

Security Audit Report

Stakefish BatchDeposit Contract

Delivered: November 13th, 2020

Prepared for Stakefish by

Table of Contents
Summary

Disclaimer

Minor Findings

Disable Inherited Function

Avoid Unnecessary Uses of Smaller Sized Integer Types

Avoid Unnecessary Uses of Division and Modulo Operation

Use Ether Units

Update Compiler Version

Front-Running

Business Logic Review

Bytecode-Level Test Coverage Analysis

Common Anti-Pattern Analysis

1

Summary
Runtime Verification, Inc. conducted a security audit on the BatchDeposit contract
written by the Stakefish team. Both the source code and the compiled bytecode were
carefully reviewed, and no critical issues but a few minor issues were found. All the
minor findings have been properly addressed in the latest version.

Scope

Below is the latest version of the contract that has been audited. It is important to
double-check that the deployed version is identical to the following: 1

● BatchDeposit.sol: source code of git-commit-id a4912b2
● BatchDeposit.bin (BatchDeposit.bin-runtime): bytecode compiled by the version

0.6.11 with the optimization enabled (--optimize-runs 5000000)

The audit is limited in scope within the boundary of the Solidity contract only. Off-chain
and client-side portions of the codebase are not in the scope of this engagement. See
our Disclaimer next.

Methodology

Although the manual code review cannot guarantee to find all possible security
vulnerabilities as mentioned in Disclaimer, we have followed the following approaches
to make our audit as thorough as possible. First, we rigorously reasoned about the
business logic of the contract, validating security-critical properties to ensure the
absence of loopholes in the business logic and/or inconsistency between the logic and
the implementation. Second, we carefully checked if the code is vulnerable to known
security issues and attack vectors. Third, we symbolically executed the bytecode of the
contract to systematically search for unexpected, possibly exploitable, behaviors at the
bytecode level, that are due to EVM quirks or Solidity compiler bugs. Finally, we
employed Firefly to measure the test coverage at the bytecode level, identifying missing
test scenarios, and helping to improve the quality of tests.

1 For the bytecode, the last few bytes (starting from 0xa264) refer to the metadata hash that can vary thus
be ignored.

2

https://runtimeverification.com/
https://github.com/stakefish/eth2-batch-deposit/tree/a4912b2d839305da8447b7cec6b2f09238b90e37
https://stake.fish/
https://github.com/stakefish/eth2-batch-deposit/blob/a4912b2d839305da8447b7cec6b2f09238b90e37/contracts/BatchDeposits.sol
https://gist.githubusercontent.com/daejunpark/498bbc82c13f381d20cca45e73fa8892/raw/3f8accbc5da8865e53075475f554d5a20fb9fd5a/BatchDeposit.bin
https://gist.githubusercontent.com/daejunpark/498bbc82c13f381d20cca45e73fa8892/raw/27fc345eee8466e6618a3d26709497839bd3f207/BatchDeposit.bin-runtime
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://fireflyblockchain.com/
https://solidity.readthedocs.io/en/v0.6.11/metadata.html#encoding-of-the-metadata-hash-in-the-bytecode

Disclaimer
This report does not constitute legal or investment advice. The preparers of this report
present it as an informational exercise documenting the due diligence involved in the
secure development of the target contract only, and make no material claims or
guarantees concerning the contract's operation post-deployment. The preparers of this
report assume no liability for any and all potential consequences of the deployment or
use of this contract.

Smart contracts are still a nascent software arena, and their deployment and public
offering carries substantial risk. This report makes no claims that its analysis is fully
comprehensive, and recommends always seeking multiple opinions and audits.

This report is also not comprehensive in scope, excluding a number of components
critical to the correct operation of this system.

The possibility of human error in the manual review process is very real, and we
recommend seeking multiple independent opinions on any claims which impact a large
quantity of funds.

3

Minor Findings
Below are minor findings which have been properly addressed in the latest version.

Disable Inherited Function

The contract inherited OpenZeppelin’s Ownable contract for access control, but
disabled the renounceOwnership() function by overriding it with a “do-nothing” function
(one with an empty body). It is a better practice for a deprecated function to revert
rather than return silently.

Recommendation

Add revert in the body of the overriding function.

Status

Fixed in the latest version.

Avoid Unnecessary Uses of Smaller Sized Integer Types

The contract used uint32 and uint8 types, which was not necessary, rather could be
problematic in case of overflow, and error-prone especially in potential code updates
later. Uniformly using only uint256 type is sufficient and cleaner for the current business
logic, as well as slightly more gas-efficient by avoiding the truncation operations
attached to arithmetics involving smaller typed values.

Recommendation

Refactor the code as suggested.

Status

Fixed in the latest version.

4

https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.0/contracts/access/Ownable.sol
https://github.com/stakefish/eth2-batch-deposit/commit/157cc6e2e595a9ce6aa0ac473e1e629a7136b047
https://github.com/stakefish/eth2-batch-deposit/commit/a4912b2d839305da8447b7cec6b2f09238b90e37

Avoid Unnecessary Uses of Division and Modulo Operation

The contract unnecessarily used div and mod operations, leading to poor code
readability. A refactoring suggestion was made to avoid unnecessary uses of div and
mod operations, as well as improve the code readability.

Recommendation

Refactor the code as suggested.

Status

Fixed in the latest version.

Use Ether Units

The contract introduced a constant GWEI to refer to 109, which could be avoided by
using the builtin Ether units.

Recommendation

Replace GWEI with “1 gwei.”

Status

Fixed in the latest version.

5

https://github.com/stakefish/eth2-batch-deposit/commit/157cc6e2e595a9ce6aa0ac473e1e629a7136b047
https://solidity.readthedocs.io/en/v0.6.11/units-and-global-variables.html#ether-units
https://github.com/stakefish/eth2-batch-deposit/commit/d5c1c0b222bcdd3bb65c61b07599ae6c2b8797e0

Update Compiler Version

While the Solidity compiler version used for the Deposit contract deployed in the
mainnet was 0.6.11, the BatchDeposit contract used 0.6.8. It was recommended to use
the same compiler version to avoid any potential issues due to the version mismatch,
unless there was a specific reason for sticking to the older version.

Recommendation

Use the Solidity compiler version 0.6.11, especially with the optimization enabled
(--optimize-runs 5000000), as in the Deposit contract.

Status

Fixed in the latest version.

Front-Running

It is possible to front-run batchDeposit() transactions while a changeFee() transaction is
pending.

Exploit Scenario

Suppose the contract owner submitted a changeFee() transaction to increase the fee.
Seeing the transaction on the network, malicious users can front-run their batchDeposit()
transactions (by submitting them with a higher gas price) to benefit from the current
smaller fee schedule.

Recommendation

The above scenario can be prevented by changing the fee only when the contract is
paused. That is, changing the fee will require executing pause(), followed by
changeFee(), followed by unpause() functions. This restriction can be either internally
incorporated into the contract operation policy, or externally implemented at the code
level by explicitly adding the whenPaused modifier to the changeFee() function.

6

https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://github.com/ethereum/eth2.0-specs/tree/v1.0.0/solidity_deposit_contract#compiling-solidity-deposit-contract
https://github.com/stakefish/eth2-batch-deposit/commit/16299eb6a100e112c968022386d9441b201e582b
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#transaction-ordering

Business Logic Review

The following nontrivial aspects in the business logic of the BatchDeposit contract were
identified.

While the Deposit contract allows us to deposit in installments (e.g., one can deposit 1
ETH as a trial, and then deposit the remaining 31 ETH later), the BatchDeposit contract
doesn't allow that to avoid increasing the complexity of the frontend.

Multiple deposits processed by each batchDeposit() call are restricted to share the same
withdrawal_credentials data.

Recommendation

Clarify these restrictions in the user document.

Bytecode-Level Test Coverage Analysis

The bytecode-level test coverage analysis powered by Firefly revealed missing test
scenarios. For example, certain functions including inherited ones were never tested,
and negative tests for certain require() assertions were missed.

Recommendation

Add more tests to cover missing cases.

Status

More tests were added. The latest coverage report is available here.

7

https://fireflyblockchain.com/
https://github.com/stakefish/eth2-batch-deposit/commit/ee71adb570e526d35d4b9c1cf16b200d04b5c429
https://sandbox.fireflyblockchain.com/app/report.html?reportId=5d94e1d9-05ed-460f-ad4b-991fb4a496c9

Common Anti-Pattern Analysis
We analyzed the safety of the contract against known security vulnerabilities. Below are
the rationale of the safety against the vulnerabilities that are applicable to the contract.

Arithmetic Overflow

The contract adopted the SafeMath library for arithmetic operations whenever the
absence of arithmetic overflow cannot be statically guaranteed at compile time.

Reentrancy

The contract involves two external contract calls. One is to call the deposit() function of
the Deposit contract, which is trusted. Another is to transfer funds to a statically
unknown address. For the latter, however, it utilizes the builtin transfer() function whose
gas budget is restricted to only 2,300, which is small enough to prevent any potential
reentrancy. 2

Access Control

All of the functions designed for the contract owner are associated with the onlyOwner
modifier. The visibility of all functions are explicitly specified.

Variable Shadowing

No variable names are clashed in the contract including the inherited ones.

Unexpected Ether

The contract logic does not depend on the current balance.

Dirty Higher Order Bits

The contract does not directly retrieve msg.data.

Unchecked External Calls

2 The 2,300 gas stipend may not be safe against later hard-forks where the call gas goes down, but it
would not be a major concern because the likelihood of such a hard-fork is small, considering many
contracts already depend on it.

8

https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#integer-arithmetic
https://github.com/OpenZeppelin/openzeppelin-contracts/blob/v3.2.0/contracts/math/SafeMath.sol
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#reentrancy
https://etherscan.io/address/0x00000000219ab540356cbb839cbe05303d7705fa#code
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#access-control
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#variable-shadowing
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#unexpected-ether
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#dirty-higher-order-bits
https://github.com/runtimeverification/verified-smart-contracts/wiki/List-of-Security-Vulnerabilities#unchecked-external-calls

No low-level call() or send() functions are used in the contract.

9

