
A beginner's guide to

• An introduction to GitOps

• The benefits of infrastructure automation

• GitOps best practices

https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

2

INTRODUCTION

THE ROAD TO GITOPS

HOW GITOPS WORKS

THE BENEFITS OF GITOPS

COMMON GITOPS TOOLS

BEST PRACTICES FOR GETTING STARTED WITH GITOPS
Define all infrastructure as config files
Document what you can’t automate
Outline a code review and merge request process
Consider multiple environments
Make CI/CD the access point to resources
Have a repository strategy
Keep changes small

CI/CD PIPELINES WITH GITOPS AND TERRAFORM

THE FUTURE OF INFRASTRUCTURE AUTOMATION

ABOUT GITLAB

03

05

07

09

10

11

15

16

17

Table of contents

Start your GitLab free trial

3

As software applications become more sophisticated,
the demands on infrastructure increase. Infrastructure
teams need to support complex deployments at
immense scale and speed. While much of application
development has been automated, infrastructure
has remained largely a manual process requiring
specialized teams. Instead of manual processes, is
there a repeatable and reliable way to design, change,
and deploy software environments? Infrastructure-as-
code (IaC) tools like Ansible and Terraform are a good
start, but they don’t solve the entire problem. Teams
need a prescriptive workflow that puts IaC into action
automatically.

This eBook will introduce the infrastructure automation
process of GitOps and how it offers an end-to-end solution
for designing, changing, and deploying infrastructure.
In this eBook, you’ll also learn:

• How GitOps works with processes you already use
in application development

• The three components teams need to get started
with GitOps

• GitOps best practices and workflows

Introduction

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

Start your GitLab free trial

4

Organizations with a mature DevOps culture can deploy code to pro-
duction hundreds of times per day. While the software development
lifecycle has been automated, rolling out infrastructure is still largely
a manual process. IT teams struggling to keep up with more frequent
deployments is not a new problem.

When physical hardware was required, infrastructure automation
was practically impossible. With virtualization, things got a bit easier.
It wasn’t until the cloud went public that large infrastructures could
be completely automated with relative ease. The cloud doesn’t require
hardware and, unlike "traditional" servers and Virtual Machines (VMs),
cloud native services can be created and managed independently
without having to provision a VM or Operating System (OS).

By using scripting languages like PowerShell and Bash, IT teams are
able to deploy various services to the cloud. Automated scaling is often
included in cloud services, like serverless offerings. When scaling is
not automatic, being able to deploy another instance of your service
instantly is important.

Just because these services are available doesn’t mean teams are able
to use them effectively. AWS alone has over 200 services, and many
companies rely on dozens of them. These services often have many
settings. Using the AWS portal to deploy all services manually is time-
consuming, error prone, and not realistic for large organizations.

GitOps offers a way to automate and manage infrastructure, and it does
this by using DevOps best practices that many organizations already
use, such as version control, code review, and CI/CD pipelines. Having
infrastructure described as code allows you to deploy the same service
over and over. By using parameterization, it’s possible to deploy the
same service, but to different environments and with different names
and settings.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/devops/

Start your GitLab free trial

5

AWS has been publicly available since 2006, but even before that time, on-premises infrastruc-
ture management could be a daunting task for IT teams. Various servers ran several applications
and services, and scaling up required IT to manually set up an entire server and reinstall the
same applications with the same settings. Luckily, tools were developed to make this task
a little easier.

The first generation of configuration management (CM) tools, like Puppet and Chef, made it
easy to set up existing servers. IT could spin up a server or VM, install the Puppet or Chef agent,
and let the tool establish everything needed to run applications on the server. These tools ran
on on-premises servers, as well as on cloud servers.

First-generation CM tools were an efficient way to replicate all the steps to set up new
production servers. With these steps now automated, setting up new servers became a lot
easier. However, they still didn’t provision new VMs and didn’t work well with cloud native
infrastructure.

Next came second-generation CM tools like Ansible and SaltStack. These tools can install
software on individual servers, just like the first -gen CM tools, but can also provision VMs
before setting them up. For example, they can create ten EC2 instances, then install all the
needed software on each of these instances.

The road to GitOps

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

Start your GitLab free trial

6

One important drawback of these CM tools is that they only provisioned and set up servers
and VMs. They don’t offer solutions for cloud native services.

Amazon CloudFormation appeared around the same as the second -gen CM tools. It doesn’t
handle server setup, but offers the ability to use declarative code to provision an entire AWS
application architecture. There was no longer the need to click through the management console
to manually create resources. You could simply describe your infrastructure as JSON or YAML
and deploy it using the AWS Management Console, the Command-Line Interface (CLI), or the
AWS SDK. But, as an Amazon service, it only works on AWS.

Microsoft Azure offers a similar tool, the Azure Resource Manager (ARM), which allows you to
describe your infrastructure in JSON templates. But much like Amazon CloudFormation and
AWS, ARM only works with Azure services.

When private clouds and other public clouds, like Azure and Google Cloud, gained traction,
many enterprises switched to another cloud or went multicloud in order to not depend on a
single cloud platform. To address this new requirement, multicloud CM tools appeared, such
as Terraform. Simply describe your services and deploy them to multiple clouds/providers/
cloud services.

An upside to these tools is that they unlock the ability to do things like version control, code
review, and continuous integration/continuous delivery (CI/CD) on infrastructure code.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/multicloud/
https://about.gitlab.com/ci-cd/

Start your GitLab free trial

7

GitOps takes tried-and-true DevOps processes and applies them to infrastructure code.
As the name suggests, it combines Git and operations, or resource management. Git is an
open source version control system that tracks code management changes. Like DevOps,
the goal of GitOps is to use CI/CD to automatically deploy your resources by using code stored
in your Git repositories.

With GitOps, your infrastructure definition code, defined as JSON or YAML and stored in a .git
folder in a project, lives in a Git repository that serves as a single source of truth. Using Git’s
features makes it possible to see the complete change history for the organization’s infrastruc-
ture code, and teams can roll back to an earlier version if necessary.

Git also makes it possible to do code reviews on your infrastructure. Code review is a key DevOps
practice used to ensure that bad application code doesn’t make it into production. This is just
as important for infrastructure code. Bad infrastructure code can accidentally spin up expensive
cloud infrastructure and cost the company thousands of dollars per hour. Likewise, a bad script
could take down your application, resulting in downtime for your services. Code reviews prevent
these mistakes by ensuring multiple people see every change before it’s approved.

How GitOps works

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/blog/2020/04/20/ultimate-git-guide/
https://about.gitlab.com/blog/2020/04/20/ultimate-git-guide/

Start your GitLab free trial

8

The biggest benefit to using Git and IaC is that
you can now use continuous integration and
deployment. With tools like GitLab CI/CD, you
can automatically deploy (updated) infrastruc-
ture code and automatically apply it to your
cloud environment. Resources that have been
added to the infrastructure code are provi-
sioned automatically and made ready for use.
Resources that were changed are updated in
your cloud environment and resources that
are removed from the infrastructure code are
automatically spun down and deleted. This
allows you to write code, commit it to your
Git repository, and take full advantage of all
the benefits of the DevOps process, but for
your infrastructure.

GitOps = IaC + MRs + CI/CD

IaC – GitOps uses a Git repository as the single source of truth for infrastructure
definitions. A Git repository is a .git folder in a project that tracks all changes
made to files in a project over time. Infrastructure as code (IaC) is the practice
of keeping all infrastructure configuration stored as code. The actual desired
state may or may not be not stored as code (e.g., number of replicas, pods).

MRs – GitOps uses merge requests (MRs) as the change mechanism for all
infrastructure updates. The MR is where teams can collaborate via reviews and
comments and where formal approvals take place. A merge commits to your
master (or trunk) branch and serves as a changelog for auditing
and troubleshooting.

CI/CD – GitOps automates infrastructure updates using a Git workflow with
continuous integration and continuous delivery (CI/CD). When new code
is merged, the CI/CD pipeline enacts the change in the environment. Any
configuration drift, such as manual changes or errors, is overwritten by GitOps
automation so the environment converges on the desired state defined in Git.
GitLab uses CI/CD pipelines to manage and implement GitOps automation, but
other forms of automation such as definitions operators can be used as well.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://docs.gitlab.com/ee/user/project/merge_requests/getting_started.html

Start your GitLab free trial

9

A GitOps framework makes infrastructure automation possible, and
while automation has value in itself, it’s not the only advantage to
GitOps. Organizations that adopt GitOps enjoy other benefits that
can make a long term impact.

The benefits of GitOps

Collaboration on infrastructure changes. Since every
change will go through the same change/merge request/
review/approval process, senior engineers can focus on
other areas beyond the critical infrastructure management.

Improved access control. There's no need to give creden-
tials to all infrastructure components since changes are
automated (only CI/CD needs access).

Less risk. All changes to infrastructure are tracked through
merge requests, and changes can be rolled back to a
previous state.

Faster time to market. Execution via code is faster than
manual point and click. Test cases are automated and repe-
atable, so stable environments can be delivered rapidly.

Simplified auditing. When infrastructure changes are con-
ducted manually across a set of multiple interfaces it can
make auditing complex and time consuming. Data needs
to be pulled from multiple places and normalized in order
to conduct the audit. Using GitOps, all changes to environ-
ments are stored in the git log making audits simple.

Reduced costs and downtime. Automation of infra-
structure definition and testing eliminates manual tasks,
improves productivity, and reduces downtime due to
built-in revert/rollback capability. Automation also allows
for infrastructure teams to better manage cloud resources,
which can also improve cloud costs.

Less error prone. Infrastructure definition is codified and
repeatable, making it less prone to human error. With code
reviews and collaboration in merge requests, errors can
be identified and corrected before they ever make it to
production.

Collaboration with compliance. In heavily regulated
contexts policy often dictates that the number of people
who can enact changes to a product environment remains
as small as possible. With GitOps almost anyone can pro-
pose a change via merge request opening the scope of
collaboration broadly while keeping the ability to strictly
limit the number of people with the ability to merge to
the production branch to maintain compliance.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

Start your GitLab free trial

10

What makes GitOps unique is that it’s not a single product, plugin, or platform. GitOps is a frame-
work that helps teams manage IT infrastructure through processes they already use in applica-
tion development. Popular tools are Ansible, Terraform, and Kubernetes, but the GitOps process
is largely technology agnostic (save for Git, of course).

GitOps is suited for a variety of scenarios. GitOps and Kubernetes is a particularly good fit, for
example. Kubernetes works on all major cloud platforms and uses stateless and immutable

Common GitOps tools

containers. Since containerized apps running
in Kubernetes are self-contained, you don’t
need to provision and configure servers for
each app. Provision Kubernetes clusters and
other needed infrastructure, like databases
and networking, using Terraform.

Deploying stateful applications requires some
additional consideration for persisting data to
external services, like an Amazon Aurora data-
base instance or a Redis cache. While Kuber-
netes lends itself well to a GitOps framework,
it’s not a requirement for doing GitOps. You
can use it with traditional cloud infrastructure
like VMs, too. In this case, you’d provision with
Terraform and then use a CM tool like Ansible
to configure new VMs.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/solutions/kubernetes/

Start your GitLab free trial

11

For teams that are used to making small, manual changes to infrastructure, adopting a process
like GitOps can be a big adjustment. GitOps is a framework that requires infrastructure teams
to adopt new habits, and lose old habits. This can take some time and may not come naturally
to every team. Having best practices that are referenced frequently will be helpful in committing
to the long term strategy of GitOps.

Best practices for getting started with GitOps

Define all infrastructure as config files
Firstly, make sure all the infrastructure you want to manage via GitOps
is described in IaC config files. Ideally, these files should be written in
declarative code. This means you describe the end state of what you
want rather than instructions of how to get there.

For example, use a JSON file with properties describing how you want
to set up your services, rather than a JavaScript file where you instruct
a provider to create services for you. While many cloud provider and
CM tools allow for declarative syntax, it’s best to choose tools that
are designed to be used declaratively.

For the best results, describe all of your infrastructure. You may be
tempted to leave out that one service that only uses default settings
and takes only a minute to set up. The fact is, that manual action is
easy to forget when you’re spinning up a new environment. Others
will likely not even know they have to deploy this one service manually.
Omissions like this are a form of technical debt that can build over
time and sabotage your GitOps strategy.

If you’re already using IaC and you want to automate it with GitOps,
start by adding your infrastructure code to the Git repository you plan
to use for GitOps.

If you’re not using IaC, defining your existing infrastructure using config
code will take some work. AWS makes it easy to create CloudFormation
config files from existing resources. Terraform can import existing
infrastructure from various providers, but it doesn’t do 100% of the
work for you.

The goal, of course, is to have all infrastructure described as code, but
that is a journey that takes time. Don't get overwhelmed with trying to
automate all your infrastructure at once. Eat the elephant one bite at
a time. If you work iteratively, more of your infrastructure will move to
GitOps workflows over time.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/blog/2019/04/29/avoiding-foreclosure-on-your-technical-debt/
https://aws.amazon.com/blogs/aws/new-import-existing-resources-into-a-cloudformation-stack/
https://aws.amazon.com/blogs/aws/new-import-existing-resources-into-a-cloudformation-stack/

Start your GitLab free trial

12

Document what you can’t automate
It’s not always possible to automate everything. For example, Azure has
some (usually newer) settings that are not yet added to ARM templates.
A common workaround is to use PowerShell.

Another example is when working with third-party providers. Imagine
working with a supplier who needs to manually approve-list your IP
addresses. An approve-list request can only be supplied by a manager.
The manual action for every new service and environment is to look up
the IP address, pass it on to your manager, and have them email it to
the supplier. Make sure such processes are very well-documented.

In all likelihood, you'll always have some legacy environments that
need manual attention. Document these instances so that they’re
accounted for.

Outline a code review and merge request process
It’s important to familiarize GitOps teams with Git and code reviews.
Some teams already use a Git repository as a place to store config code,
but don’t use features like merge requests. As a starting point, take a
look at the code review guidelines for the GitLab open source project.
This project can give you a sense for the types of information you'll
want to eventually add to your code review guidelines.

Before approving a merge request, set a minimum number of revie-
wers so all code is reviewed by at least a few members of the team.

For teams new to GitOps, another option is to set up "optional
reviews" rather than set up "required blocking reviews". Since this
a new process, take some time to get used to doing code reviews and
develop a good cadence. Once teams are familiar with the toolset
and practices, implement mandatory reviews to ensure code reviews
happen every time.

As we've recommended elsewhere – start small and simple. If you
start out with a complex set of guidelines, no one will want to adopt
your process. Focus more on adoption than on doing what's best. Over
time, iterate on code review guidelines to make them more robust and
complete.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://docs.gitlab.com/ee/development/code_review.html
https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html
https://docs.gitlab.com/ee/user/project/merge_requests/merge_request_approvals.html

Start your GitLab free trial

13

Consider multiple environments
It’s good practice to have multiple environments. One example you
might follow is the DTAP environments: Development, Test, Accep-
tance, and Production. Code can be rolled out to the Development
or Test environment, after which you can test whether the services
are still available and working as expected. If they are, you can further
roll out your changes to the next environments.

After you have rolled out your code into your environments, it’s impor-
tant to keep your code in sync with your running services. Once you
know there’s a difference between your system and your configuration,
you can fix either one. A solution to this problem is to use immutable
images, such as containers, so that it’s less likely to have differences.

Tools like Chef, Puppet, and Ansible have features like "diff alert,"
which notifies you when your services differ from your configuration
code. Using tools such as Kubediff and Terradiff give you the same
features for Kubernetes and Terraform.

Make CI/CD the access point to resources
One practice that encourages a GitOps workflow, and reduces manual
changes to cloud infrastructure, is to make your CI/CD tooling the
access point for cloud resources.

Of course, having this access during initial development can really help
teams write their code and you may need incidental access for various
reasons. However, switching your mindset from "access unless"
to "access because" can help in adopting and following the GitOps
process.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

Start your GitLab free trial

14

Have a repository strategy
Think about how you want to set up your repositories. You may want
to use a single repository for all your infrastructure. It makes sense
to use a repository for your shared resources, but keep the code for
service-specific resources with those services. Another approach is to
keep resources for different projects in different repositories. This all
depends on the structure of your organization, your services, and your
personal preferences.

A few things to consider when deciding on a mono or multi-repo
strategy:

• Do you frequently have contractors or individuals working on
projects where it may not be secure for them to have access to
all code?

• Do you have multiple dependencies to consider?

• Do you want your repository to serve as a single source of truth?

Google, one of the largest tech companies in the world, uses a single
repo for all code. HashiCorp recommends that each repository conta-
ining Terraform code be a manageable chunk of infrastructure,
such as an application, service, or specific type of infrastructure (like
common networking infrastructure). The definition of "manageable"
can vary, of course.

Consider a Git branching strategy, like feature branching, so that
multiple people can work on the same repository simultaneously.

Keep changes small
Whatever you do, always be sure to keep your commits small.
This allows for a fine-grained changelog where it’s easier to rollback
separate changes. At GitLab, we refer to this process as iteration, and
it’s what allows us to make changes quickly. If we take smaller steps
and ship smaller, simpler features, we get feedback sooner.

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://research.google/pubs/pub45424/
https://research.google/pubs/pub45424/
https://www.terraform.io/docs/cloud/workspaces/configurations.html
https://docs.gitlab.com/ee/gitlab-basics/feature_branch_workflow.html
https://about.gitlab.com/handbook/values/#iteration

Start your GitLab free trial

Go to the GitOps-Demo Group

15

Set up your CI/CD to first validate infrastructure code, such as by using the Terraform validate
command or a linter for JSON files. Your infrastructure code should be handled as if it is produc-
tion code. You want your production code to be clean and consistent.

When someone commits invalid code, make sure the build or validation fails and the team
is immediately notified. This allows the team to quickly solve the issue by either applying a fix
or rolling back the commit. If you’re making small changes, that also makes it easier to find
problems.

If the code is valid, the CI/CD should run any commands necessary to provision the infrastructure
defined in the config code. For example, the Terraform apply command or AWS update-stack
for CloudFormation.

To see a sample GitOps project that uses Terraform, CI/CD, and Kubernetes, you can visit our
GitOps-Demo Group. From there, we’ve provided links to Terraform security recommendations,
Terraform code to represent each configuration for three major cloud providers, and instructions
for reproducing this demo within your own group.

CI/CD pipelines with GitOps and Terraform

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://gitlab.com/gitops-demo/readme

Start your GitLab free trial

16

GitOps isn’t magic: It just takes IaC ops tools you already know and wraps them in a
DevOps-style workflow. This allows for better revision tracking, fewer costly errors, and
quick, automated infrastructure deployments that can be repeated for a multi-environment
or even multicloud setup.

By adopting GitOps, organizations improve the developer experience because often-dreaded
releases become fully automated, allowing developers to focus on just their code. Teams elimi-
nate or minimize manual steps and make deployments repeatable and reliable.

Infrastructure maintenance often becomes a problem that takes up a lot of time. By fully
automating this process, infrastructure can be elastic and keep up with frequent application
deployments.

GitOps also improves security and standardization. By practicing GitOps, developers have no
need to manually access cloud resources and additional security checks can be put in place at
the code level in CI/CD pipelines.

GitLab can help you get started with a GitOps workflow. From GitLab, you can manage physical,
virtual, and cloud native infrastructures (including Kubernetes and serverless technologies).
GitLab also has tight integrations with industry-leading infrastructure automation tools like
Terraform, AWS Cloud Formation, Ansible, Chef, Puppet, and others. In addition to a Git repo-
sitory, GitLab offers CI/CD, merge requests, and single sign-on simplicity so that everyone can
collaborate and deploy from one platform to any cloud provider.

The future of infrastructure automation

If you’d like to see how we can help you
get started with GitOps, sign up to try
GitLab free for 30 days.

Start your GitLab free trial

https://www.linkedin.com/company/gitlab-com/
https://twitter.com/gitlab
https://www.facebook.com/gitlab/
https://www.youtube.com/channel/UCnMGQ8QHMAnVIsI3xJrihhg
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/blog/2019/11/18/gitops-prt-3/
https://about.gitlab.com/blog/2019/11/18/gitops-prt-3/
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops
https://www.google.com/url?q=https://about.gitlab.com/free-trial/?utm_medium%3Dpdf%26utm_source%3Debook%26utm_campaign%3Diacgitops%26utm_content%3Da&sa=D&ust=1595875304244000&usg=AFQjCNGrN8N3bMmW3vW5EwnT1vBEP2uD-Q

GitLab is a DevOps platform built from the ground up as a single application for
all stages of the DevOps lifecycle enabling Product, Development, QA, Security,
and Operations teams to work concurrently on the same project.

GitLab provides teams a single data store, one user interface, and one
permission model across the DevOps lifecycle allowing teams to collaborate
and work on a project from a single conversation, significantly reducing cycle
time and focus exclusively on building great software quickly.

Built on Open Source, GitLab leverages the community contributions of
thousands of developers and millions of users to continuously deliver new
DevOps innovations. More than 100,000 organizations from startups to global
enterprise organizations, including Ticketmaster, Jaguar Land Rover, NASDAQ,
Dish Network and Comcast trust GitLab to deliver great software at new speeds.
GitLab is the world's largest all-remote company, with more than 1,200 team
members in over 65 countries.

About GitLab

17

https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

https://about.gitlab.com/free-trial/?utm_medium=pdf&utm_source=ebook&utm_campaign=iacgitops&utm_content=beginnerguidegitops

