
Audit of Timelock Encryption

Protocol Labs

28 March 2023

Version: 1.1

Presented by:

Kudelski Security Research Team

Kudelski Security - Nagravision Sàrl

Corporate Headquarters

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Public

Protocol Labs | Audit of Timelock Encryption

28 March 2023

TABLE OF CONTENTS

1 EXECUTIVE SUMMARY 4

1.1 Engagement Scope . 4

1.2 Engagement Analysis . 5

1.3 Issue Summary List . 6

2 TECHNICAL DETAILS OF SECURITY FINDINGS 8

2.1 KS-SBCF-F-01: tlock: Ciphertexts can be decrypted before the chosen date

when using time sub-units . 8

2.2 KS-SBCF-F-02: tlock: Encryption in the future wrap to round 1 11

2.3 KS-SBCF-F-03: tlock-js: Stream cipher encryption nonce reuse 12

2.4 KS-SBCF-F-04: timevault: Missing web site security header 13

2.5 KS-SBCF-F-05: kyber: Design flaws in hash to field function 14

2.6 KS-SBCF-F-06: tlock-js: Design flaws in hash to field function 16

2.7 KS-SBCF-F-07: tlock: Timelock encryption decrypt to files with permissive

permission . 17

2.8 KS-SBCF-F-08: tlock: No point sanitization in TimeLock and TimeUnlock

functions . 18

2.9 KS-SBCF-F-09: tlock: tlock dependency tree contains 3 dependencies with

vulnerabilities . 20

3 OTHER OBSERVATIONS 22

3.1 KS-SBCF-O-01: Missing security policy 22

3.2 KS-SBCF-O-02: tlock: envconfig.Process output is not processed 22

3.3 KS-SBCF-O-03: tlock: Multiple defer calls with Close() 23

3.4 KS-SBCF-O-04: Error in drand documentation 23

3.5 KS-SBCF-O-05: tlock: Unused return value 24

3.6 KS-SBCF-O-06: tlock: Incompatible flags not detected 24

3.7 KS-SBCF-O-07: tlock-js: Special number values NaN and Infinity are not

checked . 25

3.8 KS-SBCF-O-08: tlock-js: Missing check for malformed recipients 25

3.9 KS-SBCF-O-09: tlock-js: Missing check for trailing space after armor footer 27

3.10 KS-SBCF-O-10: tlock-js: Missing check for ciphertext length in Decrypt . . 29

4 OBSERVATIONS ON DEPENDENCIES 30

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 2 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

4.1 KS-SBCF-O-DEP-01: noble-bls12-381: Modular exponentiation is not

constant-time . 30

4.2 KS-SBCF-O-DEP-02: noble-bls12-381: Field exponentiation is not constant-

time . 31

4.3 KS-SBCF-O-DEP-03: noble-bls12-381: Speed-up in point arithmetic 31

4.4 KS-SBCF-O-DEP-04: noble-bls12-381: Speed-up in scalar multiplication . . 32

4.5 KS-SBCF-O-DEP-05: noble-bls12-381: hash-to-curve reference implemen-

tation is not updated to last version (16) 33

4.6 KS-SBCF-O-DEP-06: kyber-bls12381: Speed-up on subgroup membership 34

4.7 KS-SBCF-O-DEP-07: kilic/bls12-381: Arithmetic methods for groups never

check that the input parameters are on the curve and in the right subgroup 34

4.8 KS-SBCF-O-DEP-08: kilic/bls12-381: The field elements and scalar field

elements comparison are not constant-time 34

4.9 KS-SBCF-O-DEP-09: kilic/bls12-381: Exponentiation functions and inver-

sion are not constant-time . 35

5 APPENDIX A: ABOUT KUDELSKI SECURITY 39

6 APPENDIX B: METHODOLOGY 40

6.1 Kickoff . 40

6.2 Ramp-up . 40

6.3 Review . 41

6.4 Reporting . 42

6.5 Verify . 43

6.6 Additional Note . 43

7 APPENDIX C: SEVERITY RATING DEFINITIONS 44

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 3 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

1 EXECUTIVE SUMMARY

Kudelski Security (“Kudelski”, “we”), the cybersecurity division of the Kudelski Group, was

engaged by Protocol Labs (“the Client”) to conduct an external security assessment in

the form of a code audit of the cryptographic library Timelock Encryption (“the Product”).

The assessment was conducted remotely by the Kudelski Security Team and coordinated

by Sylvain Pelissier, Cryptography Expert, Antonio De La Piedra, Senior Cybersecurity

Engineer and Nathan Hamiel, Senior Director of Research. The audit took place from

November 12, 2022 to November 30, 2022 and involved 15 person-days of work. The

audit focused on the following objectives:

• To provide a professional opinion on the maturity, adequacy, and efficiency of

the software solution in exam.

• To check compliance with existing standards.

• To identify potential security or interoperability issues and include improvement

recommendations based on the result of our analysis.

This report summarizes the analysis performed and findings. It also contains detailed

descriptions of the discovered vulnerabilities and recommendations for remediation.

1.1 Engagement Scope

The scope of the audit was a code audit of the Product written in Go and Typescript,

with a particular attention to safe implementation of hashing, randomness generation,

protocol verification, and potential for misuse and leakage of secrets. The target of the

audit was the cryptographic code located in the following repositories:

• https://github.com/drand/tlock/: Implementation in Go of the CLI tool to per-

form timelock encryption. The audit was on the code up to commit number:

80219e458290ff663dd4adc4976019495f09aa56.

• https://github.com/drand/tlock-js/: Implementation in TypeScript of timelock en-

cryption and age encryption. The audit was on the code up to commit number:

80ad76434ae9959d5feba7e3b5913296f5aca8df.

• https://github.com/drand/timevault/: Time vault for encryption of vul-

nerability reports. The audit was on the code up to commit number:

1ed1c5db1f74b34b683d23cc0a12979178e9aeed.

The project included the audit of some parts of the dependencies utilized by Timelock

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 4 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Encryption:

• stablelib/chacha20poly1305 commita89a438fcbf855de6b2e9faa2630f03c3f3b3a54

• stablelib/chacha commit a89a438fcbf855de6b2e9faa2630f03c3f3b3a54

• noble/bls12-381 commit 61d36e0f134fc1f8b20db939f14584b3edcadb3a

• kilic/bls12-381 commit ca162e8a70f456f4cf733097edfd60d0e9deca2c

• github.com/FiloSottile/age commitbf8d2a3911c4305f83118ce7a71c9350949c9939

– age.go

– internal/stream/stream.go

– parse.go

– primitives.go

• github.com/drand/kyber commitdd9751718b1e7d963fdac4d647efc37523a0101c

1.2 Engagement Analysis

The engagement consisted of a ramp-up phase where the necessary documentation

about the technological standards and design of the solution in exam was acquired,

followed by a manual inspection of the code provided by the Client and the drafting of

this project.

As a result of our work, we have identified 1 High, 5 Medium, 3 Low and 19 Informa-

tional findings.

High Medium Low Informational
Severity

N
um

be
r o

f i
ss

ue
s

1

5

3

19
Issue severity distribution

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 5 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

1.3 Issue Summary List

The following security issues were found:

ID Severity Finding Status

KS-SBCF-F-01 High tlock: Ciphertexts can be decrypted before

the chosen date when using time sub-units

Remediated

KS-SBCF-F-02 Medium tlock: Encryption in the future wrap to

round 1

Remediated

KS-SBCF-F-03 Medium tlock-js: Stream cipher encryption nonce

reuse

Remediated

KS-SBCF-F-04 Medium timevault: Missing web site security header Remediated

KS-SBCF-F-05 Medium kyber: Design flaws in hash to field

function

Remediated

KS-SBCF-F-06 Medium tlock-js: Design flaws in hash to field

function

Remediated

KS-SBCF-F-07 Low tlock: Timelock encryption decrypt to files

with permissive permission

Remediated

KS-SBCF-F-08 Low tlock: No point sanitization in TimeLock

and TimeUnlock functions

Remediated

KS-SBCF-F-09 Low tlock: tlock dependency tree contains 3

dependencies with vulnerabilities

Remediated

The following are observations related to general design and improvements:

ID Severity Finding

KS-SBCF-O-01 Informational Missing security policy

KS-SBCF-O-02 Informational tlock: envconfig.Process output is not processed

KS-SBCF-O-03 Informational tlock: Multiple defer calls with Close()

KS-SBCF-O-04 Informational Error in drand documentation

KS-SBCF-O-05 Informational tlock: Unused return value

KS-SBCF-O-06 Informational tlock: Incompatible flags not detected

KS-SBCF-O-07 Informational tlock-js: Special number values NaN and Infinity

are not checked

KS-SBCF-O-08 Informational tlock-js: Missing check for malformed recipients

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 6 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

ID Severity Finding

KS-SBCF-O-09 Informational tlock-js: Missing check for trailing space after

armor footer

KS-SBCF-O-10 Informational tlock-js: Missing check for ciphertext length in

Decrypt

KS-SBCF-O-

DEP-01

Informational noble-bls12-381: Modular exponentiation is not

constant-time

KS-SBCF-O-

DEP-02

Informational noble-bls12-381: Field exponentiation is not

constant-time

KS-SBCF-O-

DEP-03

Informational noble-bls12-381: Speed-up in point arithmetic

KS-SBCF-O-

DEP-04

Informational noble-bls12-381: Speed-up in scalar multiplication

KS-SBCF-O-

DEP-05

Informational noble-bls12-381: hash-to-curve reference

implementation is not updated to last version (16)

KS-SBCF-O-

DEP-06

Informational kyber-bls12381: Speed-up on subgroup

membership

KS-SBCF-O-

DEP-07

Informational kilic/bls12-381: Arithmetic methods for groups

never check that the input parameters are on the

curve and in the right subgroup

KS-SBCF-O-

DEP-08

Informational kilic/bls12-381: The field elements and scalar field

elements comparison are not constant-time

KS-SBCF-O-

DEP-09

Informational kilic/bls12-381: Exponentiation functions and

inversion are not constant-time

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 7 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

2 TECHNICAL DETAILS OF SECURITY FINDINGS

This section contains the technical details of our findings as well as recommendations

for mitigation.

2.1 KS-SBCF-F-01: tlock: Ciphertexts can be decrypted before the

chosen date when using time sub-units

Severity: High

Status: Remediated

Location: cmd/tle/encrypt.go:57

Description

When using different combination of units for decryption time in the tle command line

tool, some units are ignored. This means that plaintexts can be accessed before the

user knows. The problem is that the parseDuration function in encrypt.go:57 ignores

certain sub-units without warning the user.

The tle command line tool allows the user to enter the interval of time that will make the

decryption of the ciphertext effective. This is done via tle, using the -D or --duration

flag, which supports (via --help):

DURATION has a default value of 120d. When it is specified, it

expects a number↪

followed by one of these units: "ns", "us" (or "µs"), "ms", "s",

"m", "h", "d", "M", "y").↪

The Client uses time.ParseDuration to process a small amount of the values above

via:

func parseDuration(t time.Time, duration string) (time.Duration,

error) {↪

d, err := time.ParseDuration(duration)

if err == nil {

return d, nil

}

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 8 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

For instance:

./tle -D 1s20ms2ns100us -n="http://pl-us.testnet.drand.sh/"

-c="7672797f548f3f4748ac4bf3352fc6c6b6468c9ad40ad456a397545c6 ⌋

e2df5bf" -o=ciphertext.txt

plaintext.txt

↪

↪

↪

However values like days, months and years are processed below, manually e.g. for

days and months:

now := time.Now()

pieces := strings.Split(duration, "d")

if len(pieces) == 2 {

days, err := strconv.Atoi(pieces[0])

if err != nil {

return time.Second, fmt.Errorf("parse day duration:

%w", err)↪

}

diff := now.AddDate(0, 0, days).Sub(now)

return diff, nil

}

pieces = strings.Split(duration, "M")

if len(pieces) == 2 {

months, err := strconv.Atoi(pieces[0])

if err != nil {

return time.Second, fmt.Errorf("parse month duration:

%w", err)↪

}

diff := now.AddDate(0, months, 0).Sub(now)

return diff, nil

}

This means, that if the user decides to add a complex combination of units involving

either days, months of years, and then, add sub-units, some of these units will be

ignored.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 9 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

For instance, the user decides to publish the decryption of a plaintext after one year

and 15 hours via:

./tle -D 1y15h -n="http://pl-us.testnet.drand.sh/" -c="7672797f54 ⌋

8f3f4748ac4bf3352fc6c6b6468c9ad40ad456a397545c6e2df5bf"

-o=ciphertext.txt plaintext.txt

↪

↪

If we print the return value diff, from:

diff := now.AddDate(years, 0, 0).Sub(now)

the output is 8760h0m0s. However, for a value of 1 year, the function returns the same

value, ignoring 15 hours:

tle -D 1y -n="http://pl-us.testnet.drand.sh/" -c="7672797f548f3f4 ⌋

748ac4bf3352fc6c6b6468c9ad40ad456a397545c6e2df5bf"

-o=ciphertext.txt plaintext.txt

↪

↪

with output 8760h0m0s. This problem can be seen via:

pieces = strings.Split(duration, "y")

if len(pieces) == 2 {

years, err := strconv.Atoi(pieces[0])

if err != nil {

return time.Second, fmt.Errorf("parse year duration:

%w", err)↪

}

diff := now.AddDate(years, 0, 0).Sub(now)

fmt.Println("amount added y: ", diff)

return diff, nil

}

in encrypt.go.

Further, mixing days with hours and minutes have the same problem. For instance, for

obtaining a plaintext after 1 day, 15 hours and 1 minute via:

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 10 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

$./tle -D 1d15h1m -n="http://pl-us.testnet.drand.sh/" -c="767279 ⌋

7f548f3f4748ac4bf3352fc6c6b6468c9ad40ad456a397545c6e2df5bf"

-o=ciphertext.txt plaintext.txt

↪

↪

The chosen time by tle is always 24 hours (diff value: 24h0m0s) instead of 1 day 15

hours and 1 minute.

Recommendation

Timelock users could need the decryption of certain sensitive information with pre-

cision. For this reason, we recommend the Client to correctly process sub-units via

parseDuration.

Status details

The client addressed this issue in the commit96b5251ca25e105d241e46bcca30837fc4dcf150.

By the time of the review, the client is working on the simplification of the duration

parsing logic in the pull request #68.

2.2 KS-SBCF-F-02: tlock: Encryption in the future wrap to round 1

Severity: Medium

Status: Remediated

Location:

Description

Giving a year too far in the future as an argument leads to encryption for round 1 and

thus is instantly accessible. The problem comes from Date in the Go language. The

Date function of time package has an integer overflow. The year number is used to

compute the number of days since epoch and then multiply be the number of seconds

in a day which leads to an erroneous negative result. Then the function RoundNumber

from tlock will return 1 for such negative results:

$./tle -D 1000000000000y -o encrypted_file data_to_encrypt

$ cat encrypted_file

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 11 of 44

https://github.com/drand/tlock/pull/68

Protocol Labs | Audit of Timelock Encryption

28 March 2023

age-encryption.org/v1

-> tlock 1

7672797f548f3f4748ac4bf3352fc6c6b6468c9ad40ad456a397545c6e2df5bf

hH/Rge2Um1qQVldiRByfg8MftReTkvr36gOlYDNj4jqdMJu3xuUdPsJ+ZDEnFRC8

+814SBSK+1frE6eoPzoATpClIy1jRwlsdStgFW7yHYU

--- ML9Z9pxb8gGuc3Cu8ng3wyZtFENsWA41TrfQhEY3vK0

This problem has been reported to the Go language team in issue #56909 https:

//github.com/golang/go/issues/56909.

Recommendation

The function Datemay be patched in the future with the following patch: https://go-

review.googlesource.com/c/go/+/453475. Meanwhile, tlock should check the year to be

in the range 0..292277024627.

Status details

Issue has been fixed by PR #36. The duration is now checked if it was overflowed and a

test has been added.

2.3 KS-SBCF-F-03: tlock-js: Stream cipher encryption nonce reuse

Severity: Medium

Status: Remediated

Location: tlock-js/src/age/stream-cipher.ts:89

Description

The nonce used in functions encryptChunk and decryptChunkwraps to zero after 232

encryptions of 64Kb of data which is 256TB. This comes from the function setUint32

which updates only 32 bits of the nonce in the function incrementCounter:

// Increments Big Endian Uint8Array-based counter.

// [0, 0, 0] => [0, 0, 1] ... => [0, 0, 255] => [0, 1, 0]

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 12 of 44

https://github.com/golang/go/issues/56909
https://github.com/golang/go/issues/56909
https://go-review.googlesource.com/c/go/+/453475
https://go-review.googlesource.com/c/go/+/453475

Protocol Labs | Audit of Timelock Encryption

28 March 2023

incrementCounter() {

this.counter += 1

this.nonceView.setUint32(7, this.counter, false)

}

After that the stream will start to repeat and the difference of the plaintexts may be

revealed.

Recommendation

Either forbid data size bigger than 256TB or increase counter size value. The specifi-

cations of age considers the first eleven bytes of the nonce as a counter (See https:

//github.com/C2SP/C2SP/blob/main/age.md#payload).

Status details

Issue has been fixed by PR #11. If the counter reaches the value 232 − 1 an error is

reported.

2.4 KS-SBCF-F-04: timevault: Missing web site security header

Severity: Medium

Status: Remediated

Location: timevault

Description

The website does not implement any security header (See https://securityheaders.com/

?q=https%3A%2F%2Ftimevault.drand.love%2F). Two of them are important:

• Strict Transport Security to enforce the use of HTTPS. This prevents man-in-the-

middle attack.

• Content Security Policy to protect your site from XSS attacks.

Other less important policies may be enabled:

• X-Frame-Options to prevent the site to be framed.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 13 of 44

https://github.com/C2SP/C2SP/blob/main/age.md#payload
https://github.com/C2SP/C2SP/blob/main/age.md#payload
https://github.com/drand/tlock-js/pull/11
https://securityheaders.com/?q=https%3A%2F%2Ftimevault.drand.love%2F
https://securityheaders.com/?q=https%3A%2F%2Ftimevault.drand.love%2F

Protocol Labs | Audit of Timelock Encryption

28 March 2023

• X-Content-Type-Options to stop a browser from trying to MIME-sniff the con-

tent type.

• Permissions-Policy to allow a site to control which features and APIs can be

used in the browser.

Recommendation

The first two header should be set on the server. For the last three, even though the

risk is limited for this website, it may be a good practice to set them.

Status details

All the headers have been enabled with PR #42.

2.5 KS-SBCF-F-05: kyber: Design flaws in hash to field function

Severity: Medium

Status: Remediated

Location: kyber/group/mod/int.go:437

Description

The function Hash is not properly designed and suffers several problems. The first is

that the length of the message to be hashed is not taken into account. Thus hashing a

string with a common prefix of the size of the modulus will result in the same digest.

The following test exhibits such behavior.

func TestScalarHashCollision(t *testing.T) {

msg1 := []byte("Take a walk on the wild sideTake")

msg2 := []byte("Take a walk on the wild sideTake a")

modulo := big.NewInt(0)

modulo.SetString("73eda753299d7d483339d80809a1d80553bda402fff ⌋

e5bfeffffffff00000001",

16)

↪

↪

i := new(Int).Init64(0, modulo)

hashed1, err := i.Hash(new(hh), bytes.NewReader(msg1))

require.NoError(t, err)

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 14 of 44

https://github.com/drand/timevault/pull/42

Protocol Labs | Audit of Timelock Encryption

28 March 2023

i = new(Int).Init64(0, modulo)

hashed2, err := i.Hash(new(hh), bytes.NewReader(msg2))

require.NoError(t, err)

require.Equal(t, hashed2, hashed1)

}

In addition, formessageswith the same length it is still possible to have second preimage

attacks and thus, collisions. The message will be hashed iteratively until the result size

fits the scalar size. Thus, two messages with one being the hash of the other and with

the first byte shifted by the proper number of bits will result in a collision. The following

test demonstrate the collision:

func TestScalarHashBLS(t *testing.T) {

msg1 := []byte("Take a walk on the wild side")

msg2 := []byte{0x74, 0x58, 0x8c, 0x0d, 0xb3, 0xa7, 0x8a,

0x81, 0xdc, 0xaf, 0xe5, 0xf8, 0x63, 0x77, 0x82, 0x77, 0x9a,

0xaa, 0x74, 0x9c, 0xdc, 0xac, 0x47, 0xc2, 0x60, 0xc1, 0xe8,

0x87, 0xaf, 0x99, 0x55, 0x31}

↪

↪

↪

modulo := big.NewInt(0)

modulo.SetString("73eda753299d7d483339d80809a1d80553bda402fff ⌋

e5bfeffffffff00000001",

16)

↪

↪

i := new(Int).Init64(0, modulo)

hashed1, err := i.Hash(new(hh), bytes.NewReader(msg1))

require.NoError(t, err)

i = new(Int).Init64(0, modulo)

hashed2, err := i.Hash(new(hh), bytes.NewReader(msg2))

require.NoError(t, err)

require.Equal(t, hashed2, hashed1)

}

This issue impacts tlock implementation which uses the h3 function from Kyber library.

However, h3 apply only the Hash function on a SHA256 hash thus this seems not

possible to practically exploit this issue.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 15 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Another issue, is that length of the modulus is not check to be the same as the length

of the hash digest. For example, using a modulus of 48 bytes will result of a scalar with

a length of 32 bytes which is not uniformly distributed among the range.

Recommendation

It seems a function similar tohash_to_field fromhttps://datatracker.ietf.org/doc/html/draft-

irtf-cfrg-hash-to-curve-06#section-5.2 should be more appropriate here.

Status details

The issue has be corrected wit PR#48 in Kyber library. An iterative hash function is still

implemented but the iteration number is prefix to each value hashed to avoid collision.

2.6 KS-SBCF-F-06: tlock-js: Design flaws in hash to field function

Severity: Medium

Status: Remediated

Location: tlock-js/src/crypto/ibe.ts

Description

Similarly than the previous issue, the implementation of the h3 function in ibe.ts

rejection sampling is used at the end, via the tofield function:

// we are hashing the data until we get a value smaller than the

curve order↪

export function toField(h3ret: Uint8Array) {

let data = h3ret

// assuming Big Endianness

let n: bigint = bytesToNumberBE(data)

do {

data = sha256(data)

// assuming Big Endianness

data[0] = data[0] >> BitsToMaskForBLS12381

n = bytesToNumberBE(data)

} while (n <= 0 || n > bls.CURVE.r)

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 16 of 44

https://github.com/drand/kyber/pull/48

Protocol Labs | Audit of Timelock Encryption

28 March 2023

return n

}

Recommendation

It seems a function similar tohash_to_field fromhttps://datatracker.ietf.org/doc/html/draft-

irtf-cfrg-hash-to-curve-16#section-5.2 should be more appropriate here.

Status details

The problem was corrected wit PR #26 similarly to the previous issue.

2.7 KS-SBCF-F-07: tlock: Timelock encryption decrypt to files with

permissive permission

Severity: Low

Status: Remediated

Location: src/tlock/cmd/tle/tle.go: 44 and 54

Description

According to OpenFile comments:

// OpenFile is the generalized open call; most users will use Open

// or Create instead. It opens the named file with specified flag

// (O_RDONLY etc.). If the file does not exist, and the O_CREATE

flag↪

// is passed, it is created with mode perm (before umask). If

successful,↪

// methods on the returned File can be used for I/O.

// If there is an error, it will be of type *PathError.

If a file does not exist, tle will create it with a public read permission. Thus, during

a decryption if the output file does not exist it is created with read permission for all

users of the system (644):

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 17 of 44

https://github.com/drand/tlock-js/pull/26

Protocol Labs | Audit of Timelock Encryption

28 March 2023

$./tle -d -o data encrypted_file

$ ls -al data

-rw-r--r-- 1 sylvain sylvain 20 Nov 8 10:03 data

It may be a problem if the decrypted data contains sensitive information.

Recommendation

Created file should have 0600 permission when written.

Status details

Issue has been fixed by PR #59.

2.8 KS-SBCF-F-08: tlock: No point sanitization in TimeLock and

TimeUnlock functions

Severity: Low

Status: Remediated

Location: src/tlock/tlock.go: 99

Description

It is possible to use the point-at-infinity to encrypt using the TimeLock function (see

tlock.go:99), even if those public keys have trivial secret keys. e.g. via:

cipherText, err := tlock.TimeLock(network.PublicKey().Null(),

futureRound, data)↪

If by any means the drand nodes involved in the network choose or generate a collec-

tive public key with a trivial associated private key, every ciphertext generated by the

TimeLock function can be easily decrypted.

This behavior is not consistent with tlock-js, which detects the point-at-infinity and

aborts any attempt of using a pairing with it.

For instance, via npm test:

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 18 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

1) timelock

encryption

should pass for a valid roundNumber:

Error: No pairings at point of Infinity

at Object.pairing

(node_modules/@noble/bls12-381/lib/index.js:559:15)↪

at Object.encrypt (src/crypto/ibe.ts:20:21)

Finally, there is no subgroup membership check on the incoming public keys. This type

of check is enforced by https://www.ietf.org/id/draft-irtf-cfrg-bls-signature-05.html.

Particularly, Section 5.2 of such document (Validating public keys) notes:

KeyValidate requires all public keys to represent valid,

non-identity points in the correct subgroup. A valid point and

subgroup membership are required to ensure that the pairing

operation is defined (Section 5.3).

↪

↪

↪

A non-identity point is required because the identity public key

has the property that the corresponding secret key is equal to

zero, which means that the identity point is the unique valid

signature for every message under this key. A malicious signer

could take advantage of this fact to equivocate about which

message he signed. While non-equivocation is not a required

property for a signature scheme, equivocation is infeasible

for BLS signatures under any nonzero secret key because it

would require finding colliding inputs to the hash_to_point

function, which is assumed to be collision resistant.

↪

↪

↪

↪

↪

↪

↪

↪

↪

Prohibiting SK == 0 eliminates the exceptional case, which may

help to prevent equivocation-related security issues in

protocols that use BLS signatures.

↪

↪

Recommendation

We recommend the Client to warn the user about possible weak keys used by the

network as well as to provide consistency between the different implementations of

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 19 of 44

https://www.ietf.org/id/draft-irtf-cfrg-bls-signature-05.html

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Timelock Encryption.

Status details

Basedon the last commit reviewed, 2e5177054b1fbdbafa09265b5985d9831e9dd225,

public keys that are the point-at-infinity are now detected via:

func TimeLock(publicKey kyber.Point, roundNumber uint64, data

[]byte) (*ibe.Ciphertext, error) {↪

if publicKey.Equal(publicKey.Null()) {

return nil, ErrInvalidPublicKey

}

The Client communicated to us that they are using the Killic FromCompressedmethod

in the signature parsing functionality (UnmarshalBinary). This is utilized in the

TimeUnlock function, which performs a subgroup membership check. Moreover, the

network layer also relies on the UnmarshalBinary function.

2.9 KS-SBCF-F-09: tlock: tlock dependency tree contains 3 depen-

dencies with vulnerabilities

Severity: Low

Status: Remediated

Location: General

Description

The tlock dependency tree contains dependencies with vulnerabilities:

• pkg:golang/github.com/aws/aws-sdk-go@v1.32.11:

– CVE-2020-8911: Use of a Broken or Risky Cryptographic Algorithm

– CVE-2020-8912: Use of a Broken or Risky Cryptographic

• pkg:golang/github.com/lucas-clemente/quic-go@v0.24.0:

– CVE-2022-30591: Uncontrolled Resource Consumption (‘Resource Exhaus-

tion’)

• pkg:golang/golang.org/x/text@v0.3.7:

– CVE-2022-32149: Missing Release of Resource after Effective

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 20 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Recommendation

We recommend the client to update those dependencies.

Status details

Basedon the last commit reviewed, 2e5177054b1fbdbafa09265b5985d9831e9dd225,

the tlock dependency tree only contains a problematic package (quic-go) which has

been categorized as disputed by the vendor. We recommend the client to follow the

current discussion and updates on this issue if it is not possible to update it soon:

** DISPUTED ** quic-go through 0.27.0 allows remote attackers to

cause a denial of service (CPU consumption) via a Slowloris

variant in which incomplete QUIC or HTTP/3 requests are sent.

This occurs because mtu_discoverer.go misparses the MTU

Discovery service and consequently overflows the probe timer.

NOTE: the vendor's position is that this behavior should not

be listed as a vulnerability on the CVE List.

↪

↪

↪

↪

↪

↪

See for instance https://nvd.nist.gov/vuln/detail/CVE-2022-30591.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 21 of 44

https://nvd.nist.gov/vuln/detail/CVE-2022-30591

Protocol Labs | Audit of Timelock Encryption

28 March 2023

3 OTHER OBSERVATIONS

This section contains additional observations that are not directly related to the security

of the code, and as such have no severity rating or remediation status summary. These

observations are either minor remarks regarding good practice or design choices or

related to implementation and performance. These items do not need to be remediated

for what concerns security, but where applicable we include recommendations.

3.1 KS-SBCF-O-01: Missing security policy

Location: tlock, tlock-js, timevault

Description

Currently there is no instructions for how to report a security vulnerability regarding

the repositories and the website nor security contacts.

Recommendation

Create a SECURITY.md file in the root directory with all the necessary infor-

mation. See for example: https://docs.github.com/en/code-security/getting-

started/adding-a-security-policy-to-your-repository. Timevault website may also

contain a security.txt with such information. Such file may be generated from

https://securitytxt.org/.

Status details

A file SECURITY.md was created in PR #64 for tlock and PR #45 for timevault.

3.2 KS-SBCF-O-02: tlock: envconfig.Process output is not processed

Location: tlock/cmd/tle/commands/commands.go:83

Description

According to the reference description of Process, the Process call returns an error.

However, this error is not validated at: cmd/tle/commands/commands.go:83:

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 22 of 44

https://github.com/drand/tlock/pull/64
https://github.com/drand/timevault/pull/45
https://pkg.go.dev/github.com/kelseyhightower/envconfig@v1.4.0?utm_source=gopls#Process

Protocol Labs | Audit of Timelock Encryption

28 March 2023

envconfig.Process("tle", &f)

Recommendation

We recommend the Client to check the result of the function.

Status details

The problem has been solved by PR #56.

3.3 KS-SBCF-O-03: tlock: Multiple defer calls with Close()

Location: tlock/cmd/tle/tle.go:48 and cmd/tle/tle.go:58

Description

In Golang, the Close() function can return an error value. The client defers to Close()

calls in the following parts of tlock:

cmd/tle/tle.go:48: defer f.Close()

cmd/tle/tle.go:58: defer f.Close()

Recommendation

We recommend the Client to check if there are errors after the Close() call. This is

especially important when writing files in Go. For more information, the Client can

check https://www.joeshaw.org/dont-defer-close-on-writable-files/

3.4 KS-SBCF-O-04: Error in drand documentation

Location: https://drand.love/docs/cryptography/#randomness-generation

Description

In the drand reference documentation, in the Beacon phase, Signature Verification

Section, the check should be 𝑒(𝐻(𝑚), 𝑆) == 𝑒(𝜎, 𝐺2) instead of 𝑒(𝐻(𝑚), 𝑆𝑖) ==
𝑒(𝜎𝑖, 𝐺2).

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 23 of 44

https://github.com/drand/tlock/pull/56
https://drand.love/docs/cryptography/#randomness-generation

Protocol Labs | Audit of Timelock Encryption

28 March 2023

This check describes the verification of a collective signature instead of a partial signa-

ture.

3.5 KS-SBCF-O-05: tlock: Unused return value

Location: cmd/tle/commands/commands.go: 84

Description

The value returned by the function parseCmdline is not used in the Parse function.

Recommendation

The function parseCmdlinemay not return a value.

Status details

Issue has been fixed by PR #56.

3.6 KS-SBCF-O-06: tlock: Incompatible flags not detected

Location: tlock/cmd/tle/commands/commands.go: 132 and 143

Description

Some combination of incompatible flags are not detected properly when the duration

is set to the default duration of 120 days. For example it is possible to specify a round

number and a duration:

$./tle -D 120d -r 10000000 data_to_encrypt

age-encryption.org/v1

-> tlock 10000000

7672797f548f3f4748ac4bf3352fc6c6b6468c9ad40ad456a397545c6e2df5bf↪

pNYa1k6gtspRASycP9k6rCbgRZw/IKp2Ld6z97yrrw3y1Igq/OKKjsDL2cwYf/lq

XL6pM1mbXIqt+yWlztgciIV2Hox6rNl7xrO0+9Kk5Aw

--- s0nn2yUgrrm4eIdoKsYxMGqzVc5/UfGhk+VqK+Gq5Qs

Or it is possible to specify decryption with a duration:

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 24 of 44

https://github.com/drand/tlock/pull/56

Protocol Labs | Audit of Timelock Encryption

28 March 2023

$./tle -d -D 120d -r 100 encrypted_file

too early to decrypt

Recommendation

These edge cases should be detected and rejected. Some failing tests could be integrated

in the test corpus to ensure non regression.

Status details

Issue has been fixed by PR #17 and tests have been added.

3.7 KS-SBCF-O-07: tlock-js: Special number values NaN and Infinity

are not checked

Location: tlock-js/src/drand/drand-client.ts: 132 and 143

Description

The values NaN and Infinity are not checked by the timeForRound and

roundForTime functions:

> tlock.timeForRound(1e305, info)

Infinity

> tlock.timeForRound(Infinity, info)

Infinity

> tlock.roundForTime(NaN, info)

NaN

Recommendation

Those special value may be checked and filtered.

3.8 KS-SBCF-O-08: tlock-js: Missing check for malformed recipients

Location: tlock-js/src/age//age-reader-writer.ts:109

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 25 of 44

https://github.com/drand/tlock-js/pull/17

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Description

In the official implementation of age (i.e. at https://github.com/FiloSottile/age/), the

functions described at format.go check if every recipient is well-formed based on the

string value and the allowed type of characters via isValidString:

} else if bytes.HasPrefix(line, recipientPrefix) {

if r != nil {

return nil, nil, errorf("malformed body line %q:

new stanza started without previous stanza

being closed\nNote: this might be a file

encrypted with an old beta version of rage.

Use rage to decrypt it.", line)

↪

↪

↪

↪

}

r = &Stanza{}

prefix, args := splitArgs(line)

if prefix != string(recipientPrefix) || len(args) < 1

{↪

return nil, nil, errorf("malformed recipient:

%q", line)↪

}

for _, a := range args {

if !isValidString(a) {

return nil, nil, errorf("malformed recipient:

%q", line)↪

}

}

In this case, isValidString checks:

func isValidString(s string) bool {

if len(s) == 0 {

return false

}

for _, c := range s {

if c < 33 || c > 126 {

return false

}

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 26 of 44

https://github.com/FiloSottile/age/

Protocol Labs | Audit of Timelock Encryption

28 March 2023

}

return true

}

However, this check is not performed in parseRecipients (age-reader-writer.ts):

const body = parseRecipientBody(lines)

if (!body) {

throw Error(`expected stanza ' to have a body, but it

didn't`)↪

}

recipients.push({type, args, body: Buffer.from(body,

"base64")})↪

}

if (recipients.length === 0) {

throw Error("Expected at least one stanza! (beginning

with -->)")↪

}

3.9 KS-SBCF-O-09: tlock-js: Missing check for trailing space after

armor footer

Location: tlock-js/src/age/armor.ts

Description

The function decodeArmor in armor.ts validates the length of each line of the payload

between the armor header and footer:

const lines = base64Payload.split("\n")

if (lines.some(line => line.length > chunkSize)) {

throw Error(`Armor to decode cannot have lines longer

than (configurable) in order to stop padding attacks`)↪

}

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 27 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

if (lines[lines.length - 1].length >= chunkSize) {

throw Error(`The last line of an armored payload must be

less than (configurable) to stop padding attacks`)↪

}

However, it doesn’t validate the existence of trailing data and and trailing white-space

after the footer. In the original implementation of age this check is implemented in

armor.go via the drainTrailing function:

const maxWhitespace = 1024

drainTrailing := func() error {

buf, err := io.ReadAll(io.LimitReader(r.r, maxWhitespace))

if err != nil {

return err

}

if len(bytes.TrimSpace(buf)) != 0 {

return errors.New("trailing data after armored file")

}

if len(buf) == maxWhitespace {

return errors.New("too much trailing whitespace")

}

return io.EOF

}

The user receives an error and the reader aborts, if there is trailing data after the footer

as well as if there is too much trailing white-space. This check is not implemented in

tlock-js, where white-spaces are always ignored, which is ensured by the following test

in test/armor.test.ts:57:

it("should ignore whitespace at the beginning and end

when decoding", () => {↪

const somePlaintext = "wow that's a lot of armor"

expect(decodeArmor(" \n " +

encodeArmor(somePlaintext) + "\t \n

")).to.equal(somePlaintext)

↪

↪

})

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 28 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

Status details

The problem has been solved by PR #17 in tlock-js.

3.10 KS-SBCF-O-10: tlock-js: Missing check for ciphertext length in

Decrypt

Location: tlock-js/src/crypto/ibe.ts:47

Description

The function decrypt, described in ibe.ts, doesn’t validate the length of the ciphertext

provided,more precisely, of the c.W component, which cannot be longer than the output

of the hash function utilized. This check is performed in the Decrypt implementation

of the kyber library, in ibe.go:

func Decrypt(s pairing.Suite, private kyber.Point, c *Ciphertext)

([]byte, error) {↪

if len(c.W) > s.Hash().Size() {

return nil, errors.New("ciphertext too long for the hash

function provided")↪

}

// 1. Compute sigma = V XOR H2(e(rP,private))

rGid := s.Pair(c.U, private)

hrGid, err := gtToHash(s, rGid, len(c.W), H2Tag())

if err != nil {

return nil, err

}

if len(hrGid) != len(c.V) {

However, this check is not performed in ibe.ts:

export async function decrypt(p: PointG2, c: Ciphertext):

Promise<Uint8Array> {↪

// 1. Compute sigma = V XOR H2(e(rP,private))

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 29 of 44

https://github.com/drand/tlock-js/pull/17

Protocol Labs | Audit of Timelock Encryption

28 March 2023

const gidt = bls.pairing(c.U, p)

const hgidt = gtToHash(gidt, c.W.length)

if (hgidt.length != c.V.length) {

throw new Error("XorSigma is of invalid length")

}

const sigma = xor(hgidt, c.V)

4 OBSERVATIONS ON DEPENDENCIES

4.1 KS-SBCF-O-DEP-01: noble-bls12-381: Modular exponentiation is

not constant-time

Location: https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts at line 90.

Description

The modular exponentiation function provided by noble-bls12-381 is not constant-time:

/**

* Efficiently exponentiate num to power and do modular division.

* @example

* powMod(2n, 6n, 11n) // 64n % 11n == 9n

*/

export function powMod(num: bigint, power: bigint, modulo: bigint)

{↪

if (modulo <= 0n || power < 0n) throw new Error('Expected

power/modulo > 0');↪

if (modulo === 1n) return 0n;

let res = 1n;

while (power > 0n) {

if (power & 1n) res = (res * num) % modulo;

num = (num * num) % modulo;

power >>= 1n;

}

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 30 of 44

https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts

Protocol Labs | Audit of Timelock Encryption

28 March 2023

return res;

}

4.2 KS-SBCF-O-DEP-02: noble-bls12-381: Field exponentiation is not

constant-time

Location: https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts at line 388.

Description

The field exponentiation function provided by noble-bls12-381 is not constant-time:

function powMod_FQP(fqp: any, fqpOne: any, n: bigint) {

const elm = fqp;

if (n === 0n) return fqpOne;

if (n === 1n) return elm;

let p = fqpOne;

let d = elm;

while (n > 0n) {

if (n & 1n) p = p.multiply(d);

n >>= 1n;

d = d.square();

}

return p;

}

4.3 KS-SBCF-O-DEP-03: noble-bls12-381: Speed-up in point arith-

metic

Location: General

Description

noble-bls12-381 uses projective coordinates and the following formulas for point arith-

metic:

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 31 of 44

https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts

Protocol Labs | Audit of Timelock Encryption

28 March 2023

• http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#doubling-dbl-1998-

cmo-2 for point doubling (6M + 5S).

• http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#addition-add-1998-

cmo-2 for point addition (12M + 2S)

However, it is possible to greatly reduce the number ofmultiplications for point doubling

(and only if the Client prefers performance vs. the utilization of complete formulas e.g. via

Renes et al., https://eprint.iacr.org/2015/1060) by relying on the following approach:

• https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-

2007-bl (1M + 8S)

• https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-

2007-bl (11M + 5S)

4.4 KS-SBCF-O-DEP-04: noble-bls12-381: Speed-up in scalar multi-

plication

Location: https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts from line

1039.

Description

noble-bls12-381 provides double and add and constant-time scalar multiplication in

math.ts (from 1039):

// Non-constant-time multiplication. Uses double-and-add

algorithm.↪

// It's faster, but should only be used when you don't care

about↪

// an exposed private key e.g. sig verification.

multiplyUnsafe(scalar: bigint): this {

let n = this.validateScalar(scalar);

let point = this.getZero();

let d: this = this;

while (n > 0n) {

if (n & 1n) point = point.add(d);

d = d.double();

n >>= 1n;

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 32 of 44

http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#doubling-dbl-1998-cmo-2
http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#doubling-dbl-1998-cmo-2
http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#addition-add-1998-cmo-2
http://hyperelliptic.org/EFD/g1p/auto-shortw-projective.html#addition-add-1998-cmo-2
https://eprint.iacr.org/2015/1060
https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl
https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#doubling-dbl-2007-bl
https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
https://hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl
https://github.com/paulmillr/noble-bls12-381/blob/main/math.ts

Protocol Labs | Audit of Timelock Encryption

28 March 2023

}

return point;

}

// Constant-time multiplication

multiply(scalar: bigint): this {

let n = this.validateScalar(scalar);

let point = this.getZero();

let fake = this.getZero();

let d: this = this;

let bits = Fp.ORDER;

while (bits > 0n) {

if (n & 1n) {

point = point.add(d);

} else {

fake = fake.add(d);

}

d = d.double();

n >>= 1n;

bits >>= 1n;

}

return point;

}

The performance of the scalar multiplication operation could be improved by relying

on the GLV endomorphism (https://www.iacr.org/archive/crypto2001/21390189.pdf).

4.5 KS-SBCF-O-DEP-05: noble-bls12-381: hash-to-curve reference

implementation is not updated to last version (16)

Location: General

Description

noble-bls12-381 relies on the hash-to-curve draft version 11. However, the last version

at the time of writing this document is Version 16. See https://datatracker.ietf.org/doc

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 33 of 44

https://www.iacr.org/archive/crypto2001/21390189.pdf
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/

Protocol Labs | Audit of Timelock Encryption

28 March 2023

/draft-irtf-cfrg-hash-to-curve/.

4.6 KS-SBCF-O-DEP-06: kyber-bls12381: Speed-up on subgroup

membership

Location: kyber_g2.go:149 and g2.go:758 (kilic/bls12-381)

Description

The drand kyber library utilizes the strategy proposed by Bowe https://eprint.iacr.

org/2019/814.pdf to check the membership of points to the right subgroup in 𝔾2.

There is a faster technique proposed by Scott in 2021 that the client could consider at

https://eprint.iacr.org/2021/1130.pdf, Section 4.

4.7 KS-SBCF-O-DEP-07: kilic/bls12-381: Arithmetic methods for

groups never check that the input parameters are on the curve

and in the right subgroup

Location: g1.go and g2.go

Description

The library only sanitize external points (PointG1, PointG2 types) in theFromCompressed

and FromUncompressed functions via the InCorrectSubgroup and IsOnCurve

methods.

4.8 KS-SBCF-O-DEP-08: kilic/bls12-381: The field elements and

scalar field elements comparison are not constant-time

Location: field_element.go and fr.go.

Description

The comparison of field elements is not constant-time:

func (fe *fe) cmp(fe2 *fe) int {

for i := fpNumberOfLimbs - 1; i >= 0; i-- {

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 34 of 44

https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://datatracker.ietf.org/doc/draft-irtf-cfrg-hash-to-curve/
https://eprint.iacr.org/2019/814.pdf
https://eprint.iacr.org/2019/814.pdf
https://eprint.iacr.org/2021/1130.pdf

Protocol Labs | Audit of Timelock Encryption

28 March 2023

if fe[i] > fe2[i] {

return 1

} else if fe[i] < fe2[i] {

return -1

}

}

return 0

}

as well as the comparison of elements in 𝔽𝑟:

func (e *Fr) Cmp(e1 *Fr) int {

for i := frNumberOfLimbs - 1; i >= 0; i-- {

if e[i] > e1[i] {

return 1

} else if e[i] < e1[i] {

return -1

}

}

return 0

4.9 KS-SBCF-O-DEP-09: kilic/bls12-381: Exponentiation functions

and inversion are not constant-time

Location: fp.go and fp2.go.

Description

For 𝔽𝑝 elements, the exponentiation is performed via the square-and-multiply algo-

rithm:

func exp(c, a *fe, e *big.Int) {

z := new(fe).set(r1)

for i := e.BitLen(); i >= 0; i-- {

mul(z, z, z)

if e.Bit(i) == 1 {

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 35 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

mul(z, z, a)

}

}

c.set(z)

}

as well as in the case of 𝔽2
𝑝:

func (e *fp2) exp(c, a *fe2, s *big.Int) {

z := e.one()

for i := s.BitLen() - 1; i >= 0; i-- {

e.square(z, z)

if s.Bit(i) == 1 {

e.mul(z, z, a)

}

}

c.set(z)

}

Finally, the inversion function in 𝔽𝑝 is not constant-time:

func inverse(inv, e *fe) {

if e.isZero() {

inv.zero()

return

}

u := new(fe).set(&modulus)

v := new(fe).set(e)

s := &fe{1}

r := &fe{0}

var k int

var z uint64

var found = false

// Phase 1

for i := 0; i < sixWordBitSize*2; i++ {

if v.isZero() {

found = true

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 36 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

break

}

if u.isEven() {

u.div2(0)

s.mul2()

} else if v.isEven() {

v.div2(0)

z += r.mul2()

} else if u.cmp(v) == 1 {

lsubAssign(u, v)

u.div2(0)

laddAssign(r, s)

s.mul2()

} else {

lsubAssign(v, u)

v.div2(0)

laddAssign(s, r)

z += r.mul2()

}

k += 1

}

if !found {

inv.zero()

return

}

if k < fpBitSize || k > fpBitSize+sixWordBitSize {

inv.zero()

return

}

if r.cmp(&modulus) != -1 || z > 0 {

lsubAssign(r, &modulus)

}

u.set(&modulus)

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 37 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

lsubAssign(u, r)

// Phase 2

for i := k; i < 2*sixWordBitSize; i++ {

double(u, u)

}

inv.set(u)

}

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 38 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

5 APPENDIX A: ABOUT KUDELSKI SECURITY

Kudelski Security is an innovative, independent Swiss provider of tailored cyber and

media security solutions to enterprises and public sector institutions. Our team of

security experts delivers end-to-end consulting, technology, managed services, and

threat intelligence to help organizations build and run successful security programs. Our

global reach and cyber solutions focus is reinforced by key international partnerships.

Kudelski Security is a division of Kudelski Group. For more information, please visit

https://www.kudelskisecurity.com.

Kudelski Security

Route de Genève, 22-24

1033 Cheseaux-sur-Lausanne

Switzerland

Kudelski Security

5090 North 40th Street

Suite 450

Phoenix, Arizona 85018

This report and its content is copyright (c) Nagravision Sàrl, all rights reserved.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 39 of 44

https://www.kudelskisecurity.com

Protocol Labs | Audit of Timelock Encryption

28 March 2023

6 APPENDIX B: METHODOLOGY

For this engagement, Kudelski used a methodology that is described at high-level in

this section. This is broken up into the following phases.

Figure 1: Methodology flow

6.1 Kickoff

The project was kicked off when all of the sales activities had been concluded. We set

up a kickoff meeting where project stakeholders were gathered to discuss the project

as well as the responsibilities of participants. During this meeting we verified the scope

of the engagement and discussed the project activities. It was an opportunity for both

sides to ask questions and get to know each other. By the end of the kickoff there was

an understanding of the following:

• Designated points of contact

• Communication methods and frequency

• Shared documentation

• Code and/or any other artifacts necessary for project success

• Follow-up meeting schedule, such as a technical walkthrough

• Understanding of timeline and duration

6.2 Ramp-up

Ramp-up consisted of the activities necessary to gain proficiency on the particular

project. This included the steps needed for gaining familiarity with the codebase and

technological innovations utilized, such as:

• Reviewing previous work in the area including academic papers

• Reviewing programming language constructs for the languages used in the code

• Researching common flaws and recent technological advancements

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 40 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

6.3 Review

The review phase is where a majority of the work on the engagement was performed.

In this phase we analyzed the project for flaws and issues that could impact the security

posture. This included an analysis of the architecture, a review of the code, and a

specification matching to match the architecture to the implemented code.

In this code audit, we performed the following tasks:

1. Security analysis and architecture review of the original protocol

2. Review of the code written for the project

3. Assessment of the cryptographic primitives used

4. Compliance of the code with the provided technical documentation

The review for this project was performed using manual methods and utilizing the

experience of the reviewer. No dynamic testing was performed, only the use of custom-

built scripts and tools were used to assist the reviewer during the testing. We discuss

our methodology in more detail in the following subsections.

Code Safety

We analyzed the provided code, checking for issues related to the following categories:

• General code safety and susceptibility to known issues

• Poor coding practices and unsafe behavior

• Leakage of secrets or other sensitive data through memory mismanagement

• Susceptibility to misuse and system errors

• Error management and logging

This is a general and not comprehensive list, meant only to give an understanding of

the issues we have been looking for.

Cryptography

We analyzed the cryptographic primitives and components as well as their implementa-

tion. We checked in particular:

• Matching of the proper cryptographic primitives to the desired cryptographic

functionality needed

• Security level of cryptographic primitives and their respective parameters (key

lengths, etc.)

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 41 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

• Safety of the randomness generation in general as well as in the case of failure

• Safety of key management

• Assessment of proper security definitions and compliance to use cases

• Checking for known vulnerabilities in the primitives used

Technical Specification Matching

We analyzed the provided documentation and checked that the code matches the

specification. We checked for things such as:

• Proper implementation of the documented protocol phases

• Proper error handling

• Adherence to the protocol logical description

6.4 Reporting

Kudelski delivered to the Client a preliminary report in PDF format that contained an

executive summary, technical details, and observations about the project, which is also

the general structure of the current final report.

The executive summary contains an overview of the engagement, including the number

of findings as well as a statement about our general risk assessment of the project as a

whole.

In the report we not only point out security issues identified but also informational

findings for improvement categorized into several buckets:

• High

• Medium

• Low

• Informational

The technical details are aimed more at developers, describing the issues, the severity

ranking and recommendations for mitigation.

As we performed the audit, we also identified issues that are not security related, but

are general best practices and steps, that can be taken to lower the attack surface of

the project.

As an optional step, we can agree on the creation of a public report that can be shared

and distributed with a larger audience.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 42 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

6.5 Verify

After the preliminary findings have been delivered, we verified the fixes applied by the

Client. After these fixes were verified, we updated the status of the finding in the report.

The output of this phase was the current, final report with any mitigated findings noted.

6.6 Additional Note

It is important to notice that, although we did our best in our analysis, no code audit

assessment is per se guarantee of absence of vulnerabilities. Our effort was constrained

by resource and time limits, along with the scope of the agreement.

In assessing the severity of some of the findings we identified, we kept in mind both

the ease of exploitability and the potential damage caused by an exploit. Since this

is a library, we ranked some of these vulnerabilities potentially higher than usual, as

we expect the code to be reused across different applications with different input

sanitization and parameters.

Correct memory management is left to Go and was therefore not in scope. Zeroization

of secret values from memory is also not enforceable at a low level in a language such

as Go.

While assessment the severity of the findings, we considered the impact, ease of ex-

ploitability, and the probability of attack. This is a solid baseline for severity deter-

mination. Information about the severity ratings can be found in Appendix C of this

document.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 43 of 44

Protocol Labs | Audit of Timelock Encryption

28 March 2023

7 APPENDIX C: SEVERITY RATING DEFINITIONS

Kudelski Security uses a custom approach when determining criticality of identified

issues. This is meant to be simple and fast, providing customers with a quick at a

glance view of the risk an issue poses to the system. As with anything risk related, these

findings are situational. We consider multiple factors when assigning a severity level to

an identified vulnerability. A few of these include:

• Impact of exploitation

• Ease of exploitation

• Likelihood of attack

• Exposure of attack surface

• Number of instances of identified vulnerability

• Availability of tools and exploits

Severity Definition

High The identified issue may be directly exploitable causing an immediate

negative impact on the users, data, and availability of the system for

multiple users.

Medium The identified issue is not directly exploitable but combined with

other vulnerabilities may allow for exploitation of the system or

exploitation may affect singular users. These findings may also

increase in severity in the future as techniques evolve.

Low The identified issue is not directly exploitable but raises the attack

surface of the system. This may be through leaking information that

an attacker can use to increase the accuracy of their attacks.

Informational Informational findings are best practice steps that can be used to

harden the application and improve processes.

© 2023 Nagravision Sàrl / All rights reserved.

Public

Page 44 of 44

	EXECUTIVE SUMMARY
	Engagement Scope
	Engagement Analysis
	Issue Summary List

	TECHNICAL DETAILS OF SECURITY FINDINGS
	KS-SBCF-F-01: tlock: Ciphertexts can be decrypted before the chosen date when using time sub-units
	KS-SBCF-F-02: tlock: Encryption in the future wrap to round 1
	KS-SBCF-F-03: tlock-js: Stream cipher encryption nonce reuse
	KS-SBCF-F-04: timevault: Missing web site security header
	KS-SBCF-F-05: kyber: Design flaws in hash to field function
	KS-SBCF-F-06: tlock-js: Design flaws in hash to field function
	KS-SBCF-F-07: tlock: Timelock encryption decrypt to files with permissive permission
	KS-SBCF-F-08: tlock: No point sanitization in TimeLock and TimeUnlock functions
	KS-SBCF-F-09: tlock: tlock dependency tree contains 3 dependencies with vulnerabilities

	OTHER OBSERVATIONS
	KS-SBCF-O-01: Missing security policy
	KS-SBCF-O-02: tlock: envconfig.Process output is not processed
	KS-SBCF-O-03: tlock: Multiple defer calls with Close()
	KS-SBCF-O-04: Error in drand documentation
	KS-SBCF-O-05: tlock: Unused return value
	KS-SBCF-O-06: tlock: Incompatible flags not detected
	KS-SBCF-O-07: tlock-js: Special number values NaN and Infinity are not checked
	KS-SBCF-O-08: tlock-js: Missing check for malformed recipients
	KS-SBCF-O-09: tlock-js: Missing check for trailing space after armor footer
	KS-SBCF-O-10: tlock-js: Missing check for ciphertext length in Decrypt

	OBSERVATIONS ON DEPENDENCIES
	KS-SBCF-O-DEP-01: noble-bls12-381: Modular exponentiation is not constant-time
	KS-SBCF-O-DEP-02: noble-bls12-381: Field exponentiation is not constant-time
	KS-SBCF-O-DEP-03: noble-bls12-381: Speed-up in point arithmetic
	KS-SBCF-O-DEP-04: noble-bls12-381: Speed-up in scalar multiplication
	KS-SBCF-O-DEP-05: noble-bls12-381: hash-to-curve reference implementation is not updated to last version (16)
	KS-SBCF-O-DEP-06: kyber-bls12381: Speed-up on subgroup membership
	KS-SBCF-O-DEP-07: kilic/bls12-381: Arithmetic methods for groups never check that the input parameters are on the curve and in the right subgroup
	KS-SBCF-O-DEP-08: kilic/bls12-381: The field elements and scalar field elements comparison are not constant-time
	KS-SBCF-O-DEP-09: kilic/bls12-381: Exponentiation functions and inversion are not constant-time

	APPENDIX A: ABOUT KUDELSKI SECURITY
	APPENDIX B: METHODOLOGY
	Kickoff
	Ramp-up
	Review
	Reporting
	Verify
	Additional Note

	APPENDIX C: SEVERITY RATING DEFINITIONS

