is bind to an attribute of a DOM element <input> tag.

Finally, start your application (if not done already) using the below command:

ng serve

'm DatabindApp X +

< C © localhost:4200 % © v * O :

My first app in Angular 8

Event Binding
| Click here |

| Click here |

| Peter

Class binding

Class binding is used to bind the data from component to HTML class property. The
syntax is as follows:

<HTMLTag [class]="component variable holding class name">

Class Binding provides additional functionality. If the component data is boolean, then
the class will bind only when it is true. Multiple class can be provided by string (“foo bar”)
as well as Array of string. Many more options are available.

For example,

28

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

<p [class]="myClasses">

Let's understand with a simple example.

Add the below code in test.component.ts file,

export class TestComponent {
myCSSClass = "red";
applyCSSClass = false;

}

Add the below changes in view test.component.html.

<p [class]="myCSSClass">This paragraph class comes from *myClass* property </p>
<p [class.blue]="applyCSSClass">This paragraph class does not apply</p>

Add the below content in test.component.css.

.red {
color: red;

}

.blue {
color: blue;

}

Finally, start your application (if not done already) using the below command:

ng serve

The final output will be as shown below:

g DatabindApp X +

< C © localhost:4200 * © v » O ¢

My first app in Angular 8

Event Binding
| Click here |

| Click here |

| Peter

This paragraph class comes from *myClass™ property

This paragraph class does not apply

29

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Style binding

Angular 8

Style binding is used to bind the data from component into HTML style property. The

syntax is as follows:

<HTMLTag [style.STYLE]="component data">

For example,

<p [style.color]="myParaColor"> ... </p>

Let's understand with a simple example.

Add the below code in test.component.ts file.

myColor = ‘brown’;

Add the below changes in view test.component.html.

<p [style.color]="myColor">Text color is styled using style binding</p>

Finally, start your application (if not done already) using the below command:

ng serve

The final output will be as shown below:

u DatabindApp x +

< C @ localhost:4200

My first app in Angular 8

Event Binding
| Click here |

| Click here |

| Peter

This paragraph class comes from *myClass™ property
This paragraph class does not apply

Text color is styled using style binding

m tutorialspoint

30

Angular 8

Two-way data binding

Two-way data binding is a two-way interaction, data flows in both ways (from
component to views and views to component). Simple example is ngModel. If you do any
changes in your property (or model) then, it reflects in your view and vice versa. It is the
combination of property and event binding.

NgModel

NgModel is a standalone directive. ngModel directive binds form control to property and
property to form control. The syntax of ngModel is as follows:

<HTML [(ngModel)]="model.name" />

For example,

<input type="text" [(ngModel)]="model.name" />

Let’s try to use ngModel in our test application.

Configure FormsModule in AppModule (src/app/app.module.ts)

import { FormsModule } from '@angular/forms';

@NgModule ({
imports: [
BrowserModule,
FormsModule

]

}
export class AppModule { }

FormModule do the necessary setup to enable two-way data binding.

Update TestComponent view (test.component.html) as mentioned below:

<input type="text" [(ngModel)]="userName">

<p>Two way binding! Hello {{ userName }}!</p>

Here,

Property is bind to form control ngModel directive and if you enter any text in the textbox,
it will bind to the property. After running your application, you could see the below
changes:

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

31

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

m DatabindApp x +

My first app in Angular 8

Event Binding

| Peter |

Two way binding! Hello Peter!
This paragraph class comes from *myClass* property
This paragraph class does not apply

Text color is styled using style binding

< C @ localhost:4200 g

Now, try to change the input value to Jack. As you type, the text below the input gets

changed and the final output will be as shown below:

ﬂ DatabindApp x +

My first app in Angular 8

Event Binding

| JacH |

Two way binding! Hello Jack!
This paragraph class comes from *myClass* property
This paragraph class does not apply

Text color is styled using style binding

< C @ localhost:4200 <

We will learn more about form controls in the upcoming chapters.

Working example

w tutorialspoint

32

Angular 8

Let us implement all the concept learned in this chapter in our ExpenseManager
application.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Create ExpenseEntry interface (src/app/expense-entry.ts) and add id, amount,
category, Location, spendOn and createdOn.

export interface ExpenseEntry {
id: number;
item: string;
amount: number;
category: string;
location: string;
spendOn: Date;
createdOn: Date;

}

Import ExpenseEntry into ExpenseEntryComponent.

import { ExpenseEntry } from '../expense-entry';

Create a ExpenseEntry object, expenseEntry as shown below:

export class ExpenseEntryComponent implements OnInit {
title: string;
expenseEntry: ExpenseEntry;
constructor() { }

ngonInit() {
this.title = "Expense Entry";

this.expenseEntry = {
id: 1,
item: "Pizza",
amount: 21,
category: "Food",
location: "Zomato",
spendOn: new Date(2020, 6, 1, 10, 10, 10),
createdOn: new Date(2020, 6, 1, 10, 10, 10),

}s
}

Update the component template using expenseEntry object, src/app/expense-
entry/expense-entry.component.html as specified below:

<!-- Page Content -->
<div class="container">

33

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: Opx; padding-right:
opx; ">
<div class="row">
<div class="col-sm" style="text-align: left;">
{{ title }}
</div>
<div class="col-sm" style="text-align: right;">
<button type="button" class="btn btn-
primary">Edit</button>
</div>
</div>
</div>
<div class="container box" style="margin-top: 10px;">
<div class="row">
<div class="col-2" style="text-align: right;">
Item:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.item }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Amount:
</div>
<div class="col" style="text-align: left;">

{{ expenseEntry.amount }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Category:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.category }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Location:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.location }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">

Spend On:

34

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

</
</div>
</div>
</div>
</div>

</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.spendOn }}
</div>
div>

The output of the application is as follows:

g ExpenseManager

Expense Entry

Item:
Amount:
Category:
Location:
Spend On:

x4+

& C @ localhost:4200

Expense Manager

Pizza

21

Food

Zomato

Wed Jul 01 2020 10:10:10 GMT+0530 (India Standard Time)

89> tutor

ialspoint

ASYLEARMNINIG

35

7. Angular 8 — Directives

Angular 8 directives are DOM elements to interact with your application. Generally,
directive is a TypeScript function. When this function executes Angular compiler checked
it inside DOM element. Angular directives begin with ng- where ng stands for Angular and
extends HTML tags with @directive decorator.

Directives enables logic to be included in the Angular templates. Angular directives can be
classified into three categories and they are as follows:

Attribute directives

Used to add new attributes for the existing HTML elements to change its look and
behaviour.

<HTMLTag [attrDirective]='value' />

For example,

<p [showToolTip]='Tips' />

Here, showToolTip refers an example directive, which when used in a HTML element
will show tips while user hovers the HTML element.

Structural directives

Used to add or remove DOM elements in the current HTML document.

<HTMLTag [structuralDirective]='value' />

For example,

<div *ngIf="isNeeded">
Only render if the *isNeeded* value has true value.
</div>

Here, ngIf is a built-in directive used to add or remove the HTML element in the current
HTML document. Angular provides many built-in directive and we will learn in later
chapters.

Component based directives

Component can be used as directives. Every component has Input and Output option
to pass between component and its parent HTML elements.

<component-selector-name [input-reference]="input-value"> ... </component-
selector-name>

For example,

<list-item [items]="fruits"> ... </list-item>

36

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Here, list-item is a component and items is the input option. We will learn how to create
component and advanced usages in the later chapters.

Before moving to this topic, let’s create a sample application (directive-app) in Angular
8 to work out the learnings.

Open command prompt and create new Angular application using below command:

cd /go/to/workspace
ng new directive-app
cd directive-app

Create a test component using Angular CLI as mentioned below:

ng generate component test

The above create a new component and the output is as follows:

CREATE src/app/test/test.component.scss (0 bytes)
CREATE src/app/test/test.component.html (19 bytes)
CREATE src/app/test/test.component.spec.ts (614 bytes)
CREATE src/app/test/test.component.ts (262 bytes)
UPDATE src/app/app.module.ts (545 bytes)

Run the application using below command:

ng serve

DOM Overview

Let us have a look at DOM model in brief. DOM is used to define a standard for accessing
documents. Generally, HTML DOM model is constructed as a tree of objects. It is a
standard object model to access html elements.

We can use DOM model in Angular 8 for the below reasons:

e We can easily navigate document structures with DOM elements.
e We can easily add html elements.
e We can easily update elements and its contents.

Structural directives

Structural directives change the structure of DOM by adding or removing elements. It is
denoted by * sign with three pre-defined directives NgIf, NgFor and NgSwitch. Let's
understand one by one in brief.

NglIf directive

NgIf directive is used to display or hide data in your application based on the condition
becomes true or false. We can add this to any tag in your template.

Let us try ngIf directive in our directive-app application.

Add the below tag in test.component.html.

¥

37

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<p>test works!</p>
<div *ngIf="true">Display data</div>

Add the test component in your app.component.html file as follows:

<app-test></app-test>

Start your server (if not started already) using the below command:

ng serve

Now, run your application and you could see the below response:

'm DirectiveApp X +
& C @ localhost:4200 Ww O v R o :

test works!

Display data

If you set the condition ngIf="false” then, contents will be hidden.

nglfElse directive

ngIfElse is similar to ngIf except, it provides option to render content during failure
scenario as well.

Let's understand how ngIfElse works by doing a sample.

Add the following code in test.component.ts file.

export class TestComponent implements OnInit {

isLogIn : boolean = false;

isLogOut : boolean = true;

}

Add the following code in test.component.html file as follows:

<p>ngIfElse example!</p>

<div *ngIf="islogIn; else islLogOut">
Hello you are logged in

</div>

38

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

<ng-template #islLogOut>
You're logged out..
</ng-template>

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

'@ DirectiveApp X +
< C © localhost:4200 % © v *» o :

nglfElse example!

You're logged out..

Here, isLogOut value is assigned as true, so it goes to else block and renders ng-
template. We will learn ng-template later in this chapter.

ngFor directive

ngFor is used to repeat a portion of elements from the list of items.
Let’s understand how ngFor works by doing a sample.

Add the list in test.component.ts file as shown below:

list = [1,2,3,4,5];

Add ngFor directive in test.component.html as shown below:

<h2>ngFor directive</h2>

<li *ngFor="let 1 of list">

{{1}}
</1i>

Here, the let keyword creates a local variable and it can be referenced anywhere in your
template. The let / creates a template local variable to get the list elements.

Finally, start your application (if not done already) using the below command:

39

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

ng serve

Now, run your application and you could see the below response:

'ﬂ Directivelpp

ngFor directive

L]
LIV S S R N T

X

&« C ©® localhost:4200

+

trackBy

Sometimes, ngFor performance is low with large lists. For example, when adding new
item or remove any item in the list may trigger several DOM manipulations. To iterate

over large objects collection, we use trackBy.

It is used to track when elements are added or removed. It is performed by trackBy
method. It has two arguments index and element. Index is used to identity each element

uniquely. Simple example is defined below.

Let’s understand how trackBy works along with ngFor by doing a sample.

Add the below code in test.component.ts file.

export class TestComponent
{
studentArr: any[] = [
{
"id": 1,
"name": "studentl"
}s

{
"id": 2,

"name": "student2"

s
{
"id": 3,
"name": "student3"

}s

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

40

Angular 8

{
"id": 4,
"name": "student4"
}
15

trackByData(index:number, studentArr:any): number {
return studentArr.id;

}

Here,

We have created, trackByData() method to access each student element in a unique way
based on the id.

Add the below code in test.component.html file to define trackBy method inside ngFor.

<1li *ngFor="let std of studentArr; trackBy: trackByData">
{{std.name}}
</1i>

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

@ DirectiveApp X +

& C ©® localhost:4200 Y% O Y B G :

» studentl
» student?
» student3
* studentd

Here, the application will print the student names. Now, the application is tracking student
objects using the student id instead of object references. So, DOM elements are not
affected.

NgSwitch directive

NgSWitch is used to check multiple conditions and keep the DOM structure as simple and
easy to understand.

Let us try ngSwitch directive in our directive-app application.

41

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Add the following code in test.component.ts file.

Angular 8

export class TestComponent implements OnInit {
logInName = 'admin’;

}

Add the following code in test.component.html file as follows:

<h2>ngSwitch directive</h2>
<ul [ngSwitch]="logInName">
<li *ngSwitchCase=""'user'">
<p>User is logged in..</p>
</1i>
<1li *ngSwitchCase=""admin'">
<p>admin is logged in</p>
</1i>
<1i *ngSwitchDefault>
<p>Please choose login name</p>
</1li>

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

'@ DirectiveApp X +

ngSwitch directive

* admin is logged in

< C @ localhost:4200 & U v R o :

Here, we have defined logInName as admin. So, it matches second SwitchCase and

prints above admin related message.

Attribute directives

Attribute directives performs the appearance or behavior of DOM elements or components.
Some of the examples are NgStyle, NgClass and NgModel. Whereas, NgModel is two-way

attribute data binding explained in previous chapter.

ngStyle

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

42

Angular 8

ngStyle directive is used to add dynamic styles. Below example is used to apply blue color
to the paragraph.

Let us try ngStyle directive in our directive-app application.

Add below content in test.component.html file.

<p [ngStyle]="{'color': 'blue', 'font-size': "14px'}">
paragraph style is applied using ngStyle
</p>

Start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

@ DirectiveApp X +

& C ©® localhost:4200 Y% O Y B G :

paragraph style is applied using ngStyle

ngClass

ngClass is used to add or remove CSS classes in HTML elements.
Let us try ngClass directive in our directive-app application.

Create a class User using the below command:

ng g class User

You could see the following response:

CREATE src/app/user.spec.ts (146 bytes)
CREATE src/app/user.ts (22 bytes)

Move to src/app/user.ts file and add the below code:

export class User {
userId : number;
userName : string;

}

Here, we have created two property userld and userName in the User class.

Open test.component.ts file and add the below changes:
43

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

import { User } from '../user';
export class TestComponent implements OnInit {
users: User[] = [
{
"userId": 1,
"userName": 'Userl'

}s
{

"userId": 2,
"userName": 'User2'
})
15
}

Here, we have declared a local variable, users and initialise with 2 users object.

Open test.component.css file and add below code:

.highlight
{

color: red;

}

Open your test.component.html file and add the below code:

<div class="container">

<div *ngFor="let user of users"” [ngClass]="{
"highlight':user.userName === 'Userl'’

>
{{ user.userName }}

</div>

</div>
Here,

We have applied, ngClass for Userl so it will highlight the User1.

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

a4

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

'm DirectiveApp X + N - e
&« C @ localhost:4200 Y O Y B G :
Userl
User?2

Custom directives

Angular provides option to extend the angular directive with user defined directives and it
is called Custom directives. Let us learn how to create custom directive in this chapter.

Let us try to create custom directive in our directive-app application.

Angular CLI provides a below command to create custom directive.

ng generate directive customstyle

After executing this command, you could see the below response:

CREATE src/app/customstyle.directive.spec.ts (244 bytes)
CREATE src/app/customstyle.directive.ts (151 bytes)
UPDATE src/app/app.module.ts (1115 bytes)

Open app.module.ts. The directive will be configured in the AppModule through
declarations meta data.

import { CustomstyleDirective } from './customstyle.directive’;

@NgModule({
declarations: [
AppComponent,
TestComponent,
CustomstyleDirective
]
}

Open customstyle.directive.ts file and add the below code:

import { Directive, ElementRef } from '@angular/core’;

@Directive({
selector: '[appCustomstyle]'’

1)

export class CustomstyleDirective {

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

45

Angular 8

constructor(el: ElementRef) {
el.nativeElement.style.fontSize = '24px’;

}

}

Here, constructor method gets the element using CustomStyleDirective as el. Then,
it accesses el’s style and set its font size as 24px using CSS property.

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

'm DirectiveApp X + N = =

< C @ localhost:4200 %t © v N e :

This text will shown with font size of 24px.

ng-template

ng-template is used to create dynamic and reusable templates. It is a virtual element. If
you compile your code with ng-template then is converted as comment in DOM.

For example,

Let’s add a below code in test.component.html page.

<h3>ng-template</h3>

<ng-template>ng-template tag is a virtual element</ng-template>

If you run the application, then it will print only h3 element. Check your page source,
template is displayed in comment section because it is a virtual element so it does not
render anything. We need to use ng-template along with Angular directives.

Normally, directive emits the HTML tag it is associated. Sometimes, we don’t want the tag
but only the content. For example, in the below example, /i will be emitted.

<1i *ngFor="let item in list">{{ item }}</1li>

We can use ng-template to safely skip the li tag.
46

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ng-template with structural directive

ng-template should always be used inside ngIf, ngFor or ngSwitch directives to render
the result.

Let’s assume simple code.

<ng-template [ngIf]=true>
<div><h2>ng-template works!</h2></div>
</ng-template>

Here, if ngIf condition becomes true, it will print the data inside div element. Similarly,
you can use ngFor and ngSwitch directives as well.

NgForOf directive

ngForOf is also a structural directive used to render an item in a collection. Below example
is used to show ngForOf directive inside ng-template.

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-test',
template: °
<div>
<ng-template ngFor let-item [ngForOf]="Fruits" let-i="index">
<p>{{i}}</p>
</ng-template>
</div>"

styleUrls: ['./test.component.css']

1)

export class TestComponent implements OnInit {

Fruits = ["mango","apple","orange","grapes"];
ngoOnInit()

{

}

}

If you run the application, it will show the index of each elements as shown below:

0
1
2
3
Component directives

Component directives are based on component. Actually, each component can be used as
directive. Component provides @Input and @Output decorator to send and receive
information between parent and child components.

Let us try use component as directive in our directive-app application.

¥

47

tutorialspoint

EIMPLYEAGSY LEARMNING

Create a new ChildComponent using below command:

Angular 8

ng generate component child

CREATE src/app/child/child.component.html (20 bytes)
CREATE src/app/child/child.component.spec.ts (621 bytes)
CREATE src/app/child/child.component.ts (265 bytes)
CREATE src/app/child/child.component.css (@ bytes)
UPDATE src/app/app.module.ts (466 bytes)

Open child.component.ts and add below code:

@Input() userName: string;

Here, we are setting a input property for ChildComponent.

Open child.component.html and add below code:

<p>child works!</p>
<p>Hi {{ userName }}</p>

Here, we are using the value userName to welcome the user.

Open test.component.ts and add below code:

name: string = 'Peter’;

Open test.component.html and add below code:

<h1>Test component</h1l>

<app-child [userName]="name"><app-child>

Here, we are using AppComponent inside the TestComponent as a directive with

input property.

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

[1(images/directive-app/component_as_directive.PNG"

Working example

Let us add a new component in our ExpenseManager application to list the expense

entries.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

48

Angular 8

ng serve

Create a new component, ExpenseEntryListComponent using below command:

ng generate component ExpenseEntrylList

Output

The output is as follows:

CREATE src/app/expense-entry-list/expense-entry-list.component.html (33 bytes)
CREATE src/app/expense-entry-list/expense-entry-1list.component.spec.ts (700
bytes)

CREATE src/app/expense-entry-list/expense-entry-list.component.ts (315 bytes)
CREATE src/app/expense-entry-list/expense-entry-1list.component.css (@ bytes)
UPDATE src/app/app.module.ts (548 bytes)

Here, the command creates the ExpenseEntryList Component and update the necessary
code in AppModule.

Import ExpenseEntry into ExpenseEntryListComponent component
(src/app/expense-entry-list/expense-entry-list.component)

import { ExpenseEntry } from '../expense-entry';

Add a method, getExpenseEntries() to return list of expense entry (mock items) in
ExpenseEntryListComponent (src/app/expense-entry-list/expense-entry-
list.component)

getExpenseEntries() : ExpenseEntry[] {
let mockExpenseEntries : ExpenseEntry[] = [
{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "Mcdonald",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "KFC",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 39) + 1), 10, 10, 10) },

{ id: 1,
49
& . =
w tutorialspoint

Angular 8

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "Mcdonald",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "KFC",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "KFC",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

1

return mockExpenseEntries;

}

Declare a local variable, expenseEntries and load the mock list of expense entries as
mentioned below:

title: string;
expenseEntries: ExpenseEntry[];
constructor() { }

ngOnInit() {
this.title = "Expense Entry List";
this.expenseEntries = this.getExpenseEntries();

}

Open the template file (src/app/expense-entry-list/expense-entry-
list.component.html) and show the mock entries in a table.

<!-- Page Content -->

50

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">

<div class="container" style="padding-left: Opx; padding-right:

opx; ">
<div class="row">
<div class="col-sm" style="text-align: left;">
{{ title }}
</div>
<div class="col-sm" style="text-align: right;">
<button type="button" class="btn btn-
primary">Edit</button>
</div>
</div>
</div>
<div class="container box" style="margin-top: 10px;">
<table class="table table-striped">

<thead>

<tr>
<th>Item</th>
<th>Amount</th>
<th>Category</th>
<th>Location</th>
<th>Spent On</th>

</tr>

</thead>

<tbody>
<tr *ngFor="let entry of
expenseEntries">
<th scope="row">{{ entry.item
Y </th>
<th>{{ entry.amount }}</th>
<td>{{ entry.category }}</td>
<td>{{ entry.location }}</td>
<td>{{ entry.spendOn | date:
"short’ }}</td>
</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>

Here,

e Used bootstrap table. table and table-striped will style the table according to
Boostrap style standard.
e Used ngFor to loop over the expenseEntries and generate table rows.

Open AppComponent template, src/app/app.component.html and include
ExpenseEntryListComponent and remove ExpenseEntryComponent as shown below:

&

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<app-expense-entry-list></app-expense-entry-list>

Finally, the output of the application is as shown below.

B ExpenseManager X +

< C O localhost:4200 w @y | 8

Expense Manager Home
Expense Entry List m

Item Amount Category Location Spent On

Pizza 1 Food Mcdonald Mon May 18 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 9 Food KFC Fri May 08 2020 10:10:10 GMT+0530 (India Standard Time)

Pizza 7 Food Mcdonald Sun May 24 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 10 Food KFC Wed May 27 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 6 Food KFC Wed May 20 2020 10:10:10 GMT+0530 (India Standard Time)

52

A ' tutorialspoint

EIMPLYEAGSY LEARMNING

8. Angular 8 — Pipes

Pipes are referred as filters. It helps to transform data and manage data within
interpolation, denoted by {{ | }}. It accepts data, arrays, integers and strings as inputs
which are separated by ‘|’ symbol. This chapter explains about pipes in detail.

Adding parameters

Create a date method in your test.component.ts file.

export class TestComponent

{

presentDate = new Date();

}

Now, add the below code in your test.component.html file.

<div>
Today's date :- {{presentDate}}
</div>

Now, run the application, it will show the following output:

Today's date :- Mon Jun 15 2020 10:25:05 GMT+0530 (IST)

Here,

Date object is converted into easily readable format.

Add Date pipe
Let’s add date pipe in the above html file.

<div>
Today's date :- {{presentDate | date }}
</div>

You could see the below output:

Today's date :- Jun 15, 2020

Parameters in Date

We can add parameter in pipe using : character. We can show short, full or formatted
dates using this parameter. Add the below code in test.component.html file.

<div>

53

w tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

short date :- {{presentDate | date:'shortDate' }}

Full date :- {{presentDate | date:'fullDate' }}

Formatted date:- {{presentDate | date:'M/dd/yyyy'}}

Hours and minutes:- {{presentDate | date:'h:mm'}}

</div>

You could see the below response on your screen:

short date :- 6/15/20

Full date :- Monday, June 15, 2020
Formatted date:- 6/15/2020

Hours and minutes:- 12:00

Chained pipes

We can combine multiple pipes together. This will be useful when a scenario associates
with more than one pipe that has to be applied for data transformation.

In the above example, if you want to show the date with uppercase letters, then we can
apply both Date and Uppercase pipes together.

Add the code in test.component.html file.

<div>
Date with uppercase :- {{presentDate | date:'fullDate' | uppercase}}

Date with lowercase :- {{presentDate | date:'medium' | lowercase}}

</div>

You could see the below response on your screen:

Date with uppercase :- MONDAY, JUNE 15, 2020
Date with lowercase :- jun 15, 2020, 12:00:00 am

Here,

Date, Uppercase and Lowercase are pre-defined pipes. Let’s understand other types of
built-in pipes in next section.

Built-in Pipes

Angular 8 supports the following built-in pipes. We will discuss one by one in brief.
AsyncPipe

If data comes in the form of observables, then Async pipe subscribes to an observable
and returns the transmitted values.

54

tutorialspoint

EIMPLYEAGSY LEARMNING

i}

Angular 8

import { Observable, Observer } from 'rxjs';

export class TestComponent implements OnInit {
timeChange = new Observable<string>((observer: Observer<string>) => {

setInterval(() => observer.next(new Date().toString()), 1000);
})s

Here,

The Async pipe performs subscription for time changing in every one seconds and returns
the result whenever gets passed to it. Main advantage is that, we don’'t need to call
subscribe on our timeChange and don’t worry about unsubscribe, if the component is
removed.

Add the below code inside your test.component.html.

<div>
Seconds changing in Time: {{ timeChange | async }}
</div>

Now, run the application, you could see the seconds changing on your screen.

CurrencyPipe

It is used to convert the given number into various countries currency format. Consider
the below code in test.component.ts file.

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-test’,
template: °
<div style="text-align:center">
<h3> Currency Pipe</h3>
<p>{{ price | currency:'EUR':true}}</p>
<p>{{ price | currency:'INR' }}</p>
</div>
‘)
styleUrls: ['./test.component.scss']
}
export class TestComponent implements OnInit {

price : number = 20000;

ngonInit() {

55

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

}

You could see the following output on your screen:

Currency Pipe

€20,000.00

X20,000.00

SlicePipe

Slice pipe is used to return a slice of an array. It takes index as an argument. If you assign
only start index, means it will print till the end of values. If you want to print specific range
of values, then we can assign start and end index.

We can also use negative index to access elements. Simple example is shown below:

test.component.ts

import { Component, OnInit } from '@angular/core’;

@Component ({

selector: 'app-test’,

template: °

<div>

<h3>Start index:- {{Fruits | slice:2}}</h3>

<h4s>Start and end index:- {{Fruits | slice:1:4}}</h4>
<h5>Negative index:- {{Fruits | slice:-2}}</h5>
<h6>Negative start and end index:- {{Fruits | slice:-4:-2}}</h6>

</div>

)
styleUrls: ['./test.component.scss']

1)

export class TestComponent implements OnInit {

Fruits = ["Apple","Orange","Grapes","Mango","Kiwi", "Pomegranate"];

ngonInit() {
}

}

Now run your application and you could see the below output on your screen:

Start index:- Grapes,Mango,Kiwi,Pomegranate

56

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Start and end index:- Orange,Grapes,Mango
Negative index:- Kiwi,Pomegranate

Negative start and end index:- Grapes,Mango

Here,

e {{Fruits | slice:2}} means it starts from second index value Grapes to till the
end of value.

e {{Fruits | slice:1:4}} means starts from 1 to end-1 so the result is one to third
index values.

e {{Fruits | slice:-2}} means starts from -2 to till end because no end value is
specified. Hence the result is Kiwi, Pomegranate.

o {{Fruits | slice:-4:-2}} means starts from negative index -4 is Grapes to end-1
which is -3 so the result of index[-4,-3] is Grapes, Mango.

DecimalPipe

It is used to format decimal values. It is also considered as CommonModule. Let’s
understand a simple code in test.component.ts file,

import { Component, OnInit } from '@angular/core’;

@Component ({

selector: 'app-test’,

template: °

<div style="text-align:center">
<h3>Decimal Pipe</h3>
<p> {{decimalNuml | number}} </p>
<p> {{decimalNum2 | number}} </p>

</div>

)
styleUrls: ['./test.component.scss']

1)

export class TestComponent implements OnInit {

decimalNuml: number = 8.7589623;
decimalNum2: number 5.43;
ngonInit() {

}

}

You could see the below output on your screen:

Decimal Pipe
8.759

5.43

57

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Formatting values

We can apply string format inside number pattern. It is based on the below format:

number:"{minimumIntegerDigits}.{minimumFractionDigits} -
{maximumFractionDigits}"

Let’s apply the above format in our code,

@Component ({
template: °
<div style="text-align:center">
<p> Apply formatting:- {{decimalNuml | number:'3.1'}} </p>
<p> Apply formatting:- {{decimalNuml | number:'2.1-4'}} </p>
</div>

1)

)

Here,

{{decimalNum1 | number:'3.1°'}} means three decimal place and minimum of one
fraction but no constraint about maximum fraction limit. It returns the following output:

Apply formatting:- 008.759

{{decimalNum1l1 | number:'2.1-4'}} means two decimal places and minimum one and
maximum of four fractions allowed so it returns the below output:

Apply formatting:- ©8.759

PercentPipe

It is used to format number as percent. Formatting strings are same as DecimalPipe
concept. Simple example is shown below:

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-test’,
template: °
<div style="text-align:center">
<h3>Decimal Pipe</h3>
<p> {{decimalNuml | percent:'2.2'}} </p>

</div>

)
styleUrls: ['./test.component.scss']

1)

export class TestComponent <
decimalNuml: number = 0.8178;

}

You could see the below output on your screen:
58

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Decimal Pipe

81.78%

JsonPipe

It is used to transform a JavaScript object into a JSON string. Add the below code in
test.component.ts file as follows:

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-test’,
template: °
<div style="text-align:center">
<p ngNonBindable>{{ jsonData }}</p> (1)
<p>{{ jsonData }}</p>
<p ngNonBindable>{{ jsonData | json }}</p>
<p>{{ jsonData | json }}</p>
</div>

)
styleUrls: ['./test.component.scss']

1)

export class TestComponent {
jsonData = { id: 'one', name: { username: 'userl' }}

}

Now, run the application, you could see the below output on your screen:

{{ jsonData }}

(1)
[object Object]

{{ jsonData | json }}

{ "id": "one", "name": { "username": "userl" } }

Creating custom pipe

As we have seen already, there is a number of pre-defined Pipes available in Angular 8
but sometimes, we may want to transform values in custom formats. This section explains
about creating custom Pipes.

Create a custom Pipe using the below command:

ng g pipe digitcount

After executing the above command, you could see the response:

59

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

CREATE src/app/digitcount.pipe.spec.ts (203 bytes)
CREATE src/app/digitcount.pipe.ts (213 bytes)
UPDATE src/app/app.module.ts (744 bytes)

Let’s create a logic for counting digits in a number using Pipe. Open digitcount.pipe.ts

file and add the below code:

import { Pipe, PipeTransform } from '@angular/core';

@Pipe({

name: ‘digitcount’

1)

export class DigitcountPipe implements PipeTransform {

transform(val : number) : number {
return val.toString().length;

}
}

Now, we have added logic for count number of digits in a number. Let’s add the final code

in test.component.ts file as follows:

import { Component, OnInit } from '@angular/core’;

@Component ({

selector: 'app-test’,

template: °

<div>

<p> DigitCount Pipe </p>

<h1>{{ digits | digitcount }}</h1>
</div>

)
styleUrls: ['./test.component.scss']
})
export class TestComponent implements OnInit {
digits : number = 100;
ngOnInit() {
}
}

Now, run the application, you could see the below response:

DigitCount Pipe

3

Working example

Let us use the pipe in the our ExpenseManager application.

Open command prompt and go to project root folder.

tutorialspoint

EIMPLYEAGSY LEARMNING

60

Angular 8

cd /go/to/expense-manager

Start the application.

ng serve

Open ExpenseEntryListComponent’s
list/expense-entry-list.component.html and

mentioned below:

template,
include pipe in entry.spendOn as

src/app/expense-entry-

<td>{{ entry.spendOn | date: 'short' }}</td>

Here, we have used the date pipe to show the spend on date in the short format.

Finally, the output of the application is as shown below:

Q ExpenseManager

Expense Entry List

Item

Pizza

Pizza

Pizza

Pizza

Pizza

X+

& C © localhost:4200

Expense Manager

Category

Food

Food

Food

Food

Food

Location

Mcdonald

KFC

Mcdonald

KFC

KFC

Home Report Add Expense

Spent On

May 14, 2020, 10:10:10 AM

May 12, 2020, 10:10:10 AM

May 24, 2020, 10:10:10 AM

May 28, 2020, 10:10:10 AM

May 30, 2020, 10:10:10 AM

I@A‘ \tutorialspoint

EIMPLYEAEGBYLEARNINIG

61

9. Angular 8 — Reactive Programming

Reactive programming is a programming paradigm dealing with data streams and the
propagation of changes. Data streams may be static or dynamic. An example of static data
stream is an array or collection of data. It will have an initial quantity and it will not change.
An example for dynamic data stream is event emitters. Event emitters emit the data
whenever the event happens. Initially, there may be no events but as the time moves on,
events happens and it will gets emitted.

Reactive programming enables the data stream to be emitted from one source called
Observable and the emitted data stream to be caught by other sources called Observer
through a process called subscription. This Observable / Observer pattern or simple
Observer pattern greatly simplifies complex change detection and necessary updating in
the context of the programming.

JavaScript does not have the built-in support for Reactive Programming. RxJs is a
JavaScript Library which enables reactive programming in JavaScript. Angular uses Rxjs
library extensively to do below mentioned advanced concepts:

o Data transfer between components.
o HTTP client.

. Router.

o Reactive forms.

Let us learn reactive programming using Rx3Js library in this chapter.

Observable

As learn earlier, Observable are data sources and they may be static or dynamic. Rxjs
provides lot of method to create Observable from common JavaScript Objects. Let us see
some of the common methods.

of - Emit any number of values in a sequence and finally emit a complete notification.

const numbers$ = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);

Here,

e numbers$ is an Observable object, which when subscribed will emit 1 to 10 in a
sequence.

e Dollar sign ($) at the end of the variable is to identify that the variable is
Observable.

range - Emit a range of humber in sequence.

const numbers$ = range(1,10)

from - Emit array, promise or iterable.

const numbers$ = from([1,2,3,4,5,6,7,8,9,10]);

62

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ajax - Fetch a url through AJAX and then emit the response.

const api$ = ajax({
url: 'https://httpbin.org/delay/1",
method: 'POST',
headers: {
‘Content-Type': 'application/text’
¥
body: "Hello"

})s

Here,

https://httpbin.org is a free REST API service which will return the supplied body
content in the JSON format as specified below:

{
"args": {},
"data": "Hello",
"files": {},
"form": {},
"headers": {
"Accept":

"text/html,application/xhtml+xml,application/xml;q=0.9,image/webp,image/apng,*/
*,0=0.8,application/signed-exchange;v=b3;q=0.9",

"Accept-Encoding"”: "gzip, deflate, br",

"Accept-Language": "en-US,en;q=0.9",

"Host": "httpbin.org",

"Sec-Fetch-Dest": "document",
"Sec-Fetch-Mode": "navigate",
"Sec-Fetch-Site": "none",
"Upgrade-Insecure-Requests”: "1",

"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36
(KHTML, like Gecko) Chrome/83.0.4103.106 Safari/537.36",
"X-Amzn-Trace-Id": "Root=1-5eeef468-015d8f0c228367109234953¢c"
}s
"origin": "ip address",
"url": "https://httpbin.org/delay/1"
}

fromEvent - Listen to an HTML element’s event and then emit the event and its
property whenever the listened event fires.

const clickEvent$ = fromEvent(document.getElementById('counter'), 'click');

Angular internally uses the concept extensively to provide data transfer between
components and for reactive forms.

Subscribing process

Subscribing to an Observable is quite easy. Every Observable object will have a method,
subscribe for the subscription process. Observer need to implement three callback
function to subscribe to the Observable object. They are as follows:

63

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

o next - Receive and process the value emitted from the Observable
o error - Error handling callback

o complete - Callback function called when all data from Observable are emitted.

Once the three callback functions are defined, Observable’s subscribe method has to be
called as specified below:

const numbers$ = from([1,2,3,4,5,6,7,8,9,10]);

// observer
const observer = {
next: (num: number) => { this.numbers.push(num); this.vall += num },
error: (err: any) => console.log(err),
complete: () => console.log("Observation completed")
}s

numbers$.subscribe(observer);

Here,

o next method get the emitted number and then push it into the local variable,
this.numbers.

o next method also adding the number to local variable, this.vall.

o error method just writes the error message to console.

o complete method also writes the completion message to console.

We can skip error and complete method and write only the next method as shown below:

number$.subscribe((num: number) => { this.numbers.push(num); this.vall += num;

})s

Operations

Rxjs library provides some of the operators to process the data stream. Some of the
important operators are as follows:

filter - Enable to filter the data stream using callback function.

const filterFn = filter((num : number) => num > 5);

const filteredNumbers$ = filterFn(numbers$);

filteredNumbers$.subscribe((num : number) => { this.filteredNumbers.push(num);
this.val2 += num });

map - Enables to map the data stream using callback function and to change the data
stream itself.

const mapFn = map((num : number) => num + num);
const mappedNumbers$ = mappedFn(numbers$);

pipe - Enable two or more operators to be combined.

64

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

const filterFn = filter((num : number) => num > 5);
const mapFn = map((num : number) => num + num);

const processedNumbers$ = numbers$.pipe(filterFn, mapFn);
processedNumbers$.subscribe((num : number) => {
this.processedNumbers.push(num); this.val3 += num });

Let us create a sample application to try out the reaction programming concept learned in
this chapter.

Create a new application, reactive using below command:

ng new reactive

Change the directory to our newly created application.

cd reactive

Run the application.

ng serve

Change the AppComponent component code (src/app/app.component.ts) as
specified below:

import { Component, OnInit } from ‘@angular/core’;

import { Observable, of, range, from, fromEvent } from 'rxjs’';
import { ajax } from 'rxjs/ajax’;
import { filter, map, catchError } from 'rxjs/operators’;

@Component ({
selector: ‘'app-root’,
templateUrl: './app.component.html’,
styleUrls: ['./app.component.css']

}

export class AppComponent implements OnInit {
title = 'Reactive programming concept’;

numbers : number[] = [];
vall : number = 0;

filteredNumbers : number[] = [];
val2 : number = 0;

processedNumbers : number[] = [];
val3 : number = 0;

apiMessage : string;
counter : number = 0;

ngOnInit() {
// Observable stream of data Observable<number>

65

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

// const numbers$ = of(1, 2, 3, 4, 5, 6, 7, 8, 9, 10);
// const numbers$ = range(1,10);
const numbers$ = from([1,2,3,4,5,6,7,8,9,10]);

// observer
const observer = {
next: (num: number) => { this.numbers.push(num);
this.vall += num },
error: (err: any) => console.log(err),
complete: () => console.log("Observation
completed")
¥

numbers$.subscribe(observer);

const filterFn = filter((num : number) => num > 5);

const filteredNumbers = filterFn(numbers$);

filteredNumbers.subscribe((num : number) => {
this.filteredNumbers.push(num); this.val2 += num });

const mapFn = map((num : number) => num + num);

const processedNumbers$ = numbers$.pipe(filterFn, mapFn);

processedNumbers$.subscribe((num : number) => {
this.processedNumbers.push(num); this.val3 += num });

const api$ = ajax({
url: 'https://httpbin.org/delay/1",
method: 'POST',

headers: {
'Content-Type': 'application/text'
¥

body: "Hello"
1)

api$.subscribe(res => this.apiMessage = res.response.data);

const clickEvent$ =
fromEvent(document.getElementById('counter'), 'click');
clickEvent$.subscribe(() => this.counter++);

e Used of, range, from, ajax and fromEvent methods to created Observable.

e Used filter, map and pipe operator methods to process the data stream.

e (Callback functions catch the emitted data, process it and then store it in
component’s local variables.

Change the AppComponent template (src/app/app.component.html) as specified
below:

66

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<h1>{{ title }}«</h1>

<div>

The summation of numbers ({{ num }}
) is {{ vall }}
</div>

<div>

The summation of filtered numbers (<span *ngFor="let num of
filteredNumbers"> {{ num }}) is {{ val2 }}
</div>

<div>

The summation of processed numbers (<span *ngFor="let num of
processedNumbers"> {{ num }}) is {{ val3 }}
</div>

<div>
The response from the API is {{ apiMessage }}
</div>

<div>

Click here to increment the counter value.
The current counter value is {{ counter }}
<div>

Here,
Shown all the local variable processed by Observer callback functions.

Open the browser, http://localhost:4200.

m Reactive b4 +

< C ® localhost:4200 % © v O

Reactive programming concept

The summation of numbers (123456789 10)is 35

The summation of filtered numbers (678 9 10) is 40

The summation of processed numbers (12 14 16 18 20) is 80

The response from the API is Hello

Click here to increment the counter value. The current counter value is 0

Click the Click here link for five times. For each event, the event will be emitted and
forward to the Observer. Observer callback function will be called. The callback function
increment the counter for every click and the final result will be as shown below:

67

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

g Reactive b4 +
< C @ localhost:4200/# % © v O

Reactive programming concept

The summation of numbers (123456789 10)is 55

The summation of filtered numbers (678 9 10) is 40

The summation of processed numbers (12 14 16 18 20) is 80
The response from the API is Hello

Click here to increment the counter value. The current counter value is 5

68

@ tutorialspoint

EIMPLYEAGSY LEARMNING

10. Angular 8 — Services and Dependency

Injection

As learned earlier, Services provides specific functionality in an Angular application. In a
given Angular application, there may be one or more services can be used. Similarly, an
Angular component may depend on one or more services.

Also, Angular services may depend on another services to work properly. Dependency
resolution is one of the complex and time consuming activity in developing any application.
To reduce the complexity, Angular provides Dependency Injection pattern as one of the
core concept.

Let us learn, how to use Dependency Injection in Angular application in this chapter.

Create Angular service

An Angular service is plain Typescript class having one or more methods (functionality)
along with @Injectable decorator. It enables the normal Typescript class to be used as
service in Angular application.

import { Injectable } from '@angular/core';

@Injectable()
export class DebugService {
constructor() { }

}

Here, @Injectable decorator converts a plain Typescript class into Angular service.

Register Angular service

To use Dependency Injection, every service needs to be registered into the system.
Angular provides multiple option to register a service. They are as follows:

e Modulelnjector @ root level

e Modulelnjector @ platform level

e Elementlnjector using providers meta data

e ElementInjector using viewProviders meta data

e NullInjector

Modulelnjector @ root

ModuleInjector enforces the service to used only inside a specific module. ProvidedIn
meta data available in @Injectable has to be used to specify the module in which the
service can be used.

The value should refer to the one of the registered Angular Module (decorated with
@NgModule). root is a special option which refers the root module of the application.
The sample code is as follows:

69

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { Injectable } from '@angular/core';

@Injectable({
providedIn: 'root',

})

export class DebugService {
constructor() { }

}

Modulelnjector @ platform

Platform Injector is one level higher than ModuleInject and it is only in advanced and
rare situation. Every Angular application starts by executing
PreformBrowserDynamic().bootstrap method (see main.js), which is responsible for
bootstrapping root module of Angular application.

PreformBrowserDynamic() method creates an injector configured by
PlatformModule. We can configure platform level services using platformBrowser()
method provided by PlatformModule.

Nullinjector

NullInjector is one level higher than platform level ModuleInjector and is in the top
level of the hierarchy. We could not able to register any service in the NullInjector. It
resolves when the required service is not found anywhere in the hierarchy and simply
throws an error.

Elementinjector using providers

ElementInjector enforces the service to be used only inside some particular components.
providers and ViewProviders meta data available in @Component decorator is used to
specify the list of services to be visible for the particular component. The sample code to
use providers is as follows:

ExpenseEntryListComponent

// import statement
import { DebugService } from

../debug.service’;

// component decorator

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css'],
providers: [DebugService]

1)

Here, DebugService will be available only inside the ExpenseEntryListComponent and
its view. To make DebugService in other component, simply use providers decorator in
necessary component.

Elementinjector using viewProviders

70

tutorialspoint

EIMPLYEAGSY LEARMING

¥

Angular 8

viewProviders is similar to provider except it does not allow the service to be used
inside the component’s content created using ng-content directive.

ExpenseEntryListComponent

// import statement
import { DebugService } from

../debug.service';

// component decorator

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html',

styleUrls: ['./expense-entry-list.component.css'],
viewProviders: [DebugService]

1)

Parent component can use a child component either through its view or content. Example
of a parent component with child and content view is mentioned below:

Parent component view / template

<div>
child template in view
<child></child>
</div>
<ng-content></ng-content>

child component view / template

<div>
child template in view
</div>

Parent component usage in a template (another component)

<parent><!-- child template in content --><child></child></parent>

Here,

e child component is used in two place. One inside the parent’s view. Another inside
parent content.

e Services will be available in child component, which is placed inside parent’s view.

e Services will not be available in child component, which is placed inside parent’s
content.

Resolve Angular service

Let us see how a component can resolve a service using the below flow diagram.

71

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

VAN

Yes

Angular 8

Start

Yes

Yes

72

Angular 8

Here,

e First, component tries to find the service registered using viewProviders meta
data.

e If not found, component tries to find the service registered using providers meta
data.

e If not found, Component tries to find the service registered using ModuleInjector

e If not found, component tries to find the service registered using PlatformInjector

e If not found, component tries to find the service registered using NullInjector,
which always throws error.

The hierarchy of the Injector along with work flow of the resolving the service is as follows:

Possible Component hierarchy

IF"IJE‘.CTGF‘SI 1. Component - ElementInjector (viewProvider)
: 2. Component - ElementInjector (provider)
I 3. Component - Module - ModuleInjector @ root
NullTnjector | 4. Component - Module - Platform - ModuleInjector @ platform
i 5. Compenent - NullInjector
| Calls
I
I
ModuleInjector & platform Platform
|
! b calls
: Calls
I
ModuleInjector & root <] Maodule
|
|)
I Calls
: Calls Cals
ElementInjector i
through '\E Component < Content child
providers meta data :
I [3
f Calls
] | Calls
ElementInjector :
through < View child
viewProvider meta data :
I
F)

Resolution Modifier

As we learn in the previous chapter, the resolution of the service starts from component
and stops either when a service is found or NUllInjector is reached. This is the default
resolution and it can be changed using Resolution Modifier. They are as follows:

self()

Self() start and stops the search for the service in its current ElementInjector itself.

import { Self } from '@angular/core’;

constructor(@Self() public debugService: DebugService) {}

SkipSelf()

SkipSelf() is just opposite to Self(). It skips the current ElementInjector and starts the
search for service from its parent ElementInjector.

73

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

import { SkipSelf } from '@angular/core’;

constructor(@SkipSelf() public debugService: DebugService) {}

Host()

Host() stop the search for the service in its host ElementInjector. Even if service
available up in the higher level, it stops at host.

import { Host } from '@angular/core’;

constructor(@Host() public debugService: DebugService) {}

Optional()

@Optional does not throws the error when the search for the service fails.

import { Optional } from '@angular/core’;

constructor(@ptional() private debugService?: DebugService) {
if (this.debugService) {
this.debugService.info("Debugger initialized");
}
}

Dependency Injector Providers

Dependency Injector providers serves two purpose. First, it helps in setting a token for
the service to be registered. The token will be used to refer and call the service. Second,
it helps in creating the service from the given configuration.

As learned earlier, the simplest provider is as follows:

providers: [DebugService]

Here, DebugService is both token as well as the class, with which the service object has
to be created. The actual form of the provider is as follows:

providers: [{ provides: DebugService, useClass: DebugService }]

Here, provides is the token and useClass is the class reference to create the service
object.

Angular provides some more providers and they are as follows:
Aliased class providers

The purpose of the providers is to reuse the existing service.

providers: [DebugService,
{ provides: AnotherDebugService, userClass: DebugService }]

Here, only one instance of DebugService service will be created.

74

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

Value providers

The purpose of the Value providers is to supply the value itself instead of asking the DI to
create an instance of the service object. It may use existing object as well. The only
restriction is that the object should be in the shape of referenced service.

export class MyCustomService {
name = "My Custom Service"

}

[{ provide: MyService, useValue: { name: 'instance of MyCustomService' }]

Here, DI provider just return the instance set in useValue option instead of creating a
new service object.

Non-class dependency providers
It enables string, function or object to be used in Angular DI.

Let us see a simple example.

// Create the injectable token
import { InjectionToken } from '@angular/core’;
export const APP_CONFIG = new InjectionToken<AppConfig>('app.config');

// Create value
export const MY_CONFIG: AppConfig = {
title: 'Dependency Injection'

s

// congfigure providers
providers: [{ provide: APP_CONFIG, useValue: HERO_DI_CONFIG }]

// inject the service
constructor(@Inject(APP_CONFIG) config: AppConfig) {

Factory providers

Factory Providers enables complex service creation. It delegates the creation of the object
to an external function. Factory providers has option to set the dependency for factory
object as well.

{ provide: MyService, useFactory: myServiceFactory, deps: [DebugService] };

Here, myServiceFactory returns the instance of MyService.

Angular Service usage

Now, we know how to create and register Angular Service. Let us see how to use the
Angular Service inside a component. Using an Angular service is as simple as setting the
type of parameters of the constructor as the token of the service providers.

export class ExpenseEntrylListComponent implements OnInit {

75

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

title = 'Expense List';
constructor(private debugService : DebugService) {}

ngOnInit() {
this.debugService.info("Angular Application starts");

¢ ExpenseEntryListComponent constructor set a parameter of type DebugService.

¢ Angular Dependency Injector (DI) will try to find any service registered in the
application with type DebugService. If found, it will set an instance of DebugService
to ExpenseEntryListComponent component. If not found, it will throw an error.

Add a debug service

Let us add a simple Debug service, which will help us to print the debugging information
during application development.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

ng serve

Run the below command to generate an Angular service, DebugService.

ng g service debug

This will create two Typescript files (debug service & its test) as specified below:

CREATE src/app/debug.service.spec.ts (328 bytes)
CREATE src/app/debug.service.ts (134 bytes)

Let us analyse the content of the DebugService service.

import { Injectable } from '@angular/core';

@Injectable({
providedIn: 'root’

})

export class DebugService {

constructor() { }

}

Here,

76

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

e (@Injectable decorator is attached to DebugService class, which enables the
DebugService to be used in Angular component of the application.

¢ providerIn option and its value, root enables the DebugService to be used in all
component of the application.

Let us add a method, Info, which will print the message into the browser console.

info(message : String) : void {
console.log(message);

}

Let us initialise the service in the ExpenseEntryListComponent and use it to print
message.

import { Component, OnInit } from '@angular/core';
import { ExpenseEntry } from '../expense-entry';
import { DebugService } from '../debug.service';

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css']
b
export class ExpenseEntryListComponent implements OnInit {
title: string;
expenseEntries: ExpenseEntry[];
constructor(private debugService: DebugService) { }

ngonInit() {

this.debugService.info("Expense Entry List component initialized");
this.title = "Expense Entry List";
this.expenseEntries = this.getExpenseEntries();

}

// other coding

Here,

e DebugService is initialised using constructor parameters. Setting an argument
(debugService) of type DebugService will trigger the dependency injection to create
a new DebugService object and set it into the ExpenseEntryListComponent
component.

e Calling the info method of DebugService in the ngOnlInit method prints the message
in the browser console.

The result can be viewed using developer tools and it looks similar as shown below:

77

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

B ExpenseManager x +

&« > C @ localhost4200/#

Expense Manager

Expense Entry List

Spent On

May 7, 2020, 10:10:10 AM

May 2, 2020, 10:10:10 AM

May 16, 2020, 10:10:10 AM

May 16, 2020, 10:10:10 AM

May 4, 2020, 10:10:10 AM

Item Amount Category Location

Pizza 3 Food Mcdonald

Pizza 8 Food KFC

Pizza 2 Food Mcdonald

Pizza 3 Food KFC

Pizza 3 Food KFC
[® (] | Elements Console Sources Network Performance Memory Application Security Lighthouse
B @ | tp v | ® Fiter Default levels ¥

DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdb:

icaho/sourceMap/chrome/iframe_handler.ma

p: HTTP error: status code 484, net::ERR_UNKNOWN_URL_SCHEME
Expense Entry List component initialized
Angular is running in the development mode. Call enableProdMode() to enable the production mode.

DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdb:

debug.service.ts:11

core,js:38781

icaho/sourceMap/chrome/content.map: HTTP

error: status code 404, net::ERR_UNKNOWN_URL_SCHEME

[WDS] Live Reloading enabled. client:52
Let us extend the application to understand the scope of the service.
Let us a create a DebugComponent by using below mentioned command.
ng generate component debug
CREATE src/app/debug/debug.component.html (20 bytes)
CREATE src/app/debug/debug.component.spec.ts (621 bytes)
CREATE src/app/debug/debug.component.ts (265 bytes)
CREATE src/app/debug/debug.component.css (@ bytes)
UPDATE src/app/app.module.ts (392 bytes)
Let us remove the DebugService in the root module.
// src/app/debug.service.ts
import { Injectable } from '@angular/core';
@Injectable()
export class DebugService {
constructor() {
}
78

tutorialspoint

EIMPLYEAEGBYLEARNINIG

%)

Angular 8

info(message : String) : void {
console.log(message);
}

}

Register the DebugService under ExpenseEntryListComponent component.

// src/app/expense-entry-list/expense-entry-list.component.ts

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css']
providers: [DebugService]

1)

Here, we have used providers meta data (ElementInjector) to register the service.

Open DebugComponent (src/app/debug/debug.component.ts) and import
DebugService and set an instance in the constructor of the component.

import { Component, OnInit } from '@angular/core’;
import { DebugService } from '../debug.service';

@Component ({
selector: 'app-debug',
templateUrl: './debug.component.html’,
styleUrls: ['./debug.component.css"']
b

export class DebugComponent implements OnInit {
constructor(private debugService: DebugService) { }

ngonInit() {
this.debugService.info("Debug component gets service from Parent");
}
}

Here, we have not registered DebugService. So, DebugService will not be available if
used as parent component. When used inside a parent component, the service may
available from parent, if the parent has access to the service.

Open ExpenseEntryListComponent template (src/app/expense-entry-list/expense-
entry-list.component.html) and include a content section as shown below:

// existing content
<app-debug></app-debug>
<ng-content></ng-content>

Here, we have included a content section and DebugComponent section.

Let us include the debug component as a content inside the
ExpenseEntryListComponent component in the AppComponent template. Open
AppComponent template and change app-expense-entry-list as below:

¥

79

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

// navigation code

<app-expense-entry-list>
<app-debug></app-debug>
</app-expense-entry-list>

Here, we have included the DebugComponent as content.

Let us check the application and it will show DebugService template at the end of the
page as shown below:

- O X
w ExpenseManager X +
< C @ localhost:4200 X B v W e
-
Expense Entry List m
Item Amount Category Location Spent On
Pizza 3 Food Mcdonald May 10, 2020, 10:10:10 AM
Pizza 10 Food KFC May 19, 2020, 10:10:10 AM
Pizza 2 Food Mcdonald May 1, 2020, 10:10:10 AM
Pizza 6 Food KFC May 7, 2020, 10:10:10 AM
Pizza 7 Food KFC May 19, 2020, 10:10:10 AM
debug works!
debug works!

[w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse Q X
] ® top Y | © | Filter Default levels ¥ £
DevTools failed to load Sourcel : Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepaooicaho/sourceMap/chrome/iframe_handler.map:

HTTP error: status code 404, n RR_UNKNOWN_URL_SCHEME

Expense Entry List component initialized

Debug component gets service from Parent

Debug component gets service from Parent

Angular is running in the development mode. Call enableProdiode() to enable the production mode.

DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepacoicaho/sourceMap/chrome/content.map: HTTP

error: status code 484, net::ERR_UNKNOWN_URL_SCHEME

[WDS] Live Reloading enabled. client:52
>

Also, we could able to see two debug information from debug component in the console.
This indicate that the debug component gets the service from its parent component.

Let us change how the service is injected in the ExpenseEntryListComponent and how
it affects the scope of the service. Change providers injector to viewProviders injection.
viewProviders does not inject the service into the content child and so, it should fail.

viewProviders: [DebugService]

Check the application and you will see that the one of the debug component (used as
content child) throws error as shown below:

80

w \tutorialspoint

EIMPLYEAEGBYLEARNINIG

Angular 8

e

& 4
B ®

Nu
at
at
at
at
at
at
at
at
at
at

B ExpenseManager X +

C @ localhost:4200

Elements Console Sources Network Performance Memory

top Y | @ | Filter

11TInjectorError: No provider for DebugService!
NullInjector.get (http://localhost:420@/vendor.js:36417:27)
resolveToken (http://localhost:4280/vendor.js:51335:24)
tryResolveToken (http://localhest:4208@/vendor.js:51261:16)
StaticInjector.get (http://localhost:4208/vendor.js:51111:28)
resolveToken (http://localhost:4200/vendor.js:51335:24)
tryResolveToken (http://localhost:4208@/vendor.js:51261:16)
StaticInjector.get (http://localhost:4208/vendor.js:51111:20)
resolveNgModuleDep (http://localhost:42@8/vendor.js:62298:29)
NgModuleRef_.get (http://localhost:420@/vendor.js:63364:16)
resolveDep (http://localhost:4208/vendor.js:63895:45)

Application

Default levels ¥

Security

@ »ERROR MulllnjectorError: StaticInjectorError(AppModule)[DebugComponent -> DebugService]:
StaticInjectorError(Platform: core)[DebugComponent -> DebugService]:

Lighthouse

[N -]

DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepacoicaho/sourceMap/chrome/iframe_handler.m
ap: HTTP error: status code 404, net::ERR_UNKNOWN_URL_SCHEME

AppComponent . html : 38

Let us remove the debug component in the templates and restore the application.

Open ExpenseEntryListComponent template (src/app/expense-entry-list/expense-
entry-list.component.html) and remove below content:

<app-debug></app-debug>
<ng-content></ng-content>

Open AppComponent template and change app-expense-entry-list as below:

// navigation code
<app-expense-entry-list> </app-expense-entry-list>

Change the viewProviders setting to providers in ExpenseEntryListComponent.

providers: [DebugService]

Rerun the application and check the result.

%)

tutorialspoint

EIMPLYEAEGBYLEARNINIG

81

11. Angular 8 — Http Client Programming

Http client programming is a must needed feature in every modern web application.
Nowadays, lot of application exposes their functionality through REST API (functionality
over HTTP protocol). With this in mind, Angular Team provides extensive support to access
HTTP server. Angular provides a separate module, HttpClientModule and a service,
HttpClient to do HTTP programming.

Let us learn how to how to use HttpClient service in this chapter. Developer should have
a basic knowledge in Http programming to understand this chapter.

Expense REST API

The prerequisite to do Http programming is the basic knowledge of Http protocol and REST
API technique. Http programming involves two part, server and client. Angular provides
support to create client side application. Express a popular web framework provides
support to create server side application.

Let us create an Expense Rest API using express framework and then access it from our
ExpenseManager application using Angular HttpClient service.

Open a command prompt and create a new folder, express-rest-api.

cd /go/to/workspace
mkdir express-rest-api
cd expense-rest-api

Initialise a new node application using below command:

npm init

npm init will ask some basic questions like project name (express-rest-api), entry point
(server.js), etc., as mentioned below:

This utility will walk you through creating a package.json file.
It only covers the most common items, and tries to guess sensible defaults.

See “npm help json™ for definitive documentation on these fields
and exactly what they do.

Use “npm install <pkg>" afterwards to install a package and
save it as a dependency in the package.json file.

Press ~C at any time to quit.

package name: (expense-rest-api)

version: (1.0.90)

description: Rest api for Expense Application
entry point: (index.js) server.js

test command:

82

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

git repository:

keywords:

author:

license: (ISC)

About to write to \path\to\workspace\expense-rest-api\package.json:

{
"name": "expense-rest-api”,
"version": "1.0.0",
"description": "Rest api for Expense Application”,
"main": "server.js",
"scripts": {
"test": "echo \"Error: no test specified\" && exit 1"
¥
"author": "",
"license": "ISC"

Is this OK? (yes) yes

Install express, sqlite and cors modules using below command:

npm install express sqlite3 cors

Create a new file sqlitedb.js and place below code:

var sqlite3 = require('sqlite3').verbose()
const DBSOURCE = "expensedb.sqlite"

let db = new sqlite3.Database(DBSOURCE, (err) => {
if (err) {
console.error(err.message)
throw err
}else{
console.log('Connected to the SQLite database.')
db.run(" CREATE TABLE expense (
id INTEGER PRIMARY KEY AUTOINCREMENT,
item text,
amount real,
category text,
location text,
spendOn text,
createdOn text
)
(err) => {
if (err) {
console.log(err);
}else{
var insert = 'INSERT INTO expense (item, amount,
category, location, spendOn, createdOn) VALUES (?,?,?,?,?,?)'

83

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

db.run(insert, ['Pizza', 10, 'Food', 'KFC', '2020-05-26

10:10', '2020-05-26 10:10'])
db.run(insert, ['Pizza’',
05-28 11:10', '2020-05-28 11:10'])

\o]
-

'"Food', 'Mcdonald', '2020-

db.run(insert, ['Pizza', 12, 'Food', 'Mcdonald', '2020-

05-29 09:22', '2020-05-29 09:22'])

db.run(insert, ['Pizza', 15, 'Food', 'KFC', '2020-06-06

16:18', '2020-06-06 16:18'])

db.run(insert, ['Pizza', 14, 'Food', 'Mcdonald', '2020-

06-01 18:14', '2020-05-01 18:14'])
}
})s
}
})s

module.exports = db

Here, we are creating a new sqlite database and load some sample data.

Open server.js and place below code:

var express = require("express")
var cors = require('cors')
var db = require("./sqlitedb.js")

var app = express()
app.use(cors());

var bodyParser = require("body-parser");
app.use(bodyParser.urlencoded({ extended: false }));
app.use(bodyParser.json());

var HTTP_PORT = 8000
app.listen(HTTP_PORT, () => {
console.log("Server running on port %PORT%".replace("%PORT%",HTTP_PORT))

})s

app.get("/", (req, res, next) => {
res.json({"message":"0k"})

})s

app.get("/api/expense", (req, res, next) => {
var sql = "select * from expense”
var params = []
db.all(sql, params, (err, rows) => {
if (err) {
res.status(400).json({"error":err.message});
return;

}

res.json(rows)

})s

tutorialspoint

EIMPLYEAGSY LEARMNING

84

Angular 8

})s

app.get("/api/expense/:id", (req, res, next) => {
var sql = "select * from expense where id = ?"
var params = [req.params.id]
db.get(sql, params, (err, row) => {
if (err) {
res.status(400).json({"error":err.message});
return;
}
res.json(row)
1)
})s

app.post("/api/expense/", (req, res, next) => {
var errors=[]
if (!req.body.item){
errors.push("No item specified");
}
var data = {
item : req.body.item,
amount: req.body.amount,
category: req.body.category,
location : req.body.location,
spendOn: req.body.spendOn,
createdOn: req.body.createdOn,
}
var sql = "INSERT INTO expense (item, amount, category, location, spendOn,
createdOn) VALUES (?,?,?,?,?,?)"'
var params =[data.item, data.amount, data.category, data.location,
data.spendOn, data.createdOn]
db.run(sql, params, function (err, result) {

if (err){
res.status(400).json({"error": err.message})
return;

}

data.id = this.lastID;
res.json(data);
1)
}

app.put("/api/expense/:id", (req, res, next) => {

var data = {
item : req.body.item,
amount: req.body.amount,
category: req.body.category,
location : req.body.location,
spendOn: req.body.spendOn

}

db.run(
"UPDATE expense SET

item = ?,

85

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

amount = ?,
category ?,
location ?,

I n
v v

spendOn = ?
WHERE id = ?°,
[data.item, data.amount, data.category, data.location,
data.spendOn, req.params.id],
function (err, result) {
if (err){
console.log(err);
res.status(400).json({"error":
return;

res.message})

}
res.json(data)
})s
})

app.delete("/api/expense/:id", (req, res, next) => {
db.run(
'DELETE FROM expense WHERE id = ?',
req.params.id,
function (err, result) {

if (err){
res.status(400).json({"error": res.message})
return;
}
res.json({"message":"deleted", changes: this.changes})
})s
}
app.use(function(req, res){
res.status(404);
1)

Here, we create a basic CURD rest api to select, insert, update and delete expense entry.

Run the application using below command:

npm run start

Open a browser, enter http://localhost:8000/ and press enter. You will see below
response:

{

"message”: "Ok"

}

It confirms our application is working fine.

Change the url to http://localhost:8000/api/expense and you will see all the expense
entries in JSON format.

86

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

[
{
"id": 1,
"item": "Pizza",
"amount": 10,
"category"”: "Food",
"location": "KFC",
"spendOn": "2020-05-26 10:10",
"createdOn": "2020-05-26 10:10"
s
{
"id": 2,
"item": "Pizza",
"amount": 14,
"category": "Food",
"location": "Mcdonald",
"spendOn": "2020-06-01 18:14",
"createdOn": "2020-05-01 18:14"
s
{
"id": 3,
"item": "Pizza",
"amount": 15,
"category": "Food",
"location": "KFC",
"spendOn": "2020-06-06 16:18",
"createdOn": "2020-06-06 16:18"
s
{
"id": 4,
"item": "Pizza",
"amount": 9,
"category": "Food",
"location": "Mcdonald",
"spendOn": "2020-05-28 11:10",
"createdOn": "2020-05-28 11:10"
})
{
"id": 5,
"item": "Pizza",
"amount": 12,
"category": "Food",
"location": "Mcdonald",
"spendOn": "2020-05-29 09:22",
"createdOn": "2020-05-29 09:22"
}
]

Finally, we created a simple CURD REST API for expense entry and we can access the
REST API from our Angular application to learn HttpClient module.
87

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Configure Http client

Let us learn how to configure HttpClient service in this chapter.

HttpClient service is available inside the HttpClientModule module, which is available
inside the @angular/common/http package.

To register HttpClientModule module:
Import the HttpClientModule in AppComponent

import { HttpClientModule } from '@angular/common/http’;

Include HttpClientModule in imports meta data of AppComponent.

@NgModule({
imports: [
BrowserModule,
// import HttpClientModule after BrowserModule.
HttpClientModule,

]

b
export class AppModule {}

Create expense service

Let us create a new service ExpenseEntryService in our ExpenseManager application
to interact with Expense REST API. ExpenseEntryService will get the latest expense
entries, insert new expense entries, modify existing expense entries and delete the
unwanted expense entries.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

ng serve

Run the below command to generate an Angular service, ExpenseService.

ng generate service ExpenseEntry

This will create two Typescript files (expense entry service & its test) as specified below:

CREATE src/app/expense-entry.service.spec.ts (364 bytes)
CREATE src/app/expense-entry.service.ts (141 bytes)

Open ExpenseEntryService (src/app/expense-entry.service.ts) and import
ExpenseEntry, throwError and catchError from rxjs library and import HttpClient,
HttpHeaders and HttpErrorResponse from @angular/common/http package.

88

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

import { Injectable } from '@angular/core';
import { ExpenseEntry } from './expense-entry';
import { throwError } from 'rxjs';

import { catchError } from 'rxjs/operators';
import { HttpClient, HttpHeaders, HttpErrorResponse } from
'@angular/common/http"';

Inject the HttpClient service into our service.

constructor(private httpClient : HttpClient) { }

Create a variable, expenseRestUrl to specify the Expense Rest API endpoints.

private expenseRestUrl = 'http://localhost:8000/api/expense’;

Create a variable, httpOptions to set the Http Header option. This will be used during
the Http Rest API call by Angular HttpClient service.

private httpOptions = {
headers: new HttpHeaders({ 'Content-Type': 'application/json' })
}s5

The complete code is as follows:

import { Injectable } from '@angular/core';

import { ExpenseEntry } from './expense-entry';

import { Observable, throwError } from 'rxjs';

import { catchError, retry } from 'rxjs/operators’;

import { HttpClient, HttpHeaders, HttpErrorResponse } from

'@angular/common/http"';

@Injectable({
providedIn: 'root’
})
export class ExpenseEntryService {
private expenseRestUrl = 'api/expense’;
private httpOptions = {
headers: new HttpHeaders({ 'Content-Type': 'application/json’

}
¥
constructor(
private httpClient : HttpClient) { }
}

HTTP GET

HttpClient provides get() method to fetch data from a web page. The main argument is
the target web url. Another optional argument is the option object with below format:

89

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

{
headers?: HttpHeaders | {[header: string]: string | string[]},
observe?: 'body' | 'events' | 'response',
params?: HttpParams|{[param: string]: string | string[]},
reportProgress?: boolean,
responseType?: 'arraybuffer'|'blob'|'json'|'text',
withCredentials?: boolean,

}

Here,

e headers: HTTP Headers of the request, either as string, array of string or array of
HttpHeaders.

e observe: Process the response and return the specific content of the response.
Possible values are body, response and events. The default option of observer
is body.

e params: HTTP parameters of the request, either as string, array of string or array
of HttpParams.

e reportProgress: Whether to report the progress of the process or not (true or
false).

e responseType: Refers the format of the response. Possible values are
arraybuffer, blob, json and text.

o withCredentials: Whether the request has credentials or not (true or false).

All options are optional.

get() method returns the response of the request as Observable. The returned
Observable emit the data when the response is received from the server.

The sample code to use get() method is as follows:

httpClient.get(url, options)
.subscribe((data) => console.log(data));

Typed Response

get() method has an option to return observables, which emits typed response as well.
The sample code to get typed response (ExpenseEntry) is as follows:

httpClient.get<T>(url, options)
.subscribe((data: T) => console.log(data));

Handling errors

Error handling is one of the important aspect in the HTTP programming. Encountering error
is one of the common scenario in HTTP programming.

Errors in HTTP Programming can be categories into two groups:

e Client side issues can occur due to network failure, misconfiguration, etc., If client
side error happens, then the get() method throws ErrorEvent object.

90

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

e Server side issues can occur due to wrong url, server unavailability, server
programming errors, etc.,

Let us write a simple error handling for our ExpenseEntryService service.

private httpErrorHandler (error: HttpErrorResponse) {

if (error.error instanceof Errorkvent) {

console.error("A client side error occurs. The error message is " +
error.message);

} else {

console.error(

"An error happened in server. The HTTP status code is " +

and the error returned is " + error.message);

error.status +

}

return throwError("Error occurred. Pleas try again");

}

The error function can be called in get() as specified below:

httpClient.get(url, options)
.pipe(catchError(this.httpErrorHandler)
.subscribe((data) => console.log(data))

Handle failed request

As we mentioned earlier, errors can happen and one way is to handle it. Another option is
to try for certain number of times. If the request failed due to network issue or the HTTP
server is temporarily offline, the next request may succeed.

We can use rxjs library’s retry operator in this scenario as specified below:

httpClient.get(url, options)
.pipe(
retry(5),
catchError(this.httpErrorHandler))
.subscribe((data) => console.log(data))

Fetch expense entries

Let us do the actual coding to fetch the expenses from Expense Rest API in our
ExpenseManager application.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

ng serve

Add getExpenseEntries() and httpErrorHandler() method in ExpenseEntryService
(src/app/expense-entry.service.ts) service.

91

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

getExpenseEntries() : Observable<ExpenseEntry[]> {
return this.httpClient.get<ExpenseEntry[]>(this.expenseRestuUrl,
this.httpOptions)
.pipe(
retry(3),
catchkError(this.httpErrorHandler)

)5

getExpenseEntry(id: number) : Observable<ExpenseEntry> {
return this.httpClient.get<ExpenseEntry>(this.expenseRestUrl + "/" + id,
this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)s
}

private httpErrorHandler (error: HttpErrorResponse) {

if (error.error instanceof ErrorEvent) {

console.error("A client side error occurs. The error message is " +
error.message);

} else {
console.error(
"An error happened in server. The HTTP status code is " +
error.status + " and the error returned is " + error.message);
}
return throwError("Error occurred. Pleas try again");
}
Here,

o getExpenseEntries() calls the get() method using expense end point and also
configures the error handler. Also, it configures httpClient to try for maximum of
3 times in case of failure. Finally, it returns the response from server as typed
(ExpenseEntry[]) Observable object.

o getExpenseEntry is similar to getExpenseEntries() except it passes the id of the
ExpenseEntry object and gets ExpenseEntry Observable object.

The complete coding of ExpenseEntryService is as follows:

import { Injectable } from '@angular/core';
import { ExpenseEntry } from './expense-entry';

import { Observable, throwError } from 'rxjs';

import { catchError, retry } from 'rxjs/operators’;

import { HttpClient, HttpHeaders, HttpErrorResponse } from
'@angular/common/http’;

@Injectable({

92

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

providedIn: 'root’
}
export class ExpenseEntryService {

private expenseRestUrl = 'http://localhost:8000/api/expense’;

private httpOptions = {

headers: new HttpHeaders({ 'Content-Type': 'application/json'

}

¥

constructor(private httpClient : HttpClient) { }

getExpenseEntries() : Observable<ExpenseEntry[]> {
return this.httpClient.get<ExpenseEntry[]>(this.expenseRestUrl,
this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)
}

getExpenseEntry(id: number) : Observable<ExpenseEntry> {
return this.httpClient.get<ExpenseEntry>(this.expenseRestUrl + "/" +
id, this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)
}

private httpErrorHandler (error: HttpErrorResponse) {
if (error.error instanceof ErrorEvent) {

console.error("A client side error occurs. The error message is " +
error.message);
} else {
console.error(
"An error happened in server. The HTTP status code is " +

error.status + and the error returned is

}

+ error.message);

return throwError("Error occurred. Pleas try again");

}

Open ExpenseEntryListComponent (src-entry-list-entry-list.component.ts) and inject
ExpenseEntryService through constructor as specified below:

constructor(private debugService: DebugService, private restService :
ExpenseEntryService) { }

Change the getExpenseEntries() function. Call getExpenseEntries() method from
ExpenseEntryService instead of returning the mock items.

93

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

getExpenseItems() {
this.restService.getExpenseEntries()
.subscribe(data => this.expenseEntries = data);

The complete ExpenseEntryListComponent coding is as follows:

import { Component, OnInit } from '@angular/core’;

import { ExpenseEntry } from '../expense-entry';
import { DebugService } from '../debug.service';
import { ExpenseEntryService } from '../expense-entry.service’;
@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css'],
providers: [DebugService]

b

export class ExpenseEntrylListComponent implements OnlInit {
title: string;
expenseEntries: ExpenseEntry[];

constructor(private debugService: DebugService, private restService :
ExpenseEntryService) { }

ngonInit() {

this.debugService.info("Expense Entry List component initialized");
this.title = "Expense Entry List";

this.getExpenseltems();
}

getExpenseItems() {
this.restService.getExpenseEntries()
.subscribe(data => this.expenseEntries = data);

Finally, check the application and you will see the below response.

94

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

¥} ExpenseManager x + - [} X
< C @ localhost:4200 % © v * O
Expense Manager Home Report Add Expense About
Expense Entry List m

Item Amount Category Location Spent On

Pizza 10 Food KFC May 26, 2020, 10:10:00 AM

Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM

Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM

Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM

Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM
HTTP POST

HTTP POST is similar to HTTP GET except that the post request will send the necessary
data as posted content along with the request. HTTP POST is used to insert new record
into the system.

HttpClient provides post() method, which is similar to get() except it support extra
argument to send the data to the server.

Let us add a new method, addExpenseEntry() in our ExpenseEntryService to add new
expense entry as mentioned below:

addExpenseEntry(expenseEntry: ExpenseEntry): Observable<ExpenseEntry> {
return this.httpClient.post<ExpenseEntry>(this.expenseRestUrl,
expenseEntry, this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)

)5

HTTP PUT

HTTP PUT is similar to HTTP POST request. HTTP PUT is used to update existing record in
the system.

httpClient provides put() method, which is similar to post().

Update expense entry

Let us add a new method, updateExpenseEntry() in our ExpenseEntryService to
update existing expense entry as mentioned below:

95

m tutorialspoint

Angular 8

updateExpenseEntry(expenseEntry: ExpenseEntry): Observable<ExpenseEntry> {
return this.httpClient.put<ExpenseEntry>(this.expenseRestUrl + "/" +
expenseEntry.id, expenseEntry, this.httpOptions)

.pipe(
retry(3),
catchError(this.httpErrorHandler)
)s
}
HTTP DELETE

HTTP DELETE is similar to http GET request. HTTP DELETE is used to delete entries in the
system.

httpclient provides delete() method, which is similar to get().

Delete expense entry

Let us add a new method, deleteExpenseEntry() in our ExpenseEntryService to delete
existing expense entry as mentioned below:

deleteExpenseEntry(expenseEntry: ExpenseEntry | number) :
Observable<ExpenseEntry> {
const id = typeof expenseEntry == 'number' ? expenseEntry : expenseEntry.id
const url = “${this.expenseRestUrl}/${id} ;

return this.httpClient.delete<ExpenseEntry>(url, this.httpOptions)
.pipe(

retry(3),

catchError(this.httpErrorHandler)

)5

96

tutorialspoint

EIMPLYEAGSY LEARMNING

12. Angular 8 — Angular Material

Angular Material provides a huge collection of high-quality and ready-made Angular
component based on Material design. Let us learn how to include Angular material in
Angular application and use its component.

Configure Angular Material

Let us see how to configure Angular Material in Angular application.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Add Angular material package using below command:

ng add @angular/material

Angular CLI will ask certain question regarding theme, gesture recognition and browser
animations. Select your any theme of your choice and then answer positively for gesture
recognition and browser animation.

Installing packages for tooling via npm.

Installed packages for tooling via npm.

Choose a prebuilt theme name, or "custom” for a custom theme: Indigo/Pink
[Preview: https://material.angular.i

o?theme=indigo-pink]

Set up HammerJ]S for gesture recognition? Yes

Set up browser animations for Angular Material? Yes

Angular material packages each Ul component in a separate module. Import all the
necessary module into the application through root module (src/app/app-module.ts)

import { MatTableModule } from '@angular/material/table’;
import { MatButtonModule } from '@angular/material/button’;
import { MatIconModule } from '@angular/material/icon’;

@NgModule ({
imports: [
MatTableModule,
MatButtonModule,
MatIconModule

]
})

Change the edit button using ExpenseEntryListComponent template
(src/app/expense-entry-list/expense-entry-list.component.html) as specified
below:

97

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<div class="col-sm" style="text-align: right;">

<l-- <button type="button" class="btn btn-primary">Edit</button> -->
<button mat-raised-button color="primary">Edit</button>

</div>

Run the application and test the page.

ng serve

The output of the application is as follows:

B ExpenseManager X +

&« C ® localhost:4200/expenses

Expense Manager

Expense Entry List

Item Amount Category
Pizza 10 Food
Pizza 14 Food
Pizza 15 Food
Pizza 9 Food
Pizza 12 Food

Location

KFC

Mcdonald

KFC

Mcdonald

Mcdonald

Home Report Add Expense About

Spent On View

May 26, 2020, 10:10:00 AM View
Jun 1, 2020, 6:14:.00 PM View
Jun 6, 2020, 4:18:00 PM View
May 28, 2020, 11:10:00 AM View
May 29, 2020, 9:22:00 AM View

Here, the application clearly shows the Angular Material button.

Working example

Some of the important UI elements provided by Angular Material package.

e Form field

e Input

e Checkbox

e Radio button
e Select

e Button

e DatePicker

o List

e Card

e Grid list

e Table

e Paginator
e Tabs

w tutorialspoint

98

Angular 8

e Toolbar
¢ Menu
e Dialog

e Snackbar
e Progress bar
e Icon

e Divider

Using material component is quite easy and we will learn one of the frequently used
material component, Material Table by working on a sample project.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Let us change our ExpenseEntryListComponent (src/app/expense-entry-list/expense-
entry-list.component.ts) and use Material Table component.

Declare a variable, displayedColumns and assign the list of column to be displayed.

displayedColumns: string[] = ['item', ‘'amount', 'category', 'location’,
'spendOn’];

Add material table as specified below in the ExpenseEntryListComponent template
(src/app/expense-entry-list/expense-entry-list.component.html) and remove
our existing list.

<div class="mat-elevation-z8">
<table mat-table [dataSource]="expenseEntries">

<ng-container matColumnDef="item">
<th mat-header-cell *matHeaderCellDef> Item </th>
<td mat-cell *matCellDef="let element" style="text-align:
left"> {{element.item}} </td>
</ng-container>

<ng-container matColumnDef="amount">
<th mat-header-cell *matHeaderCellDef > Amount </th>
<td mat-cell *matCellDef="let element" style="text-align:
left"> {{element.amount}} </td>
</ng-container>

<ng-container matColumnDef="category">
<th mat-header-cell *matHeaderCellDef> Category </th>
<td mat-cell *matCellDef="let element" style="text-align:
left"> {{element.category}} </td>
</ng-container>

<ng-container matColumnDef="location">
<th mat-header-cell *matHeaderCellDef> Location </th>
<td mat-cell *matCellDef="let element" style="text-align:

99

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

left"> {{element.location}} </td>
</ng-container>

<ng-container matColumnDef="spendOn">
<th mat-header-cell *matHeaderCellDef> Spend On </th>
<td mat-cell *matCellDef="let element" style="text-align:
left"> {{element.spendOn}} </td>
</ng-container>

<tr mat-header-row *matHeaderRowDef="displayedColumns"></tr>
<tr mat-row *matRowDef="let row; columns: displayedColumns;"></tr>
</table>
</div>

Here,

¢ mat-table property is used to convert the normal table in to material table.

e [dataSource] property is used to specify the data source of the table.

o Material table is template based and each column can be designed using separate
template. ng-container is used to create template.

¢ matColumnDef is used to specify the column of the data source applied to the
particular ng-container.

¢ mat-header-cell is used to specify the header text for each column.

¢ mat-cell is used to specify the content of each column.

¢ mat-header-row and mat-row is used to specify the order of the column in row.

e We have used only the basic features of the Material table. Material table has many
more features such as sorting, pagination, etc.

Run the application.

ng serve

The output of the application is as follows:

100

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

a ExpenseManager X +

&« C @ localhost:4200/expenses w @ vy » 8

Expense Manager

Expense Entry List m

Item Amount Category Location Spend On

Pizza 10 Food KFC 2020-05-26 10:10
Pizza 14 Food Mcdonald 2020-06-01 18:14
Pizza 15 Food KFC 2020-06-06 16:18
Pizza 9 Food Mcdonald 2020-05-28 11:10
Pizza 12 Food Mcdonald 2020-05-29 09:22

101

EIMPLYEAGSY LEARMNING

A ' tutorialspoint

13. Angular 8 — Routing and Navigation

Navigation is one of the important aspect in a web application. Even though a single page
application (SPA) does not have multiple page concept, it does moves from one view (list
of expenses) to another view (expense details). Providing clear and understandable
navigation elements decides the success of an application.

Angular provides extensive set of navigation feature to accommodate simple scenario to
complex scenario. The process of defining navigation element and the corresponding view
is called Routing. Angular provides a separate module, RouterModule to set up the
navigation in the Angular application. Let us learn the how to do the routing in Angular
application in this chapter.

Configure Routing

Angular CLI provides complete support to setup routing during the application creation
process as well as during working an application. Let us create a new application with
router enabled using below command:

ng new routing-app --routing

Angular CLI generate a new module, AppRoutingModuele for routing purpose. The
generated code is as follows:

import { NgModule } from '@angular/core';
import { Routes, RouterModule } from '@angular/router’;

const routes: Routes = [];

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

}
export class AppRoutingModule { }

Here,

¢ Imports RouterModule and Routes from @angular/router package.

¢ RouterMoudle provides functionality to configure and execute routing in the
application.

e Routes is the type used to setup the navigation rules.

e Routes is the local variable (of type Routes) used to configure the actual navigation
rules of the application.

e RouterMoudle.forRoot() method will setup the navigation rules configured in the
routes variable.

Angular CLI include the generated AppRoutingModule in AppComponent as mentioned
below:

102

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module’;
import { AppComponent } from './app.component';

@NgModule ({

declarations: [
AppComponent

])

imports: [
BrowserModule,
AppRoutingModule

1,

providers: [],

bootstrap: [AppComponent]

b
export class AppModule { }

Here,
AppComponent imports the AppRoutingModule module using imports meta data.

Angular CLI provides option to set routing in the existing application as well. The general
command to include routing in an existing application is as follows:

ng generate module my-module --routing

This will generate new module with routing features enabled. To enable routing feature in
the existing module (AppModule), we need to include extra option as specified below:

ng generate module app-routing --module app --flat

Here,

-module app configures the newly created routing module, AppRoutingModule in the
AppModule module.

Let us configure the routing module in ExpenseManager application.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Generate routing module using below command:

ng generate module app-routing --module app --flat

Output

The output is mentioned below:

103

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

CREATE src/app/app-routing.module.ts (196 bytes)
UPDATE src/app/app.module.ts (785 bytes)

Here,

CLI generate AppRoutingModule and then, configures it in AppModule

Creating routes

Creating a route is simple and easy. The basic information to create a route is given below:

e Target component to be called.
e The path to access the target component.

The code to create a simple route is mentioned below:

const routes: Routes = [
{ path: 'about', component: AboutComponent },

15

Here,

¢ Routes is the variable in the AppRoutingModule.

e about is the path and AboutComponent is the target / destination component.
When user requests http://localhost:4200/about url, the path matches with about
rule and then AboutComponent will be called.

Accessing routes

Let us learn how to use the configured routes in the application.
Accessing the route is a two step process.

Include router-outlet tag in the root component template.

<router-outlet></router-outlet>

Use routerLink and routerLinkActive property in the required place.

First Component

Here,

¢ routerLink set the route to be called using the path.
¢ routerLinkActive set the CSS class to be used when the route is activated.

Sometime, we need to access routing inside the component instead of template. Then, we
need to follow below steps:

Inject instance of Router and ActivatedRoute in the corresponding component.

import { Router, ActivatedRoute } from '@angular/router’;

constructor(private router: Router, private route: ActivatedRoute)

¥

104

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Here,

¢ Router provides the function to do routing operations.
¢ Route refers the current activate route.

Use router’s navigate function.

this.router.navigate(['about']);

Here,

navigate function expects an array with necessary path information.

Using relative path

Route path is similar to web page URL and it supports relative path as well. To access
AboutComponent from another component, say HomePageComponent, simple use ..
notation as in web url or folder path.

Relative Route to about component

To access relative path in the component:

import { NavigationExtras } from '@angular/router’;

this.router.navigate(['about'], { relativeTo: this.route });

Here,

relativeTo is available under NavigationExtras class.

Route ordering

Route ordering is very important in a route configuration. If same path is configured
multiple times, then the first matched path will get called. If the first match fails due to
some reason, then the second match will get called.

Redirect routes

Angular route allows a path to get redirected to another path. redirectTo is the option to
set redirection path. The sample route is as follows:

const routes: Routes = [
{ path: '*, redirectTo: '/about' },

15

Here,

¢ redirectTo sets about as the redirection path if the actual path matches empty

string.

Wildcard routes

105

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

Wildcard route will match any path. It is created using ** and will be used to handle non
existing path in the application. Placing the wildcard route at the end of the configuration
make it called when other path is not matched.

The sample code is as follows:

const routes: Routes = [

{ path: 'about', component: AboutComponent },

{ path: "', redirectTo: '/about', pathMatch: 'full' },

{ path: '**'; component: PageNotFoundComponent }, // Wildcard route for a
404 page
1;

Here,

If a non existent page is called, then the first two route gets failed. But, the final wildcard
route will succeed and the PageNotFoundComponent gets called.

Access Route parameters

In Angular, we can attach extra information in the path using parameter. The parameter
can be accessed in the component by using paramMap interface. The syntax to create a
new parameter in the route is as follows:

const routes: Routes = [

{ path: 'about', component: AboutComponent },

{ path: 'item/:id', component: ItemComponent },

{ path: '', redirectTo: '/about', pathMatch: 'full' },

{ path: '**'; component: PageNotFoundComponent }, // Wildcard route for a
404 page
1;

Here, we have attached id in the path. id can be accessed in the ItemComponent using
two techniques.

e Using Observable.
e Using snapshot (non-observable option).

Using Observable

Angular provides a special interface, paramMap to access the parameter of the path.
parmaMap has following methods:

¢ has(name) - Returns true if the specified name is available in the path (parameter
list).

¢ get(name) - Returns the value of the specified hame in the path (parameter list).

o getAll(name) - Returns the multiple value of the specified name in the path. get()
method returns only the first value when multiple values are available.

e keys - Returns all parameter available in the path.

Steps to access the parameter using paramMap are as follows:

e Import paramMap available in @angular/router package.
e Use paramMap in the ngOnInit() to access the parameter and set it to a local
variable.

i}

106

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ngOnInit() {
this.route.paramMap.subscribe(params => {
this.id = params.get('id);
})s
}

We can use it directly in the rest service using pipe method.

this.item$ = this.route.paramMap.pipe(
switchMap(params => {
this.selectedId = Number(params.get('id'));
return this.service.getItem(this.selectedId);

)
)5

Using snapshot

snapshot is similar to Observable except, it does not support observable and get the
parameter value immediately.

let id = this.route.snapshot.paramMap.get('id"');

Nested routing

In general, router-outlet will be placed in root component (AppComponent) of the
application. But, router-outlet can be used in any component. When router-outlet is used
in @ component other then root component, the routes for the particular component has
to be configured as the children of the parent component. This is called Nested routing.

Let us consider a component, say ItemComponent is configured with router-outlet and
has two routerLink as specified below:

<h2>Item Component</h2>

<nav>

View</1li>
Edit</1i>

</nav>

<router-outlet></router-outlet>

The route for the ItemComponent has to be configured as Nested routing as specified
below:

const routes: Routes = [

{
path: 'item',

107

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

component: ItemComponent,
children: [
{
path: 'view',
component: ItemViewComponent
})
{
path: 'edit',
component: ItemEditComponent
}
]
3

Working example

Let us apply the routing concept learned in this chapter in our ExpenseManager
application.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Generate routing module using below command, if not done before.

ng generate module app-routing --module app --flat

Output

The output is as follows:

CREATE src/app/app-routing.module.ts (196 bytes)
UPDATE src/app/app.module.ts (785 bytes)

Here,
CLI generate AppRoutingModule and then configures it in AppModule.
Update AppRoutingModule (src/app/app.module.ts) as mentioned below:

import { NgModule } from '@angular/core’;
import { Routes, RouterModule } from '@angular/router’;
import { ExpenseEntryComponent } from './expense-entry/expense-

entry.component’;
import { ExpenseEntryListComponent } from './expense-entry-list/expense-entry-
list.component’;

const routes: Routes = [
{ path: 'expenses', component: ExpenseEntryListComponent },
{ path: 'expenses/detail/:id', component: ExpenseEntryComponent },
{ path: '', redirectTo: 'expenses', pathMatch: 'full' }

108

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

15

@NgModule ({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

})
export class AppRoutingModule { }

Here, we have added route for our expense list and expense details component.

Update AppComponent template (src/app/app.component.html) to include router-
outlet and routerLink.

<!l-- Navigation -->
<nav class="navbar navbar-expand-1lg navbar-dark bg-dark static-top">
<div class="container">
{{ title }}
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarResponsive"” aria-controls="navbarResponsive" aria-
expanded="false" aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1i>
<li class="nav-item">
Report
</1li>
<li class="nav-item">
Add Expense
</1li>
<li class="nav-item">
About
</1li>

</div>
</div>
</nav>

<router-outlet></router-outlet>

Open ExpenseEntryListComponent template (src/app/expense-entry-list/expense-
entry-list.component.html) and include view option for every expense entries.

<table class="table table-striped">

<thead>
<tr>
<th>Item</th>
109
tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<th>Amount</th>
<th>Category</th>
<th>Location</th>
<th>Spent On</th>
<th>View</th>
</tr>
</thead>
<tbody>

<tr *ngFor="let entry of expenseEntries">
<th scope="row">{{ entry.item }}</th>
<th>{{ entry.amount }}</th>
<td>{{ entry.category }}</td>
<td>{{ entry.location }}</td>
<td>{{ entry.spendOn | date: 'medium' }}</td>
<td><a routerLink="../expenses/detail/{{ entry.id
}}">View</td>
</tr>
</tbody>
</table>

Here, we have updated the expense list table and added a new column to show the view
option.

Open ExpenseEntryComponent (src/app/expense-entry/expense-
entry.component.ts) and add functionality to fetch the current selected expense entry.
It can be done by first getting the id through the paramMap and then, using the
getExpenseEntry() method from ExpenseEntryService.

this.expenseEntry$ = this.route.paramMap.pipe(
switchMap(params => {
this.selectedId = Number(params.get('id'));
return
this.restService.getExpenseEntry(this.selectedId);

1);

this.expenseEntry$.subscribe((data) => this.expenseEntry = data);

Update ExpenseEntryComponent and add option to go to expense list.

goTolList() {
this.router.navigate(['/expenses']);

}

The complete code of ExpenseEntryComponent is as follows:

import { Component, OnInit } from '@angular/core’;

import { ExpenseEntry } from '../expense-entry';

import { ExpenseEntryService } from '../expense-entry.service';
import { Router, ActivatedRoute } from '@angular/router’;
import { Observable } from 'rxjs';

110

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

import { switchMap } from 'rxjs/operators';

@Component ({
selector: 'app-expense-entry',
templateUrl: './expense-entry.component.html’,

styleUrls: ['./expense-entry.component.css']

}

export class ExpenseEntryComponent implements OnInit {
title: string;
expenseEntry$: Observable<ExpenseEntry>;
expenseEntry: ExpensekEntry = {} as ExpenseEntry;
selectedId: number;

constructor(private restService : ExpenseEntryService,
ActivatedRoute) { }

ngonInit() {
this.title = "Expense Entry";

this.expenseEntry$ = this.route.paramMap.pipe(
switchMap(params => {
this.selectedId = Number(params.get('id'));
return
this.restService.getExpenseEntry(this.selectedId);

1)

}

goTolList() {
this.router.navigate(['/expenses']);
}
}

private router : Router, private route :

this.expenseEntry$.subscribe((data) => this.expenseEntry = data);

Open ExpenseEntryComponent (src/app/expense-entry/expense-

entry.component.html) template and add a new button to navigate back to expense

list page.

<div class="col-sm" style="text-align: right;">

<button type="button" class="btn btn-primary" (click)="goToList()">Go to

List</button>
 <button type="button" class="btn btn-primary">Edit</button>
</div>

Here, we have added Go to List button before Edit button.

Run the application using below command:

ng serve

The final output of the application is as follows:

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

111

Angular 8

g ExpenseManager X +

< C @ localhost:4200/expenses w B v & O

Expense Manager Home
Expense Entry List

Item Amount Category Location Spent On View
Pizza 10 Food KFC May 26, 2020, 10:10:00 AM View
Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM View
Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM View
Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM View
Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM View

Clicking the view option of the first entry will navigate to details page and show the
selected expense entry as shown below:

ﬂ ExpenseManager x -+

& C @ localhost:4200/expenses/detail/1 % U v N e

Expense Manager Home

Item: Pizza
Amount: 10
Category: Food
Location: KFC
Spend On: 5/26/20, 10:10 AM

112

A ' tutorialspoint

EIMPLYEAGSY LEARMNING

14. Angular 8 — Animations

Animation gives the web application a refreshing look and rich user interaction. In HTML,
animation is basically the transformation of HTML element from one CSS style to another
over a specific period of time. For example, an image element can be enlarged by changing
its width and height.

If the width and height of the image is changed from initial value to final value in steps
over a period of time, say 10 seconds, then we get an animation effect. So, the scope of
the animation depends on the feature / property provided by the CSS to style a HTML
element.

Angular provides a separate module BrowserAnimationModule to do the animation.
BrowserAnimationModule provides an easy and clear approach to do animation.

Configuring animation module

Let us learn how to configure animation module in this chapter.

Follow below mentioned steps to configure animation module,
BrowserAnimationModule in an application.

Import BrowserAnimationModule in AppModule.

import { BrowserAnimationsModule } from '@angular/platform-browser/animations’;

@NgModule({
imports: [
BrowserModule,
BrowserAnimationsModule
1,
declarations: [],
bootstrap: []

}
export class AppModule { }

Import animation function in the relevant components.

import { state, style, transition, animate, trigger } from
'@angular/animations’

Add animations metadata property in the relevant component.

@Component ({
animations: [
// animation functionality goes here
]
b

export class MyAnimationComponent

113

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Concepts

In angular, we need to understand the five core concept and its relationship to do
animation.

State

State refers the specific state of the component. A component can have multiple defined
state. The state is created using state() method. state() method has two arguments.

e name - Unique name of the state.
o style - Style of the state defined using style() method.

animations: [
state('start', style({ width: 2@0px; }))

]

Here, start is the name of the state.
Style

Style refers the CSS style applied in a particular state. style() method is used to style the
particular state of a component. It uses the CSS property and can have multiple items.

animations: [

state('start', style({ width: 200px; opacity: 1 }))

]

Here, start state defines two CSS property, width with value 200px and opacity with
value 1.

Transition

Transition refers the transition from one state to another. Animation can have multiple
transition. Each transition is defined using transition() function. transition() takes two
argument.

e Specifies the direction between two transition state. For example, start => end
refers that the initial state is start and the final state is end. Actually, it is an
expression with rich functionality.

e Specifies the animation details using animate() function.

animations: [

transition('start => end', [
animate('1ls"')

D

114

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

Here, transition() function defines the transition from start state to end state with
animation defined in animate() method.

Animation

Animation defines the way the transition from one state to another take place.
animation() function is used to set the animation details. animate() takes a single
argument in the form of below expression:

duration delay easing

¢ duration refers the duration of the transition. It is expressed as 1s, 100ms, etc.,

o delay refers the delay time to start the transition. It is expressed similar to duration

e easing refers how do to accelerates / decelerates the transition in the given time
duration.

Trigger

Every animation needs a trigger to start the animation. trigger() method is used to set
all the animation information such as state, style, transition and animation in one place
and give it a unique name. The unique name is used further to trigger the animation.

animations: [
trigger('enlarge', [
state('start', style({
height: '200px’,
1),
state('end', style({
height: '500px’,
1)
transition('start => end', [
animate('1s"')
1>
transition('end => start', [
animate('0.5s")
D
1
]

Here, enlarge is the unique name given to the particular animation. It has two state and
related styles. It has two transition one from start to end and another from end to start.
End to start state do the reverse of the animation.

Trigger can be attached to an element as specified below:

<div [@triggerName]="expression">...</div>;

For example,

...;

Here,

¢ (@enlarge trigger is set to image tag and attrached to an expression.

115

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

o If isEnlarge value is changed to true, then end state will be set and it triggers
start => end transition.

o If isEnlarge value is changed to false, then start state will be set and it triggers
end => start transition.

Simple Animation Example

Let us write a new angular application to better understand the animation concept by
enlarging an image with animation effect.

Open command prompt and create new angular application.

cd /go/to/workspace
ng new animation-app
cd animation-app

Configure BrowserAnimationModule in the AppModule (src/app/app.module.ts)

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’
import { BrowserAnimationsModule } from ‘'@angular/platform-browser/animations’;

import { AppComponent } from './app.component';

@NgModule({

declarations: [
AppComponent

1,

imports: [
BrowserModule,
BrowserAnimationsModule

])

providers: [],

bootstrap: [AppComponent]

}
export class AppModule { }

Open AppComponent (src/app/app.component.ts) and import necessary animation
functions.

import { state, style, transition, animate, trigger } from
'@angular/animations’;

Add animation functionality, which will animate the image during the enlarging / shrinking
of the image.

@Component ({

selector: ‘'app-root’,

templateUrl: './app.component.html',

styleUrls: ['./app.component.css'],

animations: [

trigger('enlarge', [
state('start', style({
height: '15@px'’

116

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

1),

state('end', style({
height: '250px'

1),

transition('start => end', [
animate('ls 2s')

1

transition('end => start', [
animate('ls 2s')

D

D

})

Open AppComponent template, src/app/app.component.html and remove sample
code. Then, include a header with application title, image and a button to enlarge /
shrink the image

<h1>{{ title }}</h1>

<button>{{ this.buttonText }}</button>

Write a function to change the animation expression.

export class AppComponent {
title = 'Animation Application’;
isEnlarge: boolean = false;
buttonText: string = "Enlarge";

triggerAnimation() {
this.isEnlarge = !this.isEnlarge;

if(this.isEnlarge)
this.buttonText

"Shrink";
else
this.buttonText

"Enlarge";

}

Attach the animation in the image tag. Also, attach the click event for the button.

<h1>{{ title }}</h1>

<img [@enlarge]="isEnlarge ? 'end' : 'start'" src="assets/puppy.jpeg"
style="height: 200px" />

<button (click)="triggerAnimation()'>{{ this.buttonText }}</button>

117

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Add a button and attach the function to trigger the animation.

<h1>{{ title }}</h1>

<img [@enlarge]="isEnlarge ? 'end' : 'start'" src="assets/puppy.jpeg"
style="height: 200px" />

<button (click)="triggerAnimation()'>{{ this.buttonText }}</button>

The complete AppComponent code is as follows:

import { Component } from '@angular/core’;
import { state, style, transition, animate, trigger } from
'@angular/animations’;

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html',
styleUrls: ['./app.component.css'],
animations: [
trigger('enlarge', [
state('start', style({
height: '150px’
1),
state('end', style({
height: '250px’
1),
transition('start => end', [
animate('1ls 2s')
1,
transition('end => start', [
animate('ls 2s')
D
D
]
}

export class AppComponent {
title = 'Animation Application’;
isEnlarge: boolean = false;
buttonText: string = "Enlarge";

triggerAnimation() {
this.isEnlarge = !this.isEnlarge;

if(this.isEnlarge)
this.buttonText

"Shrink";
else
this.buttonText

"Enlarge";

118

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

The complete AppComponent template code is as follows:

<h1>{{ title }}</h1>

<img [@enlarge]="isEnlarge ? 'end' : 'start
style="height: 200px" />

src="assets/puppy.jpeg"

<button (click)="triggerAnimation()'>{{ this.buttonText }}</button>

Run the application using below command:

ng serve

Click the enlarge button, it will enlarge the image with animation. The result will be as
shown below:

Y AnimationApp X +

< C @ localhost:4200 %

Animation Application

Click the button again to shrink it. The result will be as shown below:

119

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

g AnimationApp X +
&« C' @ localhost:4200 *¢
Animation Application
120

w tutorialspoint

EIMPLYEAGSY LEARMNING

15. Angular 8 — Forms

Forms are used to handle user input data. Angular 8 supports two types of forms. They
are Template driven forms and Reactive forms. This section explains about Angular 8
forms in detail.

Template driven forms

Template driven forms is created using directives in the template. It is mainly used for
creating a simple form application. Let’s understand how to create template driven forms
in brief.

Configure Forms

Before understanding forms, let us learn how to configure forms in an application. To
enable template driven forms, first we need to import FormsModule in app.module.ts.
It is given below:

import { BrowserModule } from '@angular/platform-browser';
import { NgModule } from '@angular/core';

import { AppRoutingModule } from './app-routing.module’;
import { AppComponent } from './app.component';

//import FormsModule here
import { FormsModule } from '@angular/forms’;

imports: [
BrowserModule,
AppRoutingModule,
FormsModule //Assign FormsModule

I,

Once, FormsModule is imported, the application will be ready for form programming.

Create simple form

Let us create a sample application (template-form-app) in Angular 8 to learn the
template driven form.

Open command prompt and create new Angular application using below command:

cd /go/to/workspace
ng new template-form-app
cd template-form-app

Configure FormsModule in AppComponent as shown below:

121

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { FormsModule } from '@angular/forms';

@NgModule ({

declarations: [
AppComponent,
TestComponent

1,

imports: [
BrowserModule,
FormsModule

]J

providers: [],

bootstrap: [AppComponent]

})
export class AppModule { }

Create a test component using Angular CLI as mentioned below:

ng generate component test

The above create a new component and the output is as follows:

CREATE src/app/test/test.component.scss (0 bytes)
CREATE src/app/test/test.component.html (19 bytes)
CREATE src/app/test/test.component.spec.ts (614 bytes)
CREATE src/app/test/test.component.ts (262 bytes)
UPDATE src/app/app.module.ts (545 bytes)

Let’s create a simple form to display user entered text.

Add the below code in test.component.html file as follows:

<form #userName="ngForm" (ngSubmit)="onClickSubmit(userName.value)">
<input type="text" name="username" placeholder="username" ngModel>

<input type="submit" value="submit">

</form>

Here, we used ngModel attribute in input text field.

Create onClickSubmit() method inside test.component.ts file as shown below:

import { Component, OnInit } from '@angular/core’;

@Component ({
selector: 'app-test’,
templateUrl: './test.component.html',
styleUrls: ['./test.component.scss']

1)

122

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

export class TestComponent implements OnInit {

ngOnInit() {
}
onClickSubmit(result) {
console.log("You have entered : " + result.username);
}
}

Open app.component.html and change the content as specified below:

<app-test></app-test>

Finally, start your application (if not done already) using the below command:

ng serve

Now, run your application and you could see the below response:

_ — 1 X
B emplateFormApp X <+
& C @ localhost:4200 W O ¥ » o :
‘ username
| submit |
(e ﬂ Elements Console Sources Netwaork Performance Memory Q X
] ® top Y @ Filter Custom levels ¥ o
[WDS] Live Reloading enabled. client:52 -
>

Enter Peter in input text field and enter submit. onClickSubmit function will be called
and user entered text Peter will be send as an argument. onClickSubmit will print the
user name in the console and the output is as follows:

123

EIMPLYEAEGBYLEARNINIG

w \tutorialspoint

Angular 8

_ — O X

@ emplateFormApp x <+

& C @ localhost:4200 v O v R o :
‘Peter
| submit |

[x ﬂ Elements Console Sources MNetwark Performance Memory » * X
I ® | top Y | ® | Filter Custom levels ¥ o
You have entered : Peter test.component.ts:16 &
>
Reactive Forms

Reactive Forms is created inside component class so it is also referred as model driven
forms. Every form control will have an object in the component and this provides greater
control and flexibility in the form programming. Reactive Form is based on structured
data model. Let’s understand how to use Reactive forms in angular.

Configure Reactive forms

To enable reactive forms, first we need to import ReactiveFormsModule in
app-module.ts. It is defined below:

import { BrowserModule } from '@angular/platform-browser’;
import { NgModule } from '@angular/core’;

import { AppRoutingModule } from './app-routing.module’;
import { AppComponent } from './app.component';

import { TestComponent } from './test/test.component’;
import { FormsModule } from '@angular/forms';

//import ReactiveFormsModule here
import { ReactiveFormsModule } from '@angular/forms';

imports: [
BrowserModule,
AppRoutingModule,
FormsModule,
ReactiveFormsModule //Assign here

Create Reactive forms

Before moving to create Reactive forms, we need to understand about the following
concepts,

124

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

¢ FormControl - Define basic functionality of individual form control

¢ FormGroup - Used to aggregate the values of collection form control

¢ FormArray - Used to aggregate the values of form control into an array

e ControlValueAccessor - Acts as an interface between Forms API to HTML DOM
elements.

Let us create a sample application (reactive-form-app) in Angular 8 to learn the template
driven form.

Open command prompt and create new Angular application using below command:

cd /go/to/workspace
ng new reactive-form-app
cd reactive-form-app

Configure ReactiveFormsModule in AppComponent as shown below:

import { ReactiveFormsModule } from '@angular/forms';

@NgModule({

declarations: [
AppComponent,
TestComponent

])

imports: [
BrowserModule,
ReactiveFormsModule

])

providers: [],

bootstrap: [AppComponent]

}
export class AppModule { }

Create a test component using Angular CLI as mentioned below:

ng generate component test

The above create a new component and the output is as follows:

CREATE src/app/test/test.component.scss (@ bytes)
CREATE src/app/test/test.component.html (19 bytes)
CREATE src/app/test/test.component.spec.ts (614 bytes)
CREATE src/app/test/test.component.ts (262 bytes)
UPDATE src/app/app.module.ts (545 bytes)

Let’s create a simple form to display user entered text.

We need to import FormGroup, FormControl classes in TestComponent.

import { FormGroup, FormControl } from '@angular/forms';

Create onClickSubmit() method inside test.component.ts file as shown below:

125

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

import { Component, OnInit } from '@angular/core’;
import { FormGroup, FormControl } from '@angular/forms';

@Component ({
selector: 'app-test’,
templateUrl: './test.component.html',
styleUrls: ['./test.component.css']
})
export class TestComponent implements OnInit {
userName;
formdata;
ngOnInit() {
this.formdata = new FormGroup({
userName: new FormControl("Tutorialspoint™)
})s
}

onClickSubmit(data) {this.userName = data.userName;}

}

Here,

¢ Created an instance of formGroup and set it to local variable, formdata.

e Crete an instance of FormControl and set it one of the entry in formdata.

e Created a onClickSubmit() method, which sets the local variable, userName with
its argument.

Add the below code in test.component.html file.

<div>
<form [formGroup]="formdata" (ngSubmit)="onClickSubmit(formdata.value)" >
<input type= text" name="userName" placeholder="userName"

formControlName = "userName">

<input type="submit" value="Click here">
</form>

</div>
<p> Textbox result is: {{userName}} </p>

Here,

e New form is created and set it's formGroup property to formdata.

¢ New input text field is created and set is formControlName to username.

¢ ngSubmit event property is used in the form and set onClickSubmit() method
as its value.

¢ onClickSubmit() method gets formdata values as its arguments.

Open app.component.html and change the content as specified below:

<app-test></app-test>

Finally, start your application (if not done already) using the below command:

126

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

ng serve

Now, run your application and you could see the below response:

ﬂ ReactiveFormApp X +

& C @ localhost:4200 W O Y B e :

| Tutorialspoint |

Textbox result is:

Enter Tutorialspoint in input text field and enter submit. onClickSubmit function will be
called and user entered text Peter will be send as an argument.

. —] X
ﬂ ReactiveFormApp X +

& C ©® localhost:4200 W O Y B e :

| Tutorialspoint |

Textbox result is: Tutorialspoint

We will perform Forms validation in next chapter.

127

@ tutorialspoint

EIMPLYEAGSY LEARMNING

16. Angular 8 — Form Validation

Form validation is an important part of web application. It is used to validate whether the
user input is in correct format or not.

RequiredValidator

Let's perform simple required field validation in angular.

Open command prompt and go to reactive-form-app.

cd /go/to/reactive-form-app

Replace the below code in test.component.ts file.

import { Component, OnInit } from '@angular/core’;

//import validator and FormBuilder
import { FormGroup, FormControl, Validators, FormBuilder } from
'@angular/forms’;

@Component ({
selector: 'app-test’,
templateUrl: './test.component.html',
styleUrls: ['./test.component.css']

1)

export class TestComponent implements OnInit {
//Create FormGroup
requiredForm: FormGroup;
constructor(private fb: FormBuilder) {
this.myForm();

}

//Create required field validator for name
myForm() {
this.requiredForm = this.fb.group({
name: ['', Validators.required]

1)
}
ngOnInit()
{
}
}
Here,

We have used form builder to handle all the validation. Constructor is used to create a
form with the validation rules.

128

w tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Add the below code inside test.component.html file.

<div>
<h2>
Required Field validation
</h2>
<form [formGroup]="requiredForm” novalidate>
<div class="form-group">
<label class="center-block">Name:
<input class="form-control" formControlName="name">
</label>
</div>
<div *ngIf="requiredForm.controls['name'].invalid &&
requiredForm.controls['name’'].touched” class="alert alert-danger">
<div *ngIf="requiredForm.controls['name'].errors.required"”>
Name is required.
</div>
</div>
</form>
<p>Form value: {{ requiredForm.value | json }}</p>
<p>Form status: {{ requiredForm.status | json }}</p>
</div>

Here,

e requiredForm is called global form group object. It is a parent element. Form
controls are childrens of requiredForm.

e Conditional statement is used to check, if a user has touched the input field but not
enter the values then, it displays the error message.

Finally, start your application (if not done already) using the below command:

ng serve

Now run your application and put focus on text box. Then, it will use show Name is
required as shown below:

129

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

g ReactiveFormApp X + - = x
&« C @ localhost:4200 ¥ T v » e
Required Field validation
Name:| ‘
Name is required.
Form value: | "name": "" }
Form status: "INVALID"
If you enter text in the textbox, then it is validated and the output is shown below:
g ReactiveFormApp X + - = x
& C @ localhost:4200 % O v B e :

Required Field validation

Name: | Petel] |

Form value: | "name": "Peter" }

Form status: "VALID"

PattemValidator

PatternValidator is used to validate regex pattern. Let’s perform simple email validation.

Open command prompt and to reactive-form-app.

cd /go/to/reactive-form-app

Replace below code in test.component.ts file:

import { Component, OnInit } from '@angular/core';

import { FormGroup, FormControl, Validators, FormBuilder } from

m tutorialspoint

130

Angular 8

'@angular/forms’;

@Component ({
selector: 'app-test’,
templateUrl: './test.component.html',
styleUrls: ['./test.component.css']

})

export class TestComponent implements OnInit {
requiredForm: FormGroup;
constructor(private fb: FormBuilder) {
this.myForm();

}

myForm() {
this.requiredForm = this.fb.group({

email: ['', [Validators.required,
Validators.pattern("~[a-z0-9. %+-]+@[a-z0-9.-]+\.[a-
z]{2,4}$")]1 1

1)
}
ngOnInit()
{
¥
}
Here,

Added email pattern validator inside the Validator.

Update below code in test.component.html file:

<div>
<h2>
Pattern validation
</h2>
<form [formGroup]="requiredForm" novalidate>
<div class="form-group">
<label class="center-block">Email:
<input class="form-control" formControlName="email">
</label>
</div>
<div *ngIf="requiredForm.controls['email'].invalid &&
requiredForm.controls['email’].touched” class="alert alert-danger">
<div *ngIf="requiredForm.controls['email’'].errors.required">
Email is required.
</div>
</div>
</form>
<p>Form value: {{ requiredForm.value | json }}</p>
<p>Form status: {{ requiredForm.status | json }}</p>
</div>

131

tutorialspoint

EIMPLYEAGSY LEARMNING

Here, we have created the email control and called email validator.

Run your application and you could see the below result:

Angular 8

ﬂ ReactiveFormApp X +

Pattern validation

Email: [test@test con] |

Form value: { "email": "test@test.com" |

Form status: "VALID"

'ﬂ ReactiveFormApp X + N =
< C' ©® localhost:4200 * T Y * O
Pattern validation
Email: [test@test.d |
Form value: | "email": "test@test.c" |
Form status: "INVALID"
= X

< C © localhost:4200 * © v & O

Similarly, you can try yourself to perform other types of validators.

ASYLEARMNINIG

I@A‘ \tutorialspoint

132

17. Angular 8 — Authentication and

Authorization

Authentication is the process matching the visitor of a web application with the pre-
defined set of user identity in the system. In other word, it is the process of recognizing
the user’s identity. Authentication is very important process in the system with respect to
security.

Authorization is the process of giving permission to the user to access certain resource
in the system. Only the authenticated user can be authorised to access a resource.

Let us learn how to do Authentication and Authorization in Angular application in this
chapter.

Guards in Routing

In a web application, a resource is referred by url. Every user in the system will be allowed
access a set of urls. For example, an administrator may be assigned all the url coming
under administration section.

As we know already, URLs are handled by Routing. Angular routing enables the urls to
be guarded and restricted based on programming logic. So, a url may be denied for a
normal user and allowed for an administrator.

Angular provides a concept called Router Guards which can be used to prevent
unauthorised access to certain part of the application through routing. Angular provides
multiple guards and they are as follows:

e CanActivate - Used to stop the access to a route.

¢ CanActivateChild - Used to stop the access to a child route.

e CanDeactivate - Used to stop ongoing process getting feedback from user. For
example, delete process can be stop if the user replies in negative.

¢ Resolve - Used to pre-fetch the data before navigating to the route.

e CanLoad - Used to load assets.

Working example

Let us try to add login functionality to our application and secure it using CanActivate
guard.

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

ng serve

Create a new service, AuthService to authenticate the user.

ng generate service auth

133

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

CREATE src/app/auth.service.spec.ts (323 bytes)
CREATE src/app/auth.service.ts (133 bytes)

Open AuthService and include below code.

import { Injectable } from '@angular/core';

import { Observable, of } from 'rxjs';
import { tap, delay } from 'rxjs/operators’;

@Injectable({
providedIn: 'root'

1)

export class AuthService {
isUserLoggedIn: boolean = false;

login(userName: string, password: string): Observable<boolean> {
console.log(userName);
console.log(password);
this.isUserLoggedIn = userName == 'admin' && password ==
"admin';
localStorage.setItem('isUserLoggedIn', this.isUserLoggedIn ?
"true" : "false");

return of(this.isUserLoggedIn).pipe(

delay(1000),
tap(val => {
console.log("Is User Authentication is successful: " +
val);
P
)
}
logout(): void {
this.isUserLoggedIn = false;
localStorage.removeltem('isUserLoggedIn');
}
constructor() { }
}
Here,

¢ We have written two methods, login and logout.

e The purpose of the login method is to validate the user and if the user successfully
validated, it stores the information in localStorage and then returns true.

e Authentication validation is that the user name and password should be admin.

e We have not used any backend. Instead, we have simulated a delay of 1s using
Observables.

e The purpose of the logout method is to invalidate the user and removes the
information stored in localStorage.

Create a login component using below command:

¥

134

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ng generate component login

CREATE src/app/login/login.component.html (20 bytes)
CREATE src/app/login/login.component.spec.ts (621 bytes)
CREATE src/app/login/login.component.ts (265 bytes)
CREATE src/app/login/login.component.css (@ bytes)
UPDATE src/app/app.module.ts (1207 bytes)

Open LoginComponent and include below code:

import { Component, OnInit } from '@angular/core';

import { FormGroup, FormControl } from '@angular/forms';
import { AuthService } from '../auth.service';
import { Router } from '@angular/router';

@Component ({
selector: 'app-login',
templateUrl: './login.component.html',
styleUrls: ['./login.component.css']

1)

export class LoginComponent implements OnInit {

userName: string;
password: string;
formData: FormGroup;

constructor(private authService : AuthService, private router : Router)
{1}
ngOnInit() {
this.formData = new FormGroup({
userName: new FormControl("admin"),
password: new FormControl("admin"),
1)
}
onClickSubmit(data: any) {
this.userName = data.userName;
this.password = data.password;
console.log("Login page: " + this.userName);
console.log("Login page: " + this.password);
this.authService.login(this.userName, this.password)
.subscribe(data => {
console.log("Is Login Success: " + data);
if(data) this.router.navigate(['/expenses']);
1)
}
}
135
tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Used reactive forms.

Imported AuthService and Router and configured it in constructor.

Created an instance of FormGroup and included two instance of FormControl,
one for user name and another for password.

Created a onClickSubmit to validate the user using authService and if successful,
navigate to expense list.

Open LoginComponent template and include below template code.

<!-- Page Content -->
<div class="container">
<div class="row">

Opx; padding-right: opx;">

(ngSubmit)="onClickSubmit (formData.value)"

heading">Please sign in</h2>

class="sr-only">Email address</label>

id="username" class="form-control”

formControlName="userName" placeholder="Username" required autofocus>
class="sr-only">Password</label>

id="inputPassword" class="form-control”

formControlName="password" placeholder="Password" required>

primary btn-block" type="submit">Sign in</button>

</div>
</div>

<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container box" style="margin-top: 10px; padding-left:

<div class="row">
<div class="co0l-12" style="text-align: center;">

<form [formGroup]="formData"

class="form-signin">
<h2 class="form-signin-

<label for="inputEmail"

<input type="text"

<label for="inputPassword"

<input type="password”

<button class="btn btn-1lg btn-

</form>
</div>
</div>
</div>
</div>

Here,

Created a reactive form and designed a login form.

Attached the onClickSubmit method to the form submit action.

Open LoginComponent style and include below CSS Code.

.form-signin {

max-width: 330px;

¥

136

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

padding: 15px;
margin: @ auto;

}

input {
margin-bottom: 20px;

}

Here, some styles are added to design the login form.

Create a logout component using below command:

ng generate component logout

CREATE src/app/logout/logout.component.html (21 bytes)
CREATE src/app/logout/logout.component.spec.ts (628 bytes)
CREATE src/app/logout/logout.component.ts (269 bytes)
CREATE src/app/logout/logout.component.css (@ bytes)
UPDATE src/app/app.module.ts (1368 bytes)

Open LogoutComponent and include below code.

import { Component, OnInit } from '@angular/core’;
import { AuthService } from '../auth.service';
import { Router } from '@angular/router’;

@Component ({
selector: 'app-logout',
templateUrl: './logout.component.html’,
styleUrls: ['./logout.component.css']

1)

export class LogoutComponent implements OnInit {

constructor(private authService : AuthService, private router:

{1}
ngonInit() {

this.authService.logout();
this.router.navigate(['/']);

}

Router)

Here,

e Used logout method of AuthService.
e Once the user is logged out, the page will redirect to home page (/).

Create a guard using below command:

ng generate guard expense

tutorialspoint

EIMPLYEAGSY LEARMNING

137

Angular 8

CREATE src/app/expense.guard.spec.ts (364 bytes)
CREATE src/app/expense.guard.ts (459 bytes)

Open ExpenseGuard and include below code:

import { Injectable } from '@angular/core';

import { CanActivate, ActivatedRouteSnapshot, RouterStateSnapshot, Router,
UrlTree } from '@angular/router’;

import { Observable } from 'rxjs';

import { AuthService } from './auth.service';

@Injectable({
providedIn: 'root'

1)

export class ExpenseGuard implements CanActivate {

constructor(private authService: AuthService, private router: Router)

{}

canActivate(

next: ActivatedRouteSnapshot,

state: RouterStateSnapshot): boolean | UrlTree {
let url: string = state.url;

return this.checkLogin(url);

}

checkLogin(url: string): true | UrlTree {

console.log("Url: " + url)
let val: string =
localStorage.getItem('isUserLoggedIn');
if(val != null && val == "true"){
if(url == "/login")
this.router.parseUrl('/expenses');
else
return true;
} else {
return this.router.parseUrl('/login');
}
}
}
Here,

o checkLogin will check whether the localStorage has the user information and if it
is available, then it returns true.

o Ifthe userislogged in and goes to login page, it will redirect the user to expenses
page

e If the user is not logged in, then the user will be redirected to login page.

Open AppRoutingModule (src/app/app-routing.module.ts) and update below
code:

138

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { ExpenseEntryComponent } from './expense-entry/expense-
entry.component’;

import { ExpenseEntryListComponent } from './expense-entry-list/expense-entry-
list.component’;

import { LoginComponent } from './login/login.component';

import { LogoutComponent } from './logout/logout.component’;

import { ExpenseGuard } from './expense.guard';

const routes: Routes = [

{ path: 'login', component: LoginComponent },

{ path: 'logout', component: LogoutComponent },

{ path: 'expenses', component: ExpenseEntryListComponent, canActivate:
[ExpenseGuard]},

{ path: 'expenses/detail/:id', component: ExpenseEntryComponent,
canActivate: [ExpenseGuard]},

{ path: '', redirectTo: 'expenses', pathMatch: 'full' }

15

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

b
export class AppRoutingModule { }

Here,

e Imported LoginComponent and LogoutComponent.

e Imported ExpenseGuard.

e Created two new routes, login and logout to access LoginComponent and
LogoutComponent respectively.

¢ Add new option canActivate for ExpenseEntryComponent and
ExpenseEntryListComponent.

Open AppComponent template and add two login and logout link.

<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1li>
<li class="nav-item">
Report
</1i>
<li class="nav-item">
Add Expense
</1i>
<li class="nav-item">

139

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

About
</1li>
<1li class="nav-item">
<div *ngIf="isUserlLoggedIn; else isLogOut">
<a class="nav-1link"
routerLink="/logout">Logout
</div>

<ng-template #isLogOut>
<a class="nav-link"
routerLink="/login">Login
</ng-template>
</1li>

</div>

Open AppComponent and update below code:

import { Component } from '@angular/core’;
import { AuthService } from './auth.service';

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

1)

export class AppComponent {

title = 'Expense Manager’;
isUserLoggedIn = false;

constructor(private authService: AuthService) {}

ngOnInit() {
let storeData = localStorage.getItem("isUserLoggedIn");
console.log("StoreData: " + storeData);
if(storeData != null & storeData == "true")

this.isUserLoggedIn = true;
else

this.isUserLoggedIn = false;

}

Here, we have added the logic to identify the user status so that we can show login /
logout functionality.

Open AppModule (src/app/app-module.ts) and configure ReactiveFormsModule.

140

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { ReactiveFormsModule } from '@angular/forms';

imports: [
ReactiveFormsModule

]

Now, run the application and the application opens the login page.

m ExpenseManager X +

< C @ localhost:4200/login W B Yy o :

Expense Manager Home Report AddExpense About Login

Please sign in

admin

Enter admin and admin as username and password and then, click submit. The
application process the login and redirects the user to expense list page as shown below:

141

m tutorialspoint

Angular 8

- O x
) ExpenseManager x +

< C @ localhost:4200/expenses * B v R e i

Expense Manager Home
Expense Entry List m

Item Amount Category Location Spent On View
Pizza 10 Food KFC May 26, 2020, 10:10:00 AM View
Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM View
Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM View
Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM View
Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM View

Finally, your can click logout and exit the application.

142

EIMPLYEAGSY LEARMNING

A ' tutorialspoint

18. Angular 8 — Web Workers

Web workers enables JavaScript application to run the CPU-intensive in the background
so that the application main thread concentrate on the smooth operation of UI. Angular
provides support for including Web workers in the application. Let us write a simple Angular
application and try to use web workers.

Create a new Angular application using below command:

cd /go/to/workspace
ng new web-worker-sample

Run the application using below command:

cd web-worker-sample
npm run start

Add new web worker using below command:

ng generate web-worker app

The output of the above command is as follows:

CREATE tsconfig.worker.json (212 bytes)
CREATE src/app/app.worker.ts (157 bytes)
UPDATE tsconfig.app.json (296 bytes)

UPDATE angular.json (3776 bytes)

UPDATE src/app/app.component.ts (605 bytes)

Here,

e app refers the location of the web worker to be created.

e Angular CLI will generate two new files, tsconfig.worker.json and
src/app/app-worker.ts and update three files, tsconfig.app.json,
angular.json and src/app/app.component.ts file.

Let us check the changes:

// tsconfig.worker.json

{
"extends": "./tsconfig.json",
"compilerOptions": {
"outDir": "./out-tsc/worker",
"1lib": [
"es2018",
"webworker"

1,

143

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

"types": []
s
"include": [
"src/**/* .worker.ts"
]
¥

Here,

tsconfig.worker.json extends tsconfig.json and includes options to compile web
workers.

// tsconfig.app.json [only a snippet]
"exclude": [
"src/test.ts",
"src/**/*.spec.ts",
"src/**/*.worker.ts"

]

Here,

Basically, it excludes all the worker from compiling as it has separate configuration.

// angular.json (only a snippet)
"webWorkerTsConfig": "tsconfig.worker.json"

Here,

angular.json includes the web worker configuration file, tsconfig.worker.json.

// src/app/app.worker.ts
addEventListener('message', ({ data }) => {

const response = “worker response to ${data} ;
postMessage(response);
1)
Here,

A web worker is created. Web worker is basically a function, which will be called when a
message event is fired. The web worker will receive the data send by the caller, process it
and then send the response back to the caller.

// src/app/app.component.ts [only a snippet]
if (typeof Worker !== 'undefined') {
// Create a new
const worker = new Worker('./app.worker', { type: 'module' });
worker.onmessage = ({ data }) => {
console.log(page got message: ${data});
}s5
worker.postMessage('hello');
} else {

144

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

// Web Workers are not supported in this environment.
// You should add a fallback so that your program still executes correctly.

}

Here,

o AppComponent create a new worker instance, create a callback function to receive
the response and then post the message to the worker.
Restart the application. Since the angular.json file is changed, which is not watched by

Angular runner, it is necessary to restart the application. Otherwise, Angular does not
identify the new web worker and does not compile it.

Let us create Typescript class, src/app/app.prime.ts to find nth prime numbers.

export class PrimeCalculator

{

static isPrimeNumber(num : number) : boolean {
if(num == 1) return true;

let idx : number = 2;
for(idx = 2; idx < num / 2; idx++)
{
if(num % idx == @)
return false;

}

return true;

}

static findNthPrimeNumber(num : number) : number {
let idx : number = 1;
let count = 0;

while(count < num) {
if(this.isPrimeNumber(idx))
count++;

idx++;

console.log(idx);

}

return idx - 1;

}

Here,

. isPrimeNumber check whether the given number is prime or not.

. findNthPrimeNumber finds the nth prime number.

145

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Import the new created prime number class into src/app/app-worker.ts and change

the logic of the web worker to find nth prime number.

/// <reference lib="webworker" />
import { PrimeCalculator } from './app.prime';

addEventListener('message', ({ data }) => {

// const response = “worker response to ${data} ;
const response = PrimeCalculator.findNthPrimeNumber (parselnt(data));

postMessage(response);

1)

Change AppComponent and include two function, find10thPrimeNumber and

find10000thPrimeNumber.

import { Component } from '@angular/core’;
import { PrimeCalculator } from './app.prime';

@Component ({
selector: ‘'app-root’,
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']
b
export class AppComponent {
title = 'Web worker sample’;
primel® : number = 0;
primel@000 : number = 0;

findloethPrimeNumber() {

this.primel® = PrimeCalculator.findNthPrimeNumber(10);

}

find10000thPrimeNumber() {

if (typeof Worker !== "undefined') {

// Create a new

const worker = new Worker('./app.worker', { type:

"module’ });

worker.onmessage = ({ data }) => {

this.primel0000 = data;

¥

worker.postMessage(10000);
} else {

// Web Workers are not supported in this environment.

// You should add a fallback so that your program still

executes correctly.

}
}
}
Here,
146
& . =
w tutorialspoint

Angular 8

find10thPrimeNumber is directly using the PrimeCalculator. But,
find10000thPrimeNumber is delegating the calculation to web worker, which in turn
uses PrimeCalculator.

Change the AppComponent template, src/app/app.commands.html and include two
option, one to find 10th prime number and another to find the 10000th prime number.

<h1>{{ title }}</h1>

<div>

Click here to find 10th
prime number

<div>The 10th prime number is {{ primel® }}</div>

Click here to find
10000th prime number

<div>The 10000th prime number is {{ primel0000 }}</div>
</div>

Here,

Finding 10000th prime number will take few seconds, but it will not affect other process
as it is uses web workers. Just try to find the 10000th prime number first and then, the
10th prime number.

Since, the web worker is calculating 10000th prime number, the UI does not freeze. We
can check 10th prime number in the meantime. If we have not used web worker, we could
not do anything in the browser as it is actively processing the 10000th prime number.

The result of the application is as follows:

Initial state of the application.

ﬂ WebWaorkerSample X +

& C' @ localhost:4200/# * © vy O :

Web worker sample

Click here to find 10th prime number
The 10t prime number is 0

Click here to find 1000th prime number
The 10000%® prime number is 0

Click and try to find the 10000th prime number and then try to find the 10th prime number.
The application finds the 10th prime number quite fast and shows it. The application is still
processing in the background to find the 10000th prime number.

147

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ﬂ WebWaorkerSample X +

< C @ localhost:4200/# % © v 6 :

Web worker sample

Click here to find 10th prime number
The 10t prime number is 19

Click here to find 1000th prime number
The 100000 prime number is 0

localhost4200/#

Both processes are completed.

ﬂ WebWorkerSample X +

< C © localhost:4200/# % B v O :

Web worker sample

Click here to find 10th prime number
The 10t prime number is 19

Click here to find 1000th prime number
The 10000t prime number is 104717

Web worker enhances the user experience of web application by doing the complex
operation in the background and it is quite easy to do it in Angular Application as well.

148

w \tutorialspoint

EIMPLYEAEGBYLEARNINIG

19. Angular 8 — Service Workers and PWA

Progressive web apps (PWA) are normal web application with few enhancements and
behaves like a native application. PWA apps does not depends on network to work. PWA
caches the application and renders it from local cache. It regularly checks the live version
of the application and then caches the latest version in the background.

PWA can be installed in the system like native application and shortcut can be shown in
the desktop. Clicking the shortcut will open the application in browser with local cache
even without any network available in the system.

Angular application can be converted into PWA application. To convert an Angular
application, we need to use service worker API. Service worker is actually a proxy server,
which sits in between the browser, application and the network.

Service workers is separate from web pages. It does not able to access DOM objects.
Instead, Service Workers interact with web pages through PostMessage interface.

PWA application has two prerequisites. They are as follows,

¢ Browser support - Even though lot of browser supports the PWA app, IE, Opera
mini and few other does not provides the PWA support.
e HTTPS delivery - The application needs to be delivered through HTTPS protocol.

One exception of the https support is localhost for development purpose.

Let us create a new application and convert it into PWA application.

Create a new Angular application using below command:

cd /go/to/workspace
ng new pwa-sample

Add PWA support using below command:

cd pwa-sample
ng add @angular/pwa --project pwa-sample

Build the production version of the application,

ng build --prod

PWA application does not run under Angular development server. Install, a simple web
server using below command:

npm install -g http-server

Run the web server and set our production build of the application as root folder.

http-server -p 8080 -c-1 dist/pwa-sample

149

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Open browser and enter http://localhost:8080.

Now, go to Developer tools -> Network and select Offline option.

Angular 8

Normal application stops working if network is set to Offline but, PWA application works

fine as shown below:

m PwaSample X +

& C @ localhost:8080

ﬂ pwa-sample app is running!

Resources

Here are some links to help you get started:

0/9requests | OB /0B transferred | 0B /231kB resources | Finish: 195 ms | DOMContentLoaded: 115 ms | Load: 150 ms

®

*

3’! Learn Angular > <> CU Documentation > 6 Angular Blog >
Next Steps
What do you want to do next with your app?

w E Elements Console Sources Network Performance Memory Application Security Lighthouse

® O | ¥ Q ([JrPreservelog [Disable cache | Offine ¥ | 4+ ¥

Filter [Hide data URLs All _E Throttling Mg Media Font Doc WS Manifest Other [l Has blocked cookies [Blocked Requests

20ms 40 ms 60 ms 80 ms 100 ms 120ms 140 ms 160 ms 180 ms

Name Status Type Initiator Size Time Waterfall

— O X

v @

- X
o

200 ms
A

@ tutorialspoint

EIMPLYEAGSY LEARMNING

150

20. Angular 8 — Server Side Rendering

Server side Rendering (SSR) is a modern technique to convert a Single Page Application
(SPA) running in the browser into a server based application. Usually, in SPA, the server
returns a simple index.html file with the reference to the JavaScript based SPA app. The
SPA app take over from there, configure the entire application, process the request and
then send the final response.

But in SSR supported application, the server as well do all the necessary configuration and
then send the final response to the browser. The browser renders the response and start
the SPA app. SPA app takeover from there and further request are diverted to SPA app.
The flow of SPA and SSR is as shown in below diagram.

151

w tutorialspoint

EIMPLYEAGSY LEARMNING

SPA

SSR

Browser
Initial Regquest by User

Browser
Initial Request by User

v

v

Server
Receives the request

Server
Receives the request

v

v

Server
Return the response to Browser

Server
Returns the index.html page

Y

Browser
1. Renders the result
2. Configure the SPA app

4

Browser
Configure the SPA app

y

!

Browser
Request by User

Browser
Send the request to SPA

v

v

Browser
Send the request to SPA

SPA
Return the response to Browser

v

v

SPA

Return the response to Browser

Browser
Renders the result

v

Browser
Request by User

Angular 8

Converting a SPA application to SSR provides certain advantages and they are as follows:

Speed - First request is relatively fast. One of the main drawback of SPA is slow
initial rendering. Once the application is rendered, SPA app is quite fast. SSR fixes

the initial rendering issue.

tutorialspoint

EIMPLYEAGSY LEARMNING

152

Angular 8

e SEO Friendly - Enables the site to be SEO friendly. Another main disadvantage of
SPA is not able to crawled by web crawler for the purpose of SEO. SSR fixes the
issue.

Angular Universal

To enable SSR in Angular, Angular should be able to rendered in the server. To make it
happen, Angular provides a special technology called Angular Universal. It is quite new
technology and it is continuously evolving. Angular Universal knows how to render Angular
application in the server. We can upgrade our application to Angular Universal to support
SSR.

153

tutorialspoint

EIMPLYEAGSY LEARMNING

21. Angular 8 — Internationalization (i18n)

Internationalization (i18n) is a must required feature for any modern web application.
Internationalization enables the application to target any language in the world.
Localization is a part of the Internationalization and it enables the application to render in
a targeted local language. Angular provides complete support for internationalization and
localization feature.

Let us learn how to create a simple hello world application in different language.

Create a new Angular application using below command:

cd /go/to/workspace
ng new il8n-sample

Run the application using below command:

cd il8n-sample
npm run start

Change the AppComponent’s template as specified below:

<h1>{{ title }}</h1>

<div>Hello</div>
<div>The Current time is {{ currentDate | date : 'medium' }}</div>

Add localize module using below command:

ng add @angular/localize

Restart the application.

LOCALE_ID is the Angular variable to refer the current locale. By default, it is set as
en_US. Let us change the locale by using in the provider in AppModule.

import { BrowserModule } from '@angular/platform-browser';
import { LOCALE_ID, NgModule } from '@angular/core’;

import { AppComponent } from './app.component';

@NgModule({
declarations: [
AppComponent
1,
imports: [
BrowserModule

1,
providers: [{ provide: LOCALE_ID, useValue: 'hi' }],

154

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

bootstrap: [AppComponent]

}
export class AppModule { }

Here,

e LOCALE_ID is imported from @angular/core.
e LOCALE_ID is set to hi through provider so that, the LOCALE_ID will be available
everywhere in the application.

Import the locale data from @angular/common/locales/hi and then, register it using
registerLocaleData method as specified below:

import { Component } from '@angular/core’;

import { registerLocaleData } from '@angular/common';
import localeHi from '@angular/common/locales/hi’;

registerLocaleData(localeHi);

@Component ({
selector: 'app-root',
templateUrl: './app.component.html',
styleUrls: ['./app.component.css'],

})
export class AppComponent {

title = 'Internationzation Sample';
}

Create a local variable, CurrentDate and set current time using Date.now().

export class AppComponent {
title = 'Internationzation Sample’;

currentDate: number = Date.now();

}

Change AppComponent’s template content and include the currentDate as specified
below:

<h1>{{ title }}</h1>

<div>Hello</div>
<div>The Current time is {{ currentDate | date : 'medium' }}</div>

Check the result and you will see the date is specified using hi locale.

155

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

m 18nSample x +

< C © localhost:4200 * © v | O :

Internationzation Sample

Hello
The Current time is 22 9[- 2020, 7:44:43 3{Wa

We have changed the date to current locale. Let us change other content as well. To do
it, include i18n attribute in the relevant tag with format, title|description@@id.

<h1>{{ title }}</h1>

<h1l i18n="greeting|Greeting a person@@greeting">Hello</h1>

<div>

The Current time is {{ currentDate | date : 'medium' }}

</div>
Here,

e hello is simple translation format since it contains complete text to be translated.
e Time is little bit complex as it contains dynamic content as well. The format of the

text should follow ICU message format for translation.

We can extract the data to be translated using below command:

ng xil8n --output-path src/locale

Command generates messages.xlIf file with below content:

<?xml version="1.0" encoding="UTF-8" ?>
<x1liff version="1.2" xmlns="urn:oasis:names:tc:xliff:document:1.2">
<file source-language="en" datatype="plaintext" original="ng2.template">
<body>
<trans-unit id="greeting" datatype="html">
<source>Hello</source>
<context-group purpose="location">
<context context-
type="sourcefile">src/app/app.component.html</context>
<context context-type="linenumber">3</context>
</context-group>
<note priority="1" from="description">Greeting a person</note>
<note priority="1" from="meaning">greeting</note>

156

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

</trans-unit>
<trans-unit id="currentTime" datatype="html">
<source>
The Current time is <x id="INTERPOLATION" equiv-text="{{
currentDate | date : 'medium' }}"/>
</source>
<context-group purpose="location">
<context context-
type="sourcefile">src/app/app.component.html</context>
<context context-type="linenumber">5</context>
</context-group>
<note priority="1" from="description">Specifiy the current time</note>
<note priority="1" from="meaning">time</note>
</trans-unit>
</body>
</file>
</x1liff>

Copy the file and rename it to messages.hi.xIf

Open the file with Unicode text editor. Locate source tag and duplicate it with target tag
and then change the content to hi locale. Use google translator to find the matching text.
The changed content is as follows:

<source=Hello</source=

Ftarget>?ﬁﬁ1<}target>
lesource=>
The Current time is <x id="INTERPOLATION" equiv-text="{{ currentDate | date : 'mediumé' }}"/>
</source=
<target>
Ida fafY 3iF THY <x id="INTERPOLATION" equiv-text="{{ currentDate | date : 'medium' }}"/> %
</target=

Open angular.json and place below configuration under build -> configuration.

"hi": {
"aot": true,
"outputPath": "dist/hi/",
"il8nFile": "src/locale/messages.hi.x1lf",
"il8nFormat": "x1f",
"il8nLocale": "hi",
"il8nMissingTranslation": "error",
"baseHref": "/hi/"

})

"en": {
"aot": true,
"outputPath": "dist/en/",
"il8nFile": "src/locale/messages.x1f",
"il8nFormat": "x1f",
"il8nLocale": "en",
"il8nMissingTranslation": "error",
"baseHref": "/en/"

}

157

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Here,
We have used separate setting for hi and en locale.

Set below content under serve -> configuration.

llhill: {

"browserTarget": "il8n-sample:build:hi"
}s
llenll: {

"browserTarget": "il8n-sample:build:en”
}

We have added the necessary configuration. Stop the application and run below command:

npm run start -- --configuration=hi

Here,
We have specified that the hi configuration has to be used.

Navigate to http://localhost:4200/hi and you will see the Hindi localised content.

@ 18nSample b4 +

&« C @ localhost:4200/hi Tr y 6O :

Internationzation Sample

eal

ddqT fafd SR 999 22 § 2020, 9:14:52 3G &

Finally, we have created a localized application in Angular.

158

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

22. Angular 8 — Accessibility

Accessibility support is one of the important feature of every Ul based application.
Accessibility is a way of designing the application so that, it is accessible for those having
certain disabilities as well. Let us learn the support provided by Angular to develop
application with good accessibility.

e While using attribute binding, use attr. prefix for ARIA attributes.

e Use Angular material component for Accessibility. Some of the useful components
are LiveAnnouncer and cdkTrapFocus

e Use native HTML elements wherever possible because native HTML element
provides maximum accessibility features. When creating a component, select
native html element matching your use case instead of redeveloping the native
functionality.

¢ Use NavigationEnd to track and control the focus of the application as it greatly
helps in accessibility.

159

w tutorialspoint

EIMPLYEAGSY LEARMNING

23. Angular 8 — CLI Commands

Angular CLI helps developers to create projects easily and quickly. As we know already,
Angular CLI tool is used for development and built on top of Node.js, installed from
NPM.This chapter explains about Angular 8 CLI commands in detail.

Verify CLI

Before moving to Angular CLI commands, we have to ensure that Angular CLI is installed
on your machine. If it is installed, you can verify it by using the below command:

ng version

You could see the below response:

Angular CLI: 8.3.27
ode: 12.16.3
PS: darwin x64

@angular-devkit/architect
@angular-devkit/core
@angular-devkit/schematics
@schematics/angular
@schematics/update

rxjs

If CLI is not installed, then use the below command to install it.

npm install -g @angular/cli@"8.0.0

Let’s understand the commands one by one in brief.

New command

To create an application in Angular, use the below syntax:

ng new <project-name>

160

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

Angular 8

Example

If you want to create CustomerApp then, use the below code:

ng new CustomerApp

Generate Command

It is used to generate or modify files based on a schematic. Type the below command
inside your angular project:

ng generate

Or, you can simply type generate as g. You can also use the below syntax:

ng g

It will list out the available schematics:

Available Schematics:
Collection "@schematics/angular"” (default):
appShell
application
class
component
directive

enum
guard

interface
library
module

pipe

service
serviceWorker
universal
webWorker

Let's understand some of the repeatedly used ng generate schematics in next section.

Create a component

Components are building block of Angular. To create a component in angular use the below
syntax:

ng g c <component-name>

For example, if user wants to create a Details component then use the below code:

ng g ¢ Details

After using this command, you could see the below response:

161

@[. tutorialspoint

Angular 8

CREATE src/app/details/details.component.scss (@ bytes)
CREATE src/app/details/details.component.html (22 bytes)
CREATE src/app/details/details.component.spec.ts (635 bytes)
CREATE src/app/details/details.component.ts (274 bytes)
UPDATE src/app/app.module.ts (1201 bytes)

Create a class

It is used to create a new class in Angular. It is defined below:

ng g class <class-name>

If you want to create a customer class, then type the below command:

ng g class Customer

After using this command, you could see the below response:

CREATE src/app/customer.spec.ts (162 bytes)
CREATE src/app/customer.ts (26 bytes)

Create a pipe

Pipes are used for filtering the data. It is used to create a custom pipe in Angular. It is
defined below:

ng g pipe <pipe-name>

If you want to create a custom digit counts in a pipe, then type the below command:

ng g pipe DigitCount

After using this command, you could see the below response:

CREATE src/app/digit-count.pipe.spec.ts (204 bytes)
CREATE src/app/digit-count.pipe.ts (213 bytes)
UPDATE src/app/app.module.ts (1274 bytes)

Create a directive

It is used to create a new directive in Angular. It is defined below:

ng g directive <directive-name>

If you want to create a UnderlineText directive, then type the below command:

ng g directive UnderlineText

After using this command, you could see the below response:

162

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

CREATE src/app/underline-text.directive.spec.ts (253 bytes)
CREATE src/app/underline-text.directive.ts (155 bytes)
UPDATE src/app/app.module.ts (1371 bytes)

Create a module

It is used to create a new module in Angular. It is defined below:

ng g module <module-name>

If you want to create a user information module, then type the below command:

ng g module Userinfo

After using this command, you could see the below response:

CREATE src/app/userinfo/userinfo.module.ts (194 bytes)

Create an interface

It is used to create an interface in Angular. It is given below:

ng g interface <interface-name>

If you want to create a customer class, then type the below command:

ng g interface CustomerData

After using this command, you could see the below response:

CREATE src/app/customer-data.ts (34 bytes)

Create a web worker

It is used to create a new web worker in Angular. It is stated below:

ng g webWorker <webWorker-name>

If you want to create a customer class, then type the below command:

ng g webWorker CustomerWebWorker

After using this command, you could see the below response:

CREATE tsconfig.worker.json (212 bytes)

CREATE src/app/customer-web-worker.worker.ts (157 bytes)
UPDATE tsconfig.app.json (296 bytes)

UPDATE angular.json (3863 bytes)

Create a service

163

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

It is used to create a service in Angular. It is given below:

ng g service <service-name>

If you want to create a customer class, then type the below command:

ng g service CustomerService

After using this command, you could see the below response:

CREATE src/app/customer-service.service.spec.ts (379 bytes)
CREATE src/app/customer-service.service.ts (144 bytes)

Create an enum

It is used to create an enum in Angular. It is given below:

ng g enum <enum-name>

If you want to create a customer class, then type the below command:

ng g enum CustomerRecords

After using this command, you could see the below response:

CREATE src/app/customer-records.enum.ts (32 bytes)

Add command

It is used to add support for an external library to your project. It is specified by the below
command:

ng add [name]

Build command

It is used to compile or build your angular app. It is defined below:

ng build

After using this command, you could see the below response:

Generating ES5 bundles for differential loading...
ES5 bundle generation complete.

Config command

It is used to retrieve or set Angular configuration values in the angular.json file for the
workspace. It is defined below:

ng config

164

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

After using this command, you could see the below response:

{
"$schema": "./node_modules/@angular/cli/lib/config/schema.json",
"version": 1,
"newProjectRoot": "projects",
"projects": {

"MyApp": {
"projectType": "application”,
"schematics": {
"@schematics/angular:component™: {
"style": "scss"

Doc command

It is used to open the official Angular documentation (angular.io) in a browser, and
searches for a given keyword.

ng doc <keyword>

For example, if you search with component as ng g component then, it will open the
documentation.

e2e command

It is used to build and serves an Angular app, then runs end-to-end tests using Protractor.
It is stated below:

ng e2e <project> [options]

Help command

It lists out available commands and their short descriptions. It is stated below:

ng help

Serve command

It is used to build and serves your app, rebuilding on file changes. It is given below:

ng serve

Test command

Runs unit tests in a project. It is mentioned below:

ng test

165

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Update command

Updates your application and its dependencies. It is given below:

ng update

Version command

Shows Angular CLI version. It is stated below:

ng version

166

m tutorialspoint

24. Angular 8 — Testing

Testing is a very important phase in the development life cycle of an application. It ensures
an application quality. It needs careful planning and execution.

Unit Test

Unit testing is the easiest method to test an application. It is based on ensuring the
correctness of a piece of code or a method of a class. But, it does not reflect the real
environment and subsequently. It is the least option to find the bugs.

Generally, Angular 8 uses Jasmine and Karma configurations. To perform this, first you
need to configure in your project, using the below command:

ng test

Now, you could see the following response:

10% building 2/2 modules @ active3® 06 2020 01:46:39.982:WARN [karma]: No captured browser, open http:/
/localhost: 9876/

Karma v4.1.9@ server started at http://0.0.0.0:9876/
Launching browsers Chrome with concurrency unlimited
Starting browser Chrome
30 06 2020 @1:46:48.883:WARN [karma]: No captured browser, open http://localhost:9876/
Connected on socket Syipx6txxp9ghkj

WAAAA with id 30317067

Chrome 83.0.4103 (Mac 0S X 10.13.1): Executed 1 of 3 (@ secs / 0.243 secChrome 83.0.4103 (Mac 0
S X 10.13.1): Executed 2 of 3 (@ secs / 0.463 secChrome 83.0.4103 (Mac 0S X 10.13.1): Executed
3 of 3 (@ secs / 0.571 secChrome 83.0.4103 (Mac 0S X 10.13.1): Executed 3 of 3 (0.685 s
ecs / 0.571 secs)

TOTAL: 3 SUCCESS

Now, Chrome browser also opens and shows the test output in the “Jasmine HTML
Reporter”. It looks similar to this,

WK Karma x WK Karma DEBUG RUNNER x| +

< C @ localhost:9876/id=30317067# r O
Chrome 83.0.4103 (Mac OS X 10.13.1) is idle
@ sosmine
see
3 specs, @ failures, randomized with seed 32268 Finished in NaNs
AppComponent
* should render title
® should have as title 'MyFirstApp”
» should create the app
A Welcome '
Resources
Here are some links to help you get started:

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

End to End (E2E) Testing

Unit tests are small, simple and fast process whereas, E2E testing phase multiple
components are involved and works together which cover flows in the application. To
perform e2e test, type the below command:

ng ele

You could see the below response:

10% building 3/3 modules @ active : Project is running at http://localhost:4200/webpack-dev-serve

: webpack output is served from /
: 404s will fallback to //index.html

hunk {main} main.js, main.js.map (main) 50.7 kB [initial] [rendered]
hunk {polyfills} polyfills.js, polyfills.js.map (polyfills) 269 kB [initial] [rendered]
hunk {runtime} runtime.js, runtime.js.map (runtime) 6.15 kB [entry] [rendered]
hunk {styles} styles.js, styles.js.map (styles) 10.1 kB [initial] [rendered]
hunk {vendor} vendor.js, vendor.js.map (vendor) 4.09 MB [initial] [rendered]
Date: 2020-06-29T20:31:40.771Z - Hash: 19e6c185ff4e9dlc7b@e - Time: 10692ms
[** Angular Live Development Server is listening on localhost:420@, open your browser on http://localhos
14200/ **
: Compiled successfully.
] I/launcher - Running 1 instances of WebDriver
1 I/direct - Using ChromeDriver directly...
asmine started
L] W/element - more than one element found for locator By(css selector, app-root .content span)
- the first result will be used

workspace-project App
xecuted 1 of 1 spec in 3 secs.

L] I/launcher - @ instance(s) of WebDriver still running
I/launcher - chrome #01 passed

168

|§;|. tutorialspoint

25. Angular 8 — Ilvy Compiler

Ivy Compiler is the latest compiler for Angular application released by Angular Team.
Currently, Angular is using View Engine compiler to compile Angular application.

In general, Angular compiler has two options to compile an application.
Just In Time (JIT) Compiler

In Just In Time (JIT) compilation, the compiler will be bundled along with the application
and send to the browser. Angular application will be compiled in the browser and run just
before the execution of application.

Eventhough JIT provides certain advanced feature, JIT slows down the compilation and
also the app bundle will be double the size produced by AOT compiler as it includes
compiler as well.

Ahead Of Time (AOT) Compiler

In AOT compilation, the compiler will emit optimised code ready to run inside the browser
without any addition step. It will reduce the size of the bundle as well as reduce the
compilation time and startup time of the application.

Advantages of lvy Compiler

Ivy Compiler is the optimised and advanced compiler for Angular. As of Angular 8, it is
not yet complete even though it is useable at this stage. Angular Team is recommending
the developer to use it in Angular 8.

The main advantages of Ivy Compiler are as follows:

e Optimised code.
e Faster build time.
e Reduced bundle size.

e Better performance.

How to use lvy?

Ivy Compiler can be used in Angular 8 application by changing the project setting as
specified below:

Open angular.json and set the aot option (projects -> -> architect -> build ->
configurations -> production) of the project to true.

{
"projects": {
"my-existing-project": {
"architect": {

169

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

"build": {
"options": {

"aOt"

. true,

Open tsconfig.app.json and set enablelvy to true under angularCompilerOptions.

{

"angularCompilerOptions": {
"enablelvy": true

}

Compile and run the application and get benefited by Ivy Compiler.

170

MPLYEAGSYLEARMNINIG

w Mtutorialspoint

26. Angular 8 — Building with Bazel

Bazel is an advanced build and test tool. It supports lot of features suitable for large
projects.

Some of the features of Bazel are as follows:
e Support multiple languages.
e Support multiple platforms.
e Support multiple repository.
e Support high-level build language.
e Fast and reliable.
Angular supports building the application using bazel. Let us see how to use bazel to

compile Angular application.

First, install @angular/bazel package.

npm install -g @angular/bazel

For existing application, Add @angular/bazel as mentioned below:

ng add @angular/bazel

For new application, use below mentioned command:

ng new --collection=@angular/bazel

To build an application using bazel, use below command:

ng build --leaveBazelFilesOnDisk

Here,

leaveBazelFilesOnDisk option will leave the bazel files created during build process,
which we can use to build the application directly using bazel.

To build application using bazel directly, install @bazel/bazelisk and then, use bazelisk
build command.

npm install -g @bazel/bazelisk
bazelisk build

171

@ tutorialspoint

EIMPLYEAGSY LEARMNING

27. Angular 8 — Backward Compatibility

Angular framework provides maximum compatibility with previous versions. If Angular
Team deprecate a feature in a release, it will wait for 3 more release to completely remove
the feature. Angular Team release a major version for every six months. Every version will
have active maintenance period of six months and then Long Term Support (LTS) period
for another one year. Angular does not introduce breaking changes during these 18
months. If Angular version deprecate a feature in version 5, then it will probably remove
it in version 8 or in next releases.

Angular maintains documentation and guides of all version. For example, Angular
documentation for version 7 can be checked @ https://v7.angular.io. Angular also
provides a detailed upgrade path through https://update.angular.io/ site.

To update Angular application written from previous version, use below command inside
the project directory:

ng update @angular/cli@8 @angular/core@8

Let us see some of the important changes introduced in Angular 8.

¢ HttpModule module and its associated Http service is removed. Use HttpClient
service from HttpClientModule module.

e /Jdeep/, >>> and :ng-deep component selectors are removed.

e Angular default version of TypeScript is 3.4.

e Node version supported by Angular is v10 and later.

e @ViewChild() and ContentChild() decorator behaviour is changed from dynaic
to static.

Lazy loading string syntax in router module is removed and only function based is
supported.

loadChildren: './lazy/lazy.module#LazyModule'

loadChildren: () => import('./lazy/lazy.module’

172

@ tutorialspoint

EIMPLYEAGSY LEARMNING

28. Angular 8 — Working Example

Here, we will study about the complete step by step working example with regards to
Angular 8.

Let us create an Angular application to check our day to day expenses. Let us give
ExpenseManager as our choice for our new application.

Create an application

Use below command to create the new application.

cd /path/to/workspace
Nng new expense-manager

Here,

new is one of the command of the ng CLI application. It will be used to create new
application. It will ask some basic question in order to create new application. It is enough
to let the application choose the default choices. Regarding routing question as mentioned
below, specify No.

Would you like to add Angular routing? No

Once the basic questions are answered, the ng CLI application create a new Angular
application under expense-manager folder.

Let us move into the our newly created application folder.

cd expense-manager

Let us start the application using below command:

ng serve

Let us fire up a browser and opens http://localhost:4200. The browser will show the
application as shown below:

173

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

- O X
a ExpenseManager X +

<« C' @ localhost:4200 * @B v O

g expense-manager app is running!

Resources

Here are some links to help you get started:

® Learn Angular » <> CLl Documentation » 0 Angular Blog >

Next Steps

What do you want to do next with your app?

+ New Component + Angular Material -+ Add Dependency + Run and Watch Tests

=+ Build for Production

ng generate component xyz

) ® 0 @ @ M@

Love Angular? Give our repo a star. % Star | >

Let us change the title of the application to better reflect our application. Open
src/app/app.-component.ts and change the code as specified below:

export class AppComponent {
title = 'Expense Manager';

Our final application will be rendered in the browser as shown below:

174

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

a ExpenseManager X +

<« C' @ localhost:4200 * @B v O

Resources

Here are some links to help you get started:

® Learn Angular » <> CU Documentation » 6 Angular Blog >

Next Steps

What do you want to do next with your app?

+ New Component + Angular Material -+ Add Dependency + Run and Watch Tests
=+ Build for Production

ng generate component xyz

@ 0 @ @ @

Love Angular? Give our repo a star. % Star | >

Add a component

Create a new component using ng generate component command as specified below:

ng generate component expense-entry

Output

The output is as follows:

CREATE src/app/expense-entry/expense-entry.component.html (28 bytes)
CREATE src/app/expense-entry/expense-entry.component.spec.ts (671 bytes)
CREATE src/app/expense-entry/expense-entry.component.ts (296 bytes)
CREATE src/app/expense-entry/expense-entry.component.css (0 bytes)
UPDATE src/app/app.module.ts (431 bytes)

Here,

e ExpenseEntryComponent is created under src/app/expense-entry folder.
e Component class, Template and stylesheet are created.
e AppModule is updated with new component.

Add title property to ExpenseEntryComponent (src/app/expense-entry/expense-
entry.component.ts) component.

175

m tutorialspoint

Angular 8

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-expense-entry’,
templateUrl: './expense-entry.component.html’,

styleUrls: ['./expense-entry.component.css']

})

export class ExpenseEntryComponent implements OnInit {
title: string;
constructor() { }

ngOnInit() {
this.title = "Expense Entry"

}

}

Update template, src/app/expense-entry/expense-entry.component.html with
below content.

<p>{{ title }}</p>

Open src/app/app.-component.html and include newly created component.

<h1>{{ title }}</h1>
<app-expense-entry></app-expense-entry>

Here,
app-expense-entry is the selector value and it can be used as regular HTML Tag.

The output of the application is as shown below:

m ExpenseManager b4 +

< C @ localhost:4200 * O v | O :

Expense Manager

Expense Entry

Include bootstrap

Let us include bootstrap into our ExpenseManager application using styles option and
change the default template to use bootstrap components.

176

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Open command prompt and go to ExpenseManager application.

cd /go/to/expense-manager

Install bootstrap and JQuery library using below commands:

npm install --save bootstrap@4.5.0 jquery@3.5.1

Here,

We have installed JQuery because, bootstrap uses jquery extensively for advanced
components.

Option angular.json and set bootstrap and jquery library path.

{
"projects": {
"expense-manager": {
"architect": {
"build": {
"builder": "@angular-devkit/build-angular:browser",
"options": {

"outputPath": "dist/expense-manager”,

"index": "src/index.html",

"main": "src/main.ts",

"polyfills": "src/polyfills.ts",

"tsConfig": "tsconfig.app.json",

"aot": false,

"assets": [

"src/favicon.ico",
"src/assets”

1B

"styles": [
"./node_modules/bootstrap/dist/css/bootstrap.css”,
"src/styles.css"

])

"scripts": [
"./node_modules/jquery/dist/jquery.js",
"./node_modules/bootstrap/dist/js/bootstrap.js"

]

¥
})
}
I3

"defaultProject"”: "expense-manager"

}

Here,

e scripts option is used to include JavaScript library. JavaScript registered through
scripts will be available to all Angular components in the application.

Open app.component.html and change the content as specified below:

177

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<!-- Navigation -->
<nav class="navbar navbar-expand-1lg navbar-dark bg-dark static-top">
<div class="container">
{{ title }}
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarResponsive" aria-controls="navbarResponsive" aria-
expanded="false" aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1i>
<1li class="nav-item">
Report
</1li>
<li class="nav-item">
Add Expense
</1li>
<1li class="nav-item">
About
</1li>

</div>
</div>
</nav>

<app-expense-entry></app-expense-entry>

Here,
Used bootstrap navigation and containers.

Open src/app/expense-entry/expense-entry.component.html and place below
content.

<l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: Opx;
padding-right: @px;">
<div class="row">
<div class="col-sm" style="text-align: left;">
{{ title }}
</div>
<div class="col-sm" style="text-align: right;">
<button type="button"
class="btn btn-primary">Edit</button>
</div>

178

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

</div>
</div>
<div class="container box" style="margin-top: 10px;">
<div class="row">
<div class="col-2" style="text-align: right;">
Item:

</div>

<div class="col" style="text-align: left;">
Pizza

</div>

</div>

<div class="row">
<div class="col-2" style="text-align: right;">
Amount:

</div>

<div class="col" style="text-align: left;">
20

</div>

</div>

<div class="row">
<div class="col-2" style="text-align: right;">
Category:

</div>

<div class="col" style="text-align: left;">
Food

</div>

</div>

<div class="row">
<div class="co0l-2" style="text-align: right;">
Location:

</div>

<div class="col" style="text-align: left;">
Zomato

</div>

</div>

<div class="row">

<div class="co0l-2" style="text-align: right;">
Spend On:

</div>

<div class="col" style="text-align: left;">
June 20, 2020

</div>

</div>

</div>
</div>
</div>
</div>

Restart the application.

The output of the application is as follows:

179

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Y EpenseManager x + - O X
< C @ localhost:4200 * @ v O
Expense Manager Home Report Add Expense
Expense Entry m
Item: Pizza

Amount: 20
Category: ~ Food
Location: ~ Zomato
Spend On: June 20, 2020

Add an interface

Create ExpenseEntry interface (src/app/expense-entry.ts) and add id, amount,
category, Location, spendOn and createdOn.

export interface ExpenseEntry {
id: number;
item: string;
amount: number;
category: string;
location: string;
spendOn: Date;
createdOn: Date;

Import ExpenseEntry into ExpenseEntryComponent.

import { ExpenseEntry } from '../expense-entry';

Create a ExpenseEntry object, expenseEntry as shown below:

export class ExpenseEntryComponent implements OnInit {
title: string;
expenseEntry: ExpenseEntry;
constructor() { }

ngonInit() {
this.title = "Expense Entry";

this.expenseEntry = {

180

w tutorialspoint

Angular 8

id: 1,

item: "Pizza",

amount: 21,

category: "Food",

location: "Zomato",

spendOn: new Date(2020, 6, 1, 10, 10, 10),

createdOn: new Date(2020, 6, 1, 10, 10, 10),
}s

}

Update the component template using expenseEntry object, src/app/expense-
entry/expense-entry.component.html as specified below:

<l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: O@px; padding-right:
opx; ">
<div class="row">
<div class="col-sm" style="text-align: left;">
{{ title }}
</div>
<div class="col-sm" style="text-align: right;">
<button type="button" class="btn btn-
primary">Edit</button>
</div>
</div>
</div>
<div class="container box" style="margin-top: 10px;">
<div class="row">
<div class="col-2" style="text-align: right;">
Item:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.item }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Amount:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.amount }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Category:
</div>
<div class="col" style="text-align: left;">

181

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

{{ expenseEntry.category }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Location:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.location }}
</div>
</div>
<div class="row">
<div class="col-2" style="text-align: right;">
Spend On:
</div>
<div class="col" style="text-align: left;">
{{ expenseEntry.spendOn }}
</div>
</div>
</div>
</div>
</div>
</div>

The output of the application is as follows:

Y EpenseManager x + - O X
< C @ localhost:4200 * @ v O
Expense Manager Home Report Add Expense About
Expense Entry m
Item: Pizza

Amount: 21
Category: ~ Food
Location: ~ Zomato
Spend On: Wed Jul 01 2020 10:10:10 GMT+0530 (India Standard Time)

Using directives
Let us add a new component in our ExpenseManager application to list the expense
entries.

182

w tutorialspoint

Angular 8

Open command prompt and go to project root folder.

cd /go/to/expense-manager

Start the application.

ng serve

Create a new component, ExpenseEntryListComponent using below command:

ng generate component ExpenseEntrylList

Output

The output is given below:

CREATE src/app/expense-entry-list/expense-entry-list.component.html (33 bytes)
CREATE src/app/expense-entry-list/expense-entry-1list.component.spec.ts (700
bytes)

CREATE src/app/expense-entry-list/expense-entry-list.component.ts (315 bytes)
CREATE src/app/expense-entry-list/expense-entry-1list.component.css (@ bytes)
UPDATE src/app/app.module.ts (548 bytes)

Here, the command creates the ExpenseEntryList Component and update the necessary
code in AppModule.

Import ExpenseEntry into ExpenseEntryListComponent component
(src/app/expense-entry-list/expense-entry-list.component).

import { ExpenseEntry } from '../expense-entry';

Add a method, getExpenseEntries() to return list of expense entry (mock items) in
ExpenseEntryListComponent (src/app/expense-entry-list/expense-entry-
list.component).

getExpenseEntries() : ExpenseEntry[] {
let mockExpenseEntries : ExpenseEntry[] = [
{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "Mcdonald",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,
item: "Pizza",
amount: Math.floor((Math.random() * 10) + 1),
category: "Food",
location: "KFC",
spendOn: new Date(2020, 4, Math.floor((Math.random() *

183

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

30) + 1), 10, 10, 10),
createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "Mcdonald",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "KFC",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 1o, 19),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

{ id: 1,

item: "Pizza",

amount: Math.floor((Math.random() * 10) + 1),

category: "Food",

location: "KFC",

spendOn: new Date(2020, 4, Math.floor((Math.random() *
30) + 1), 10, 10, 10),

createdOn: new Date(2020, 4, Math.floor((Math.random()
* 30) + 1), 10, 10, 10) },

1

return mockExpenseEntries;

}

Declare a local variable, expenseEntries and load the mock list of expense entries as
mentioned below:

title: string;
expenseEntries: ExpenseEntry[];
constructor() { }

ngoOnInit() {
this.title = "Expense Entry List";
this.expenseEntries = this.getExpenseEntries();

}

Open the template file (src/app/expense-entry-list/expense-entry-
list.component.html) and show the mock entries in a table.

184

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<!-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: Opx; padding-right:
opx; ">
<div class="row">
<div class="col-sm" style="text-align: left;">
{{ title }}
</div>
<div class="col-sm" style="text-align: right;">
<button type="button" class="btn btn-
primary">Edit</button>
</div>
</div>
</div>
<div class="container box" style="margin-top: 10px;">
<table class="table table-striped">

<thead>

<tr>
<th>Item</th>
<th>Amount</th>
<th>Category</th>
<th>Location</th>
<th>Spent On</th>

</tr>

</thead>

<tbody>
<tr *ngFor="let entry of
expenseEntries">
<th scope="row">{{ entry.item

Y </th>
<th>{{ entry.amount }}</th>
<td>{{ entry.category }}</td>
<td>{{ entry.location }}</td>
<td>{{ entry.spendOn }}</td>

</tr>
</tbody>
</table>
</div>
</div>
</div>
</div>
Here,

e Used bootstrap table. table and table-striped will style the table according to
Boostrap style standard.
e Used ngFor to loop over the expenseEntries and generate table rows.

Open AppComponent template, src/app/app.component.html and include
ExpenseEntryListComponent and remove ExpenseEntryComponent as shown
below:

185

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

<app-expense-entry-list></app-expense-entry-list>

Finally, the output of the application is as shown below:

€Y} ExpenseManager X +

< C O localhost:4200 w @y | 8

Expense Manager

Expense Entry List m

Item Amount Category Location Spent On

Pizza 1 Food Mcdonald Mon May 18 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 9 Food KFC Fri May 08 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 7 Food Mcdonald Sun May 24 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 10 Food KFC Wed May 27 2020 10:10:10 GMT+0530 (India Standard Time)
Pizza 6 Food KFC Wed May 20 2020 10:10:10 GMT+0530 (India Standard Time)

Use pipes

Let us use the pipe in the our ExpenseManager application.

Open ExpenseEntryListComponent’s template, src/app/expense-entry-
list/expense-entry-list.component.html and include pipe in entry.spendOn as
mentioned below:

<td>{{ entry.spendOn | date: 'medium' }}</td>

Here, we have used the date pipe to show the spend on date in the short format.

Finally, the output of the application is as shown below:

186

I@A‘ \tutorialspoint

EIMPLYEAEGBYLEARNINIG

Angular 8

Y ExpenseManager x + = 8 =
< C @ localhost:4200 w Ty 8
Expense Manager Home Report Add Expense
Expense Entry List m
Item Amount Category Location Spent On
Pizza 3 Food Mcdonald May 14, 2020, 10:10:10 AM
Pizza 8 Food KFC May 12, 2020, 10:10:10 AM
Pizza 10 Food Mcdonald May 24, 2020, 10:10:10 AM
Pizza 6 Food KFC May 28, 2020, 10:10:10 AM
Pizza 4 Food KFC May 30, 2020, 10:10:10 AM
Add debug service

Run the below command to generate an Angular service, DebugService.

ng g service debug

This will create two Typescript files (debug service & its test) as specified below:

CREATE src/app/debug.service.spec.ts (328 bytes)
CREATE src/app/debug.service.ts (134 bytes)

Let us analyse the content of the DebugService service.

import { Injectable } from '@angular/core’;

@Injectable({
providedIn: 'root'’

1)

export class DebugService {

constructor() { }

}

Here,

e (@Injectable decorator is attached to DebugService class, which enables the
DebugService to be used in Angular component of the application.
¢ providerIn option and its value, root enables the DebugService to be used in all

component of the application.

187

w tutorialspoint

Angular 8

Let us add a method, Info, which will print the message into the browser console.

info(message : String) : void {

}

console.log(message);

Let us initialise the service in the ExpenseEntryListComponent and use it to print
message.

import { Component, OnInit } from '@angular/core’;

import { ExpenseEntry } from
import { DebugService } from

../expense-entry’;
../debug.service';

@Component ({

1)

selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,
styleUrls: ['./expense-entry-list.component.css']

export class ExpenseEntrylListComponent implements OnInit {

title: string;
expenseEntries: ExpenseEntry[];
constructor(private debugService: DebugService) { }

ngOnInit() {

this.debugService.info("Expense Entry List component initialized");
this.title = "Expense Entry List";
this.expenseEntries = this.getExpenseEntries();

}

// other coding

Here,

DebugService is initialised using constructor parameters. Setting an argument
(debugService) of type DebugService will trigger the dependency injection to
create a new DebugService object and set it into the
ExpenseEntryListComponent component.

Calling the info method of DebugService in the ngOnInit method prints the

message in the browser console.

The result can be viewed using developer tools and it looks similar as shown below:

188

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

B ExpenseManager x +

& 2> C @ localhost:4200/# T

Expense Manager

Expense Entry List

Item Amount Category Location Spent On

Pizza 3 Food Mcdonald May 7, 2020, 10:10:10 AM
Pizza 8 Food KFC May 2, 2020, 10:10:10 AM
Pizza 2 Food Mcdonald May 16, 2020, 10:10:10 AM
Pizza 3 Food KFC May 16, 2020, 10:10:10 AM
Pizza 3 Food KFC May 4, 2020, 10:10:10 AM

Angular is running in the development mode. Call enableProdMode() to enable the production mode.

[ﬂ Elements Consale Sources Network Performance Memory Application Security Lighthouse ¢ X
B @ | tp Y | © | Filter Default levels ¥ o
DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdb: icaho/sourceMap/chrome/iframe_handler.ma

p: HTTP error: status code 484, net::ERR_UNKNOWN_URL_SCHEME
Expense Entry List component initialized debug.service.ts:11

DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdb: icaho/sourceMap/chrome/content.map: HTTP

core,js:38781

error: status code 404, net::ERR_UNKNOWN_URL_SCHEME
[WDS] Live Reloading enabled.
>

client:52

Let us extend the application to understand the scope of the service.

Let us a create a DebugComponent by using below mentioned command:

ng generate component debug

CREATE src/app/debug/debug.component.html (20 bytes)
CREATE src/app/debug/debug.component.spec.ts (621 bytes)
CREATE src/app/debug/debug.component.ts (265 bytes)
CREATE src/app/debug/debug.component.css (@ bytes)
UPDATE src/app/app.module.ts (392 bytes)

Let us delete the DebugService in the root module.

// src/app/debug.service.ts
import { Injectable } from '@angular/core’;

@Injectable()
export class DebugService {
constructor() {

}

info(message : String) : void {
console.log(message);

}

EIMPLYEAEGBYLEARNINIG

w \tutorialspoint

189

Angular 8

Register the DebugService under ExpenseEntryListComponent component.

// src/app/expense-entry-list/expense-entry-list.component.ts

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css"']
providers: [DebugService]

1)

Here, we have used providers meta data (ElementInjector) to register the service.

Open DebugComponent (src/app/debug/debug.component.ts) and import
DebugService and set an instance in the constructor of the component.

import { Component, OnInit } from '@angular/core’;
import { DebugService } from '../debug.service';

@Component ({
selector: 'app-debug',
templateUrl: './debug.component.html’,
styleUrls: ['./debug.component.css"']
b

export class DebugComponent implements OnInit {
constructor(private debugService: DebugService) { }

ngonInit() {
this.debugService.info("Debug component gets service from Parent");
}
}

Here, we have not registered DebugService. So, DebugService will not be available if
used as parent component. When used inside a parent component, the service may
available from parent, if the parent has access to the service.

Open ExpenseEntryListComponent template (src/app/expense-entry-list/expense-
entry-list.component.html) and include a content section as shown below:

// existing content
<app-debug></app-debug>
<ng-content></ng-content>

Here, we have included a content section and DebugComponent section.

Let us include the debug component as a content inside the
ExpenseEntryListComponent component in the AppComponent template. Open
AppComponent template and change app-expense-entry-list as below:

// navigation code

<app-expense-entry-list>
<app-debug></app-debug>
</app-expense-entry-1list>

190

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

Here, we have included the DebugComponent as content.

Let us check the application and it will show DebugService template at the end of the
page as shown below:

- m} X
u ExpenseManager X +
< C @ localhost:4200 % T v * O
a
Expense Entry List Edit
Item Amount Category Location Spent On
Pizza 3 Food Mcdonald May 10, 2020, 10:10:10 AM
Pizza 10 Food KFC May 19, 2020, 10:10:10 AM
Pizza 2 Food Mcdonald May 1, 2020, 10:10:10 AM
Pizza 6 Food KFC May 7, 2020, 10:10:10 AM
Pizza 7 Food KFC May 19, 2020, 10:10:10 AM
debug works!
debug works!
[w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse 0 i X
] @ @ top Y | @ | Filter Default levels ¥
DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepacoicaho/sourceMap/chrome/iframe handler.map:
HTTP error: status code 404, net::ERR_UNKNOWN_URL_SCHEME
Expense Entry List component initialized
Debug component gets service from Parent
Debug component gets service from Parent
Angular is running in the development mode. Call enableProdMode() to enable the production mode.
DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepacoicaho/sourceMap/chrome/content.map: HTTP
error: status code 484, net::ERR_UNKNOWN_URL_SCHEME
[WDS] Live Reloading enabled. client:52
>

Also, we could able to see two debug information from debug component in the console.
This indicate that the debug component gets the service from its parent component.

Let us change how the service is injected in the ExpenseEntryListComponent and how
it affects the scope of the service. Change providers injector to viewProviders injection.
viewProviders does not inject the service into the content child and so, it should fail.

viewProviders: [DebugService]

Check the application and you will see that the one of the debug component (used as
content child) throws error as shown below.

191

EIMPLYEAEGBYLEARNINIG

w \tutorialspoint

Angular 8

w ExpenseManager X +

& C @ localhost:4200 W O vy B e

t Add Expens

[w ﬂ Elements Console Sources Network Performance Memory Application Security Lighthouse 93 * i X
] © | top Y| © | Filter Default levels ¥ o
DevTools failed to load SourceMap: Could not load content for chrome-extension://fheoggkfdfchfphceeifdbepacoicaho/sourceMap/chrome/iframe_handler.m

ap: HTTP error: status code 484, net::ERR_UNKNOWN_URL_SCHEME
@ »ERROR MulllnjectorError: StaticInjectorError(AppModule)[DebugComponent -> DebugService]: AppComponent . html : 30
StaticInjectorError(Platform: core)[DebugComponent -> DebugService]:

NullInjectorError: No provider for DebugService!
at Nulllnjector.get (http://localhost:4200/vendor.js:36417:27)
at resolveToken (http://localhost:4260
at tryResolveToken (http://localhost:4200
at StaticInjector.get (http://localhost:4:
at resolveToken (http://localhost:4200/v
at tryResolveToken (http://localhost:4208
at StaticInjector.get (http://localhost:42080,
at res gModuleDep (http://localhost
at NgModuleRef_.get (http://localhost:4.
at resolveDep (http://localhost:4208/ve

/vendor.js:51335:24)
r.js:51261:16)
dor.js:51111:20)
51335:24)

ndor.js:51111:20)
or.js:62298:29)
endor. j5:63364:16)
-J5:63895:45)

Let us remove the debug component in the templates and restore the application.

Open ExpenseEntryListComponent template (src/app/expense-entry-
list/expense-entry-list.component.html) and remove below content:

<app-debug></app-debug>
<ng-content></ng-content>

Open AppComponent template and change app-expense-entry-list as below:

// navigation code
<app-expense-entry-list> </app-expense-entry-list>

Change the viewProviders setting to providers in ExpenseEntryListComponent.

providers: [DebugService]

Rerun the appliation and check the result.

Create expense service

Let us create a new service ExpenseEntryService in our ExpenseManager application
to interact with Expense REST API. Check the coding of Expense REST API in Http Rest
Programming chapter.

ExpenseEntryService will get the latest expense entries, insert new expense entries,
modify existing expense entries and delete the unwanted expense entries.

Run the below command to generate an Angular service, ExpenseService.

ng generate service ExpenseEntry

This will create two Typescript files (expense entry service & its test) as specified below:

192

w \tutorialspoint

EIMPLYEAEGBYLEARNINIG

Angular 8

CREATE src/app/expense-entry.service.spec.ts (364 bytes)
CREATE src/app/expense-entry.service.ts (141 bytes)

Import HttpClientModule into AppModule (src/app/app-module.ts) as specified
below:

import { HttpClientModule } from '@angular/common/http’;

@NgModule({
imports: [

HttpClientModule

b
export class AppModule { }

Open ExpenseEntryService (src/app/expense-entry.service.ts) and import
ExpenseEntry, throwError and catchError from rxjs library and HttpClient,
HttpHeaders and HttpErrorResponse from @angular/common/http package.

import { Injectable } from '@angular/core';

import { ExpenseEntry } from './expense-entry';

import { throwError } from 'rxjs';

import { catchError } from 'rxjs/operators';

import { HttpClient, HttpHeaders, HttpErrorResponse } from

'@angular/common/http’;

Inject the HttpClient service into our service.

constructor(private httpClient : HttpClient) { }

Create a variable, expenseRestUrl to specify the Expense Rest API endpoints.

private expenseRestUrl = 'http://localhost:8000/api/expense’;

Create a variable, httpOptions to set the Http Header option. This will be used during the
Http Rest API call by Angular HttpClient service.

private httpOptions = {
headers: new HttpHeaders({ 'Content-Type': 'application/json' })
}s

The complete code is as follows:

import { Injectable } from '@angular/core';
import { ExpenseEntry } from './expense-entry';
import { Observable, throwError } from 'rxjs’;

193

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

import { catchError, retry } from 'rxjs/operators’;
import { HttpClient, HttpHeaders, HttpErrorResponse } from
'@angular/common/http’;

@Injectable({
providedIn: 'root’
}
export class ExpenseEntryService {
private expenseRestUrl = 'api/expense’;
private httpOptions = {
headers: new HttpHeaders({ 'Content-Type': 'application/json'

})
¥
constructor(
private httpClient : HttpClient) { }
}

Http programming using HttpClient service

Start the Expense REST API application as shown below:

cd /go/to/expense-rest-api
node .\server.js

Add getExpenseEntries() and httpErrorHandler() method in ExpenseEntryService
(src/app/expense-entry.service.ts) service.

getExpenseEntries() : Observable<ExpenseEntry[]> {
return this.httpClient.get<ExpenseEntry[]>(this.expenseRestUrl,
this.httpOptions)
-pipe(
retry(3),
catchError(this.httpErrorHandler)

)5

getExpenseEntry(id: number) : Observable<ExpenseEntry> {
return this.httpClient.get<ExpenseEntry>(this.expenseRestUrl + "/" + id,
this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)
}

private httpErrorHandler (error: HttpErrorResponse) {
if (error.error instanceof ErrorkEvent) {
console.error("A client side error occurs. The error message is " +

194

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

error. message);

} else {
console.error(
"An error happened in server. The HTTP status code is " +
error.status + " and the error returned is " + error.message);
}
return throwError("Error occurred. Pleas try again");
}
Here,

o getExpenseEntries() calls the get() method using expense end point and also
configures the error handler. Also, it configures httpClient to try for maximum of
3 times in case of failure. Finally, it returns the response from server as typed
(ExpenseEntry[]) Observable object.

o getExpenseEntry is similar to getExpenseEntries() except it passes the id of

the ExpenseEntry object and gets ExpenseEntry Observable object.

The complete coding of ExpenseEntryService is as follows:

import { Injectable } from '@angular/core';

import { ExpenseEntry } from './expense-entry';

import { Observable, throwError } from 'rxjs';

import { catchError, retry } from 'rxjs/operators’;

import { HttpClient, HttpHeaders, HttpErrorResponse } from
'@angular/common/http’;

@Injectable({

providedIn: 'root’
}
export class ExpenseEntryService {

private expenseRestUrl = 'http://localhost:8000/api/expense’;

private httpOptions = {

headers: new HttpHeaders({ 'Content-Type': 'application/json'

}

¥

constructor(private httpClient : HttpClient) { }

getExpenseEntries() : Observable<ExpenseEntry[]> {
return this.httpClient.get<ExpenseEntry[]>(this.expenseRestUrl,
this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)
}

getExpenseEntry(id: number) : Observable<ExpenseEntry> {

195

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

return this.httpClient.get<ExpenseEntry>(this.expenseRestUrl + "/" +
id, this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)
)
}

private httpErrorHandler (error: HttpErrorResponse) {

if (error.error instanceof ErrorEvent) {

console.error("A client side error occurs. The error message is " +
error.message);

} else {

console.error(

"An error happened in server. The HTTP status code is " +

and the error returned is " + error.message);

error.status +

}

return throwError("Error occurred. Pleas try again");

Open ExpenseEntryListComponent (src-entry-list-entry-list.component.ts) and
inject ExpenseEntryService through constructor as specified below:

constructor(private debugService: DebugService, private restService :
ExpenseEntryService) { }

Change the getExpenseEntries() function. Call getExpenseEntries() method from
ExpenseEntryService instead of returning the mock items.

getExpenseItems() {
this.restService.getExpenseEntries()
.subscribe(data => this.expenseEntries = data);

}

The complete ExpenseEntryListComponent coding is as follows:

import { Component, OnInit } from '@angular/core’;

import { ExpenseEntry } from '../expense-entry';

import { DebugService } from '../debug.service';

import { ExpenseEntryService } from '../expense-entry.service';

@Component ({
selector: 'app-expense-entry-list’,
templateUrl: './expense-entry-list.component.html’,

styleUrls: ['./expense-entry-list.component.css'],
providers: [DebugService]

}

export class ExpenseEntrylListComponent implements OnInit {
title: string;

196

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

expenseEntries: ExpenseEntry[];

constructor(private debugService: DebugService, private restService :

ExpenseEntryService) { }

ngOnInit() {

this.debugService.info("Expense Entry List component initialized");

this.title = "Expense Entry List";

this.getExpenselItems();

}

getExpenseItems() {
this.restService.getExpenseEntries()
.subscribe(data => this.expenseEntries = data);

Finally, check the application and you will see the below response:

ﬂ ExpenseManager X +

& C @ localhost:4200

Expense Manager

Expense Entry List

Item Amount
Pizza 10
Pizza 14
Pizza 15
Pizza 9
Pizza 12

Category

Food

Food

Food

Food

Food

Location

KFC

Mcdonald

KFC

Mcdonald

Mcdonald

Home Report Add Exp

Spent On

May 26, 2020, 10:10:00 AM

Jun 1, 2020, 6:14:00 PM

Jun 6, 2020, 4:18:00 PM

May 28, 2020, 11:10:00 AM

May 29, 2020, 9:22:00 AM

Add Expense functionality

Let us add a new method, addExpenseEntry() in our ExpenseEntryService to add new
expense entry as mentioned below:

addExpenseEntry(expenseEntry: ExpenseEntry): Observable<ExpenseEntry> {
return this.httpClient.post<ExpenseEntry>(this.expenseRestuUrl,
expenseEntry, this.httpOptions)

-pipe(
retry(3),

EIMPLYEAEGBYLEARNINIG

I@A‘ \tutorialspoint

197

Angular 8

catchError(this.httpErrorHandler)
)s

Update Expense functionality

Let us add a new method, updateExpenseEntry() in our ExpenseEntryService to
update existing expense entry as mentioned below:

updateExpenseEntry(expenseEntry: ExpenseEntry): Observable<ExpenseEntry> {
return this.httpClient.put<ExpenseEntry>(this.expenseRestUrl + "/" +
expenseEntry.id, expenseEntry, this.httpOptions)
.pipe(
retry(3),
catchError(this.httpErrorHandler)

)5

Delete expense entry functionality

Let us add a new method, deleteExpenseEntry() in our ExpenseEntryService to delete
existing expense entry as mentioned below:

deleteExpenseEntry(expenseEntry: ExpenseEntry | number) :
Observable<ExpenseEntry> {
const id = typeof expenseEntry == 'number' ? expenseEntry : expenseEntry.id
const url = “${this.expenseRestUrl}/${id} ;

return this.httpClient.delete<ExpenseEntry>(url, this.httpOptions)

-pipe(
retry(3),
catchError(this.httpErrorHandler)
)s
}
Add Routing

Generate routing module using below command, if not done before.

ng generate module app-routing --module app --flat

Output

The output is as follows:

CREATE src/app/app-routing.module.ts (196 bytes)
UPDATE src/app/app.module.ts (785 bytes)

Here,

CLI generate AppRoutingModule and then, configures it in AppModule.

¥

198

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

Update AppRoutingModule (src/app/app-module.ts) as mentioned below:

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { ExpenseEntryComponent } from './expense-entry/expense-
entry.component’;

import { ExpenseEntryListComponent } from './expense-entry-list/expense-entry-
list.component’;

const routes: Routes = [
{ path: 'expenses', component: ExpenseEntryListComponent },
{ path: ‘'expenses/detail/:id', component: ExpenseEntryComponent },
{ path: '', redirectTo: 'expenses', pathMatch: 'full' }

15

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

b
export class AppRoutingModule { }

Here, we have added route for our expense list and expense details component.

Update AppComponent template (src/app/app.component.html) to include router-
outlet and routerLink.

<!-- Navigation -->
<nav class="navbar navbar-expand-1lg navbar-dark bg-dark static-top">
<div class="container">
{{ title }}
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarResponsive" aria-controls="navbarResponsive" aria-
expanded="false" aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1li>
<li class="nav-item">
Report
</1li>
<li class="nav-item">
Add Expense
</1i>
<li class="nav-item">
About

</1i>

</div>
199
& . =
w tutorialspoint

Angular 8

</div>
</nav>

<router-outlet></router-outlet>

Open ExpenseEntryListComponent template (src/app/expense-entry-
list/expense-entry-list.component.html) and include view option for every expense
entry.

<table class="table table-striped">

<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Category</th>
<th>Location</th>
<th>Spent On</th>
<th>View</th>
</tr>
</thead>
<tbody>

<tr *ngFor="let entry of expenseEntries">
<th scope="row">{{ entry.item }}</th>
<th>{{ entry.amount }}</th>
<td>{{ entry.category }}</td>
<td>{{ entry.location }}</td>
<td>{{ entry.spendOn | date: 'medium' }}</td>
<td><a routerLink="../expenses/detail/{{ entry.id
T} >View</td>
</tr>
</tbody>
</table>

Here, we have updated the expense list table and added a new column to show the view
option.

Open ExpenseEntryComponent (src/app/expense-entry/expense-
entry.component.ts) and add functionality to fetch the current selected expense entry.
It can be done by first getting the id through the paramMap and then, using the
getExpenseEntry() method from ExpenseEntryService.

this.expenseEntry$ = this.route.paramMap.pipe(
switchMap(params => {
this.selectedId = Number(params.get('id'));
return
this.restService.getExpenseEntry(this.selectedId);

1)

this.expenseEntry$.subscribe((data) => this.expenseEntry = data);

Update ExpenseEntryComponent and add option to go to expense list.

200

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

goTolList() {
this.router.navigate(['/expenses']);

}

The complete code of ExpenseEntryComponent is as follows:

import { Component, OnInit } from '@angular/core’;
import { ExpenseEntry } from '../expense-entry';
import { ExpenseEntryService } from '../expense-entry.service’;
import { Router, ActivatedRoute } from '@angular/router’;
import { Observable } from 'rxjs';
import { switchMap } from 'rxjs/operators';
@Component ({
selector: 'app-expense-entry',
templateUrl: './expense-entry.component.html’,
styleUrls: ['./expense-entry.component.css']
b

export class ExpenseEntryComponent implements OnInit {
title: string;
expenseEntry$: Observable<ExpenseEntry>;
expenseEntry: ExpenseEntry = {} as ExpenseEntry;
selectedId: number;

constructor(private restService : ExpenseEntryService,
private router : Router, private route :
ActivatedRoute) { }

ngonInit() {
this.title = "Expense Entry";

this.expenseEntry$ = this.route.paramMap.pipe(
switchMap(params => {
this.selectedId = Number(params.get('id'));
return
this.restService.getExpenseEntry(this.selectedld);

1)

this.expenseEntry$.subscribe((data) => this.expenseEntry = data

}

goToList() {
this.router.navigate(['/expenses']);
}
}

)5

Open ExpenseEntryComponent (src/app/expense-entry/expense-

entry.component.html) template and add a new button to navigate back to expense

list page.

<div class="col-sm" style="text-align: right;">
<button type="button" class="btn btn-primary" (click)="goToList()">G

o to

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

201

Angular 8

List</button>

</div>

 <button type="button" class="btn btn-primary">Edit</button>

Here, we have added Go to List button before Edit button.

The final output of the application is as follows:

ﬂ ExpenseManager

Expense Entry List

Item
Pizza
Pizza
Pizza
Pizza

Pizza

X +

& C @ localhost:4200/expenses

Expense Manager

Amount Category
10 Foed
14 Foed
15 Food
9 Food
12 Food

Location

KFC

Mcdonald

KFC

Mcdonald

Mcdonald

Spent On

May 26, 2020, 10:10:00 AM

Jun 1, 2020, 6:14:00 PM

Jun 6, 2020, 4:18:00 PM

May 28, 2020, 11:10:00 AM

May 29, 2020, 9:22:00 AM

View

View

View

View

Clicking the view option of the first entry will navigate to details page and show the

selected expense entry as shown below:

ﬂ ExpenseManager

<« C @ localho

Expense Entry

Item:
Amount:
Category:
Location:
Spend On:

x +

st:4200/expenses/detail/1

Expense Manager

Pizza

10

Food

KFC

5/26/20, 10:10 AM

tutorialspoint

-
Ll
A EIMPFLYEAESEYLEARMING

202

Angular 8

Enable login and logout feature

Create a new service, AuthService to authenticate the user.

ng generate service auth

CREATE src/app/auth.service.spec.ts (323 bytes)
CREATE src/app/auth.service.ts (133 bytes)

Open AuthService and include below code:

import { Injectable } from '@angular/core';

import { Observable, of } from 'rxjs';
import { tap, delay } from 'rxjs/operators';

@Injectable({
providedIn: 'root'’

1)

export class AuthService {
isUserLoggedIn: boolean = false;

login(userName: string, password: string): Observable<boolean> {
console.log(userName);
console.log(password);
this.isUserLoggedIn = userName == ‘'admin' && password ==
"admin';
localStorage.setItem('isUserLoggedIn', this.isUserLoggedIn ?
"true" : "false");

return of(this.isUserLoggedIn).pipe(

delay(1000),
tap(val => {
console.log("Is User Authentication is successful: " +
val);
})
)
}
logout(): void {
this.isUserLoggedIn = false;
localStorage.removeltem('isUserLoggedIn');
}
constructor() { }
}
Here,

¢ We have written two methods, login and logout.
e The purpose of the login method is to validate the user and if the user successfully

validated, it stores the information in localStorage and then, returns true.

203

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

e Authentication validation is that the user name and password should be admin.

¢ We have not used any backend. Instead we have simulated a delay of 1s using
Observables.

e The purpose of the logout method is to invalidate the user and removes the

information stored in localStorage.

Create a login component using below command:

ng generate component login

CREATE src/app/login/login.component.html (20 bytes)
CREATE src/app/login/login.component.spec.ts (621 bytes)
CREATE src/app/login/login.component.ts (265 bytes)
CREATE src/app/login/login.component.css (@ bytes)
UPDATE src/app/app.module.ts (1207 bytes)

Open LoginComponent and include below code:

import { Component, OnInit } from '@angular/core’;

import { FormGroup, FormControl } from '@angular/forms';
import { AuthService } from '../auth.service';
import { Router } from '@angular/router’;

@Component ({
selector: 'app-login',
templateUrl: './login.component.html’,
styleUrls: ['./login.component.css']

1)

export class LoginComponent implements OnInit {

userName: string;
password: string;
formData: FormGroup;

constructor(private authService : AuthService, private router : Router)

{1}

ngonInit() {
this.formData = new FormGroup({
userName: new FormControl("admin"),
password: new FormControl("admin"),

})s
}

onClickSubmit(data: any) {
this.userName = data.userName;
this.password = data.password;

console.log("Login page: + this.userName);

204

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

console.log("Login page: + this.password);
this.authService.login(this.userName, this.password)
.subscribe(data => {
console.log("Is Login Success: " + data);
if(data) this.router.navigate(['/expenses']);

})s

e Used reactive forms.

¢ Imported AuthService and Router and configured it in constructor.

e Created an instance of FormGroup and included two instance of FormControl,
one for user name and another for password.

e Created a onClickSubmit to validate the user using authService and if successful,

navigate to expense list.

Open LoginComponent template and include below template code:

<!l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container box" style="margin-top: 10px; padding-left:
Opx; padding-right: opx;">
<div class="row">
<div class="co0l-12" style="text-align: center;">
<form [formGroup]="formData"
(ngSubmit)="onClickSubmit(formData.value)"
class="form-signin">
<h2 class="form-signin-
heading">Please sign in</h2>
<label for="inputEmail"
class="sr-only">Email address</label>
<input type="text"
id="username" class="form-control”

formControlName="userName" placeholder="Username" required autofocus>
<label for="inputPassword"
class="sr-only">Password</label>
<input type="password”
id="inputPassword" class="form-control”

formControlName="password" placeholder="Password" required>

<button class="btn btn-1lg btn-
primary btn-block" type="submit">Sign in</button>

</form>

205

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

</div>
</div>
</div>
</div>
</div>
</div>

Here,

e Created a reactive form and designed a login form.
¢ Attached the onClickSubmit method to the form submit action.

Open LoginComponent style and include below CSS Code:

.form-signin {
max-width: 330px;
padding: 15px;
margin: @ auto;

}

input {
margin-bottom: 20px;

}

Here, some styles are added to design the login form.

Create a logout component using below command:

ng generate component logout

CREATE src/app/logout/logout.component.html (21 bytes)
CREATE src/app/logout/logout.component.spec.ts (628 bytes)
CREATE src/app/logout/logout.component.ts (269 bytes)
CREATE src/app/logout/logout.component.css (0 bytes)
UPDATE src/app/app.module.ts (1368 bytes)

Open LogoutComponent and include below code:

import { Component, OnInit } from '@angular/core';
import { AuthService } from '../auth.service';
import { Router } from '@angular/router’;

@Component ({
selector: 'app-logout’,
templateUrl: './logout.component.html',
styleUrls: ['./logout.component.css']

})

export class LogoutComponent implements OnInit {

constructor(private authService : AuthService, private router: Router)

206

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

{1}
ngOnInit() {
this.authService.logout();
this.router.navigate(['/']);
}
}
Here,

e Used logout method of AuthService.
e Once the user is logged out, the page will redirect to home page (/).

Create a guard using below command:

ng generate guard expense

CREATE src/app/expense.guard.spec.ts (364 bytes)
CREATE src/app/expense.guard.ts (459 bytes)

Open ExpenseGuard and include below code:

import { Injectable } from '@angular/core';

import { CanActivate, ActivatedRouteSnapshot, RouterStateSnapshot, Router,
UrlTree } from '@angular/router’;

import { Observable } from 'rxjs';

import { AuthService } from './auth.service’;

@Injectable({
providedIn: 'root’

1)

export class ExpenseGuard implements CanActivate {

constructor(private authService: AuthService, private router: Router)

{}

canActivate(

next: ActivatedRouteSnapshot,

state: RouterStateSnapshot): boolean | UrlTree {
let url: string = state.url;

return this.checkLogin(url);

}

checkLogin(url: string): true | UrlTree {
console.log("Url: " + url)
let val: string =
localStorage.getItem('isUserLoggedIn');

if(val != null && val == "true"){
if(url == "/login")

207

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

this.router.parseUrl('/expenses’);
else
return true;
} else {
return this.router.parseUrl('/login');

}

Here,
¢ checkLogin will check whether the localStorage has the user information and if it
is available, then it returns true.
e Ifthe userislogged in and goes to login page, it will redirect the user to expenses

page.
e If the useris not logged in, then the user will be redirected to login page.

Open AppRoutingModule (src/app/app-routing.module.ts) and update below code:

import { NgModule } from '@angular/core’;

import { Routes, RouterModule } from '@angular/router’;

import { ExpenseEntryComponent } from './expense-entry/expense-
entry.component’;

import { ExpenseEntryListComponent } from './expense-entry-list/expense-entry-
list.component’;

import { LoginComponent } from './login/login.component';

import { LogoutComponent } from './logout/logout.component’;

import { ExpenseGuard } from './expense.guard';

const routes: Routes = [

{ path: 'login', component: LoginComponent },

{ path: 'logout', component: LogoutComponent },

{ path: 'expenses', component: ExpenseEntryListComponent, canActivate:
[ExpenseGuard]},

{ path: 'expenses/detail/:id', component: ExpenseEntryComponent,
canActivate: [ExpenseGuard]},

{ path: '', redirectTo: 'expenses', pathMatch: 'full' }

15

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

}
export class AppRoutingModule { }

Here,

e Imported LoginComponent and LogoutComponent.

e Imported ExpenseGuard.

208

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

e Created two new routes, login and logout to access LoginComponent and
LogoutComponent respectively.
e Add new option canActivate for ExpenseEntryComponent and

ExpenseEntryListComponent.

Open AppComponent template and add two login and logout link.

<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1li>
<li class="nav-item">
Report
</1li>
<li class="nav-item">
Add Expense
</1li>
<li class="nav-item">
About
</1li>
<li class="nav-item">
<div *ngIf="isUserlLoggedIn; else isLogOut">
<a class="nav-1link"
routerLink="/logout">Logout
</div>

<ng-template #islLogOut>
<a class="nav-1link"
routerLink="/login">Login
</ng-template>
</1i>

</div>

Open AppComponent and update below code:

import { Component } from '@angular/core’;
import { AuthService } from './auth.service’;

@Component ({
selector: 'app-root’,
templateUrl: './app.component.html',
styleUrls: ['./app.component.css']

})
export class AppComponent {

title = 'Expense Manager';

209

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

isUserLoggedIn = false;
constructor(private authService: AuthService) {}

ngOnInit() {
let storeData = localStorage.getItem("isUserLoggedIn");
console.log("StoreData: " + storeData);

if(storeData != null & storeData == "true")
this.isUserLoggedIn = true;

else
this.isUserLoggedIn = false;

}

Here, we have added the logic to identify the user status so that we can show login /
logout functionality.

Open AppModule (src/app/app-module.ts) and configure ReactiveFormsModule.

import { ReactiveFormsModule } from '@angular/forms’;

imports: [
ReactiveFormsModule

]

Now, run the application and the application opens the login page.

Y ExpenseManager X +

< C @ localhost:4200/login W B Y o :

Expense Manager eport Add Expense About Login

Please sign in

admin

210

m tutorialspoint

Angular 8

Enter admin and admin as username and password and then click submit. The application
process the login and redirects the user to expense list page as shown below:

€} SpenseManager x 4+ N o &
< C @ localhost:4200/expenses W B Yy ° :
Expense Manager Home Report AddExpense About Logout
Expense Entry List m
Item Amount Category Location Spent On View
Pizza 10 Food KFC May 26, 2020, 10:10:00 AM View
Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM View
Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM View
Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM View
Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM View

Finally, you can click logout and exit the application.

Add/ Edit/ Delete Expenses

Add new component, EditEntryComponent to add new expense entry and edit the
existing expense entries using below command:

ng generate component EditEntry

CREATE src/app/edit-entry/edit-entry.component.html (25 bytes)
CREATE src/app/edit-entry/edit-entry.component.spec.ts (650 bytes)
CREATE src/app/edit-entry/edit-entry.component.ts (284 bytes)
CREATE src/app/edit-entry/edit-entry.component.css (@ bytes)
UPDATE src/app/app.module.ts (1146 bytes)

Update EditEntryComponent with below code:

import { Component, OnInit } from '@angular/core’;

import { FormGroup, FormControl, Validators } from '@angular/forms’;

import { ExpenseEntry } from
import { ExpenseEntryService } from

../expense-entry';
'../expense-entry.service’;

import { Router, ActivatedRoute } from '@angular/router';

211

m tutorialspoint

Angular 8

@Component ({
selector: 'app-edit-entry’,
templateUrl: './edit-entry.component.html',
styleUrls: ['./edit-entry.component.css']
})
export class EditEntryComponent implements OnInit {
id: number;
item: string;
amount: number;
category: string;
location: string;
spendOn: Date;

formData: FormGroup;
selectedId: number;
expenseEntry: ExpenseEntry;

constructor(private expenseEntryService : ExpenseEntryService, private
router: Router, private route: ActivatedRoute) { }

ngOnInit() {
this.formData = new FormGroup({

id: new FormControl(),
item: new FormControl('', [Validators.required]),
amount: new FormControl('', [Validators.required]),
category: new FormControl(),
location: new FormControl(),
spendOn: new FormControl()

})s

this.selectedId =
Number(this.route.snapshot.paramMap.get('id'));

if(this.selectedId != null & this.selectedId != 0) {

this.expenseEntryService.getExpenseEntry(this.selectedId)
.subscribe((data) =>
{
this.expenseEntry = data;
this.formData.controls['id'].setValue(this.expenseEntry.id);
this.formData.controls['item'].setValue(this.expenseEntry.item);
this.formData.controls['amount'].setValue(this.expenseEntry.amount);

this.formData.controls['category'].setValue(this.expenseEntry.category);

this.formData.controls['location'].setValue(this.expenseEntry.location);

212

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

this.formData.controls['spendOn'].setValue(this.expenseEntry.spendOn);

1)
}

}

get itemvValue() {
return this.formData.get('item');

}

get amountValue() {
return this.formData.get('amount');

}

onClickSubmit(data: any) {
console.log('onClickSubmit fired');
this.id = data.id;
this.item = data.item;
this.amount = data.amount;
this.category = data.category;
this.location = data.location;
this.spendOn = data.spendOn;

let expenseEntry : ExpenseEntry = {
id: this.id,
item: this.item,
amount: this.amount,
category: this.category,
location: this.location,
spendOn: this.spendOn,
createdOn: new Date(2020, 5, 20)
}

console.log(expenseEntry);

if(expenseEntry.id == null || expenseEntry.id == 0) {
console.log('add fn fired');
this.expenseEntryService.addExpenseEntry(expenseEntry)
.subscribe(data => { console.log(data);
this.router.navigate(['/expenses']); });
} else {
console.log('edit fn fired');
this.expenseEntryService.updateExpenseEntry(expenseEntry)
.subscribe(data => { console.log(data);
this.router.navigate(['/expenses']); });

213

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

e Created a form, formData in the ngOnInit method using FormControl and
FormGroup classes with proper validation rules.

e Loaded the expense entry to be edited in the ngOnInit method.

e Created two methods, itemValue and amountValue to get the item and amount
values respectively entered by user for the validation purpose.

e Created method, onClickSubmit to save (add / update) the expense entry.

e Used Expense service to add and update expense entries.

Update the EditEntryComponent template with expense form as shown below:

<!l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: O@px; padding-right:
opx; ">
</div>
<div class="container box" style="margin-top: 10px;">
<form [formGroup]="formData" (ngSubmit)="onClickSubmit(formData.value)"
class="form" novalidate>
<div class="form-group">
<label for="item">Item</label>
<input type="hidden" class="form-control" id="id" formControlName="id">
<input type="text" class="form-control"” id="item" formControlName="item">
<div
*ngIf="!itemvalue?.valid && (itemvalue?.dirty ||itemValue?.touched)">
<div [hidden]="!itemValue.errors.required">
Item is required
</div>
</div>
</div>
<div class="form-group"”>
<label for="amount">Amount</label>
<input type="text" class="form-control” id="amount"
formControlName="amount">
<div
*ngIf="!amountValue?.valid && (amountValue?.dirty
| |amountValue?.touched)">
<div [hidden]="!amountValue.errors.required">
Amount is required
</div>
</div>
</div>
<div class="form-group">
<label for="category">Category</label>
<select class="form-control” id="category" formControlName="category">
<option>Food</option>
<option>Vegetables</option>
<option>Fruit</option>
<option>Electronic Item</option>

214

tutorialspoint

EIMPLYEAGSY LEARMNING

i}

Angular 8

<option>Bill</option>
</select>
</div>
<div class="form-group">
<label for="location">location</label>
<input type="text" class="form-control" id="location"
formControlName="1location">
</div>
<div class="form-group">
<label for="spendOn">spendOn</label>
<input type="text" class="form-control" id="spendOn"
formControlName="spendOn">
</div>
<button class="btn btn-1g btn-primary btn-block" type="submit"
[disabled]="!formData.valid">Submit</button>

</form>
</div>
</div>
</div>
</div>
Here,

e Created a form and bind it to the form, formData created in the class.
e Validated item and amount as required values.

e Called onClickSubmit function once validation in successful.

Open EditEntryComponent stylesheet and update below code:

.form {
max-width: 330px;
padding: 15px;
margin: @ auto;

}

.form label {
text-align: left;
width: 100%;

}

input {
margin-bottom: 20px;

}

Here, we have styled the expense entry form.

Add AboutComponent using below command:

ng generate component About

CREATE src/app/about/about.component.html (20 bytes)

215

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

CREATE src/app/about/about.component.spec.ts (621 bytes)
CREATE src/app/about/about.component.ts (265 bytes)
CREATE src/app/about/about.component.css (0 bytes)
UPDATE src/app/app.module.ts (1120 bytes)

Open AboutComponent and add title as specified below:

import { Component, OnInit } from '@angular/core';

@Component ({
selector: 'app-about’,
templateUrl: './about.component.html',
styleUrls: ['./about.component.css']

1)

export class AboutComponent implements OnInit {
title = "About";
constructor() { }

ngonInit() {
}

}

Open AboutComponent template and updated content as specified below:

<l-- Page Content -->
<div class="container">
<div class="row">
<div class="col-1g-12 text-center" style="padding-top: 20px;">
<div class="container" style="padding-left: Opx; padding-right:

opx; ">
<div class="row">
<div class="col-sm" style="text-align: left;">
<h1>{{ title }}</hl1>
</div>
</div>
</div>
<div class="container box" style="margin-top: 10px;">
<div class="row">
<div class="col" style="text-align: left;">
<p>Expense management Application</p>
</div>
</div>
</div>
</div>
</div>
</div>

Add routing for add and edit expense entries as specified below:

import { NgModule } from '@angular/core’;

216

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

import { Routes, RouterModule } from '@angular/router’;

import { ExpenseEntryComponent } from './expense-entry/expense-
entry.component’;

import { ExpenseEntryListComponent } from './expense-entry-list/expense-entry-
list.component’;

import { LoginComponent } from './login/login.component';

import { LogoutComponent } from './logout/logout.component’;

import { EditEntryComponent } from './edit-entry/edit-entry.component’;

import { AboutComponent } from './about/about.component';

import { ExpenseGuard } from './expense.guard';

const routes: Routes = [

{ path: 'about', component: AboutComponent },

{ path: 'login', component: LoginComponent },

{ path: 'logout', component: LogoutComponent },

{ path: ‘'expenses', component: ExpenseEntryListComponent, canActivate:
[ExpenseGuard]},

{ path: 'expenses/detail/:id', component: ExpenseEntryComponent,
canActivate: [ExpenseGuard]},

{ path: 'expenses/add', component: EditEntryComponent, canActivate:
[ExpenseGuard]},

{ path: ‘'expenses/edit/:id', component: EditEntryComponent, canActivate:
[ExpenseGuard]},

{ path: '', redirectTo: 'expenses', pathMatch: 'full' }

1

@NgModule({
imports: [RouterModule.forRoot(routes)],
exports: [RouterModule]

})

export class AppRoutingModule { }

Here, we have added about, add expense and edit expense routes.

Add Edit and Delete links in ExpenseEntryListComponent template.

<table class="table table-striped">
<thead>
<tr>
<th>Item</th>
<th>Amount</th>
<th>Category</th>
<th>Location</th>
<th>Spent On</th>
<th>View</th>
<th>Edit</th>
<th>Delete</th>
</tr>
</thead>
<tbody>
<tr *ngFor="let entry of expenseEntries">

217

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<th scope="row">{{ entry.item }}</th>
<th>{{ entry.amount }}</th>
<td>{{ entry.category }}</td>
<td>{{ entry.location }}</td>
<td>{{ entry.spendOn | date: 'medium' }}</td>
<td>View</td>
<td>Edit</td>
<td><a href="#" (click)="deleteExpenseEntry($event,
entry.id)">Delete</td>
</tr>
</tbody>
</table>

Here, we have included two more columns. One column is used to show edit link and
another to show delete link.

Update deleteExpenseEntry method in ExpenseEntryListComponent as shown
below:

deleteExpenseEntry(evt, id) {
evt.preventDefault();
if(confirm("Are you sure to delete the entry?")) {
this.restService.deleteExpenseEntry(id)
.subscribe(data => console.log(data));

this.getExpenseltems();

}

Here, we have asked to confirm the deletion and it user confirmed, called the
deleteExpenseEntry method from expense service to delete the selected expense item.

Change Edit link in the ExpenseEntryListComponent template at the top to Add link
as shown below:

<div class="col-sm" style="text-align: right;">
<button class="btn btn-primary"” routerLink="/expenses/add">ADD</button>
<!-- <button type="button" class="btn btn-primary">Edit</button> -->
</div>

Add Edit link in ExpenseEntryComponent template.

<div class="col-sm" style="text-align: right;">

<button type="button" class="btn btn-primary" (click)="goToList()">Go to
List</button>

 <button type="button" class="btn btn-primary"
(click)="goToEdit()">Edit</button>
</div>

Open ExpenseEntryComponent and add goToEdit() method as shown below:

218

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

Angular 8

goToEdit() {
this.router.navigate(['/expenses/edit', this.selectedId]);

}

Update navigation links in AppComponent template.

<!l-- Navigation -->
<nav class="navbar navbar-expand-1lg navbar-dark bg-dark static-top">
<div class="container">
{{ title }}
<button class="navbar-toggler" type="button" data-toggle="collapse"
data-target="#navbarResponsive"” aria-controls="navbarResponsive" aria-
expanded="false" aria-label="Toggle navigation">

</button>
<div class="collapse navbar-collapse" id="navbarResponsive">
<ul class="navbar-nav ml-auto">
<li class="nav-item active">
Home
(current)

</1i>
<li class="nav-item">
Add
Expense
</1li>
<li class="nav-item">
About
</1li>
<1li class="nav-item">
<div *ngIf="isUserLoggedIn; else islLogOut">
<a class="nav-1link"
routerLink="/logout">Logout
</div>

<ng-template #islLogOut>
<a class="nav-link"

routerLink="/login">Login

</ng-template>
</1li>

</div>
</div>
</nav>

<router-outlet></router-outlet>

Here, we have updated the add expense link and about link.

Run the application and the output will be similar as shown below:

219

tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

- O X
Q ExpenseManager X +

< C @ localhost:4200/expenses Y O Yy R e

Expense Manager Home
Expense Entry List m

Item Amount Category Location Spent On View Edit Delete
Pizza 10 Food KFC May 26, 2020, 10:10:00 AM View Edit Delete
Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM View Edit Delete
Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM View Edit Delete
Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM View Edit Delete
Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM View Edit Delete

Try to add new expense using Add link in expense list page. The output will be similar as
shown below:

Y ExpenseManager x + - m} X
< c @ localhost:4200/expenses/add Yt O v R e H
Expense Manager Home

Item

Amount

Category

Food v
location
spendOn
Fill the form as shown below:
220

EIMPLYEAGSY LEARMNING

A ' tutorialspoint

Angular 8

“ ExpenseManager X + - o X
< C ©® localhost:4200/expenses/add * B Y O
Expense Manager Home
Item
Mobile
Amount
600
Category
Electronic ltem A
location
Amazon
spendOn
2020-05-10
If the data is not filled properly, the validation code will alert as shown below:
€Y ExpenseManager X + - B X
< C @ localhost:4200/expenses/add * B v & O
Expense Manager Home
Iltem
Item is required
Amount
Amount is required
Category
location
spendOn

Click Submit. It will trigger the submit event and the data will be saved to the backend
and redirected to list page as shown below:

221

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

- O X
“ ExpenseManager X +

< C @ localhost:4200/expenses w B Yy & O

Expense Manager Home
Expense Entry List m

Item Amount Category Location Spent On View Edit Delete
Pizza 10 Food KFC May 26, 2020, 10:10:00 AM View Edit Delete
Pizza 14 Food Mcdonald Jun 1, 2020, 6:14:00 PM View Edit Delete
Pizza 15 Food KFC Jun 6, 2020, 4:18:00 PM View Edit Delete
Pizza 9 Food Mcdonald May 28, 2020, 11:10:00 AM View Edit Delete
Pizza 12 Food Mcdonald May 29, 2020, 9:22:00 AM View Edit Delete
Mobile 600 Electronic Item Amazon May 10, 2020, 12:00:00 AM View Edit Delete

Try to edit existing expense using Edit link in expense list page. The output will be
similar as shown below:

— O X
Y ExpenseManager x 4+

< C @ localhost:4200/expenses/edit/18 * B v & O
Expense Manager Home

Iltem

Mobile
Amount
600
Category
Electronic Item v

location

Amazon

spendOn

2020-05-10

Click Submit. It will trigger the submit event and the data will be saved to the backend
and redirected to list page.

To delete an item, click delete link. It will confirm the deletion as shown below:

222

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

<&

Y ExpenseManager x 4+

c @ localhost:4200/expenses

Expense Entry List

Item Amount
Pizza 10
Pizza 14
Pizza 15
Pizza 9
Pizza 12
Mobile 600

Expense Manager

Category

Food

Food

Food

Food

Food

Electronic Item

localhost:4200 says

Are you sure to delete the entry?

Location

KFC

Mcdonald

KFC

Mcdonald

Mcdonald

Amazon

n Caneel

Spent On
May 26, 2020, 10:10:00 AM
Jun 1, 2020, 6:14:00 PM
Jun 6, 2020, 4:18:00 PM
May 28, 2020, 11:10:00 AM
May 29, 2020, 9:22:00 AM

May 10, 2020, 12:00:00 AM

View

View

View

View

View

View

View

Edit

Edit

Edit

Edit

Edit

Edit

Edit

Delete

Delete

Delete

Delete

Delete

Delete

Delete

Finally, we

application.

3

tutorialspoint

EIMPLYEAGEGTYL

E

ARMNINIEG

have implemented all features

necessary to manage expenses in our

223

29. Angular 9 — What’s New?

Angular community has continuosly updating its version. This chapter explains about
Angular 9 version updates.

Install Angular 9

If you want to work with Angular 9, first you need to setup Angular 9 CLI using the below
command:

npm install -g @angular/cli@"9.0.0

After executing this command, you can check the version using the below command:

ng version

Angular 9 Updates

Let’s understand Angular 9 updates in brief.
Ivy compiler

Ivy compiler becomes the default compiler in Angular 9. This makes apps will be faster
and very efficient. Whereas, Angular 8 Ivy is optional. We have to enable it inside
tsconfig.json file.

Ivy compiler supports the following features:

¢ Performs faster testing - TestBed implementation helps to test more efficient.

¢ Improved CSS class and styles - Ivy styles are easily merged and designed as
predictable.

¢ Improved type checking - This feature helps to find the errors earlier in
development process.

e Enhanced debugging - Ivy comes with more tools to enable better debugging
features. This will be helpful to show useful stack trace so that we can easily jump
to the instruction.

e Ahead-of-Time compiler - This is one of the important improvements in
compiler’s performance. AOT builds are very faster.

¢ Improved internationalization - i18n substitutions helps to build more than ten

times faster than previous versions.

Reliable ng update

ng updates are very reliable. It contains clear progress updates and runs all of the
migrations. This can be done using the below command:

224

@ tutorialspoint

EIMPLYEAGSY LEARMNING

Angular 8

ng update --create-commits

Here,
—create-commits flag is used to commit your code after each migration.
Improved Dependency Injection

@Injectable service helps to add injector in your application. providedIn meta data
provides new option, platform to ensure the object can be used and shared by all
application. It is defined below:

@Injectable({
providedIn: 'platform’

1)

class MyService {...}

TypeScript 3.8

Angular 9 is designed to support 3.8 version. TypeScript 3.8 brings support for the below
features:

e Type-Only Imports and Exports.
e ECMAScript Private Fields.

e Top-Level await.

e JSDoc Property Modifiers.

e export * as ns Syntax.

Angular 9.0.0-next.5

Angular 9.0.0-next.5 build has small size of main.js file, which makes better performance
compare to previous version of Angular 8.

IDE enhancement

Angular 9 provides imporves IDE supports. TextMate grammar enables for syntax
highlighting in inline and external templates.

Conclusion

Angular is flexible, ever improving, continuously updated and dependable framework.
Angular greatly simplify the process of SPA development. By providing new features in
each release like Angular Universal, Progressive Web App, Web workers, Bazel
build, Ivy Compiler, etc., Angular will have a long life and complete support of the front
end developer.

225

tutorialspoint

EIMPLYEAGSY LEARMNING

¥

