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Abstract

This paper introduces a new family of leaderless Byzan-
tine fault tolerance protocols, built on a metastable mech-
anism. These protocols provide a strong probabilistic
safety guarantee in the presence of Byzantine adversaries,
while their concurrent nature enables them to achieve
high throughput and scalability. Unlike blockchains that
rely on proof-of-work, they are quiescent and green. Sur-
prisingly, unlike traditional consensus protocols which re-
quire O(n?) communication, their communication com-
plexity ranges from O(knlogn) to O(kn) for some se-
curity parameter k < n.

The paper describes the protocol family, instantiates it
in three separate protocols, analyzes their guarantees, and
describes how they can be used to construct the core of an
internet-scale electronic payment system. The system
is evaluated in a large scale deployment. Experiments
demonstrate that the system can achieve high throughput
(1300 tps), provide low confirmation latency (4 sec), and
scale well compared to existing systems that deliver sim-
ilar functionality. For our implementation and setup, the
bottleneck of the system is in transaction verification.

1 Introduction

Achieving agreement among a set of distributed hosts
lies at the core of countless applications, ranging from
Internet-scale services that serve billions of people [12,
30] to cryptocurrencies worth billions of dollars [1]. To
date, there have been two main families of solutions to this
problem. Traditional consensus protocols rely on all-to-
all communication to ensure that all correct nodes reach
the same decisions with absolute certainty. Because they
require quadratic communication overhead and accurate
knowledge of membership, they have been difficult to
scale to large numbers of participants.

On the other hand, Nakamoto consensus protocols [9,
24,25,34,40-43,49-51] have become popular with the
rise of Bitcoin. These protocols provide a probabilis-
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tic safety guarantee: Nakamoto consensus decisions may
revert with some probability e. A protocol parameter
allows this probability to be rendered arbitrarily small,
enabling high-value financial systems to be constructed
on this foundation. This family is a natural fit for open,
permissionless settings where any node can join the sys-
tem at any time. Yet, these protocols are quite costly,
wasteful, and limited in performance. By construction,
these protocols cannot quiesce: their security relies on
constant participation by miners, even when there are no
decisions to be made. Bitcoin currently consumes around
63.49 TWh/year [22], about twice as all of Denmark [15].
Moreover, these protocols suffer from an inherent scal-
ability bottleneck that is difficult to overcome through
simple reparameterization [18].

This paper introduces a new family of consensus proto-
cols. Inspired by gossip algorithms, this new family gains
its safety through a deliberately metastable mechanism.
Specifically, the system operates by repeatedly sampling
the network at random, and steering the correct nodes
towards the same outcome. Analysis shows that metasta-
bility is a powerful, albeit non-universal, technique: it
can move a large network to an irreversible state quickly,
though it is not always guaranteed to do so.

Similar to Nakamoto consensus, this new protocol fam-
ily provides a probabilistic safety guarantee, using a tun-
able security parameter that can render the possibility of
a consensus failure arbitrarily small. Unlike Nakamoto
consensus, the protocols are green, quiescent and effi-
cient; they do not rely on proof-of-work [23] and do
not consume energy when there are no decisions to be
made. The efficiency of the protocols stems from two
sources: they require communication overheads ranging
from O(knlogn) to O(kn) for some small security pa-
rameter k, and they establish only a partial order among
dependent transactions.

This combination of the best features of traditional and
Nakamoto consensus involves one significant tradeoft:
liveness for conflicting transactions. Specifically, the new
family guarantees liveness only for virfuous transactions,
i.e. those issued by correct clients and thus guaranteed
not to conflict with other transactions. In a cryptocur-



rency setting, cryptographic signatures enforce that only
a key owner is able to create a transaction that spends a
particular coin. Since correct clients follow the protocol
as prescribed, they are guaranteed both safety and live-
ness. In contrast, the protocols do not guarantee liveness
for rogue transactions, submitted by Byzantine clients,
which conflict with one another. Such decisions may
stall in the network, but have no safety impact on virtu-
ous transactions. We show that this is a sensible tradeoff,
and that resulting system is sufficient for building com-
plex payment systems.

Overall, this paper makes one significant contribu-
tion: a brand new family of consensus protocols suitable
for cryptocurrencies, based on randomized sampling and
metastable decision. The protocols provide a strong prob-
abilistic safety guarantee, and a guarantee of liveness for
correct clients.

The next section provides intuition behind the new pro-
tocols, Section 3 provides proofs for safety and liveness,
Section 4 describes a Bitcoin-like payment system, Sec-
tion 5 evaluates the system, Section 6 presents related
work, and finally, Section 7 summarizes our contribu-
tions.

2 Approach

We start with a non-Byzantine protocol, Slush, and pro-
gressively build up Snowflake, Snowball and Avalanche,
all based on the same common metastable mechanism.
Though we provide definitions for the protocols, we defer
their formal analysis and proofs of their properties to the
next section.

Overall, this protocol family achieves its properties by
humbly cheating in three different ways. First, taking in-
spiration from Bitcoin, we adopt a safety guarantee that
is probabilistic. This probabilistic guarantee is indistin-
guishable from traditional safety guarantees in practice,
since appropriately small choices of € can render consen-
sus failure practically infeasible, less frequent than CPU
miscomputations or hash collisions. Second, instead of a
single replicated state machine (RSM) model, where the
system determines a sequence of totally-ordered trans-
actions Tp,T1,T5, ... issued by any client, we adopt
a parallel consensus model with authenticated clients,
where each client interacts independently with its own
RSMs and optionally transfers ownership of its RSM
to another client. The system establishes only a par-
tial order between dependent transactions. Finally, we
provide no liveness guarantee for misbehaving clients,
but ensure that well-behaved clients will eventually be
serviced. These techniques, in conjunction, enable the
system to nevertheless implement a useful Bitcoin-like
cryptocurrency, with drastically better performance and
scalability.

2.1 Model, Goals, Threat Model

We assume a collection of nodes, A/, composed of cor-
rect nodes C and Byzantine nodes B, where n = |N]|.
We adopt what is commonly known as Bitcoin’s unspent
transaction output (UTXO) model. In this model, clients
are authenticated and issue cryptographically signed
transactions that fully consume an existing UTXO and
issue new UTXOs. Unlike nodes, clients do not partici-
pate in the decision process, but only supply transactions
to the nodes running the consensus protocol. Two trans-
actions conflict if they consume the same UTXO and yield
different outputs. Correct clients never issue conflicting
transactions, nor is it possible for Byzantine clients to
forge conflicts with transactions issued by correct clients.
However, Byzantine clients can issue multiple transac-
tions that conflict with one another, and correct clients
can only consume one of those transactions. The goal
of our family of consensus protocols, then, is to accept
a set of non-conflicting transactions in the presence of
Byzantine behavior. Each client can be considered as a
replicated state machine whose transitions are defined by
a totally ordered list of accepted transactions.

Our family of protocols provide the following guaran-
tees with high probability:

P1. Safety. No two correct nodes will accept conflicting
transactions.

P2. Liveness. Any transaction issued by a correct client
(aka virtuous transaction) will eventually be accepted by
every correct node.

Instead of unconditional agreement, our approach
guarantees that safety will be upheld with probability
1 — ¢, where the choice of the security parameter € is un-
der the control of the system designer and applications.

We assume a powerful adaptive adversary capable of
observing the internal state and communications of every
node in the network, but not capable of interfering with
communication between correct nodes. Our analysis as-
sumes a synchronous network, while our deployment and
evaluation is performed in a partially synchronous set-
ting. We conjecture that our results hold in partially syn-
chronous networks, but the proof is left to future work.
We do not assume that all members of the network are
known to all participants, but rather may temporarily have
some discrepancies in network view. We assume a safe
bootstrapping system, similar to that of Bitcoin, that en-
ables a node to connect with sufficiently many correct
nodes to acquire a statistically unbiased view of the net-
work. We do not assume a PKI. We make standard
cryptographic assumptions related to public key signa-
tures and hash functions.

2.2 Slush: Introducing Metastability

The core of our approach is a single-decree consensus
protocol, inspired by epidemic or gossip protocols. The



1: procedure oNQUERY(v, col’)

2: if col = L then col := col’

3: RESPOND(v, col)

4: procedure sLusHLoop(u, colp € {R,B, L})

5 col := colg // initialize with a color

6: forr € {1...m} do

7: /I if L, skip until oNQUERY sets the color
8 if col = L then continue

9: // randomly sample from the known nodes
10: K := sampLE(M\u, k)

11: P = [Query(v,col) forv € K]

12: for col’ € {R,B} do

13: if P.count(col’) > « - k then

14: col := col’

15: ACCEPT(col)

Figure 1: Slush protocol. Timeouts elided for readability.

simplest metastable protocol, Slush, is the foundation of
this family, shown in Figure 1. Slush is not tolerant to
Byzantine faults, but serves as an illustration for the BFT
protocols that follow. For ease of exposition, we will
describe the operation of Slush using a decision between
two conflicting colors, red and blue.

In Slush, a node starts out initially in an uncolored
state. Upon receiving a transaction from a client, an
uncolored node updates its own color to the one carried
in the transaction and initiates a query. To perform a
query, a node picks a small, constant sized (k) sample
of the network uniformly at random, and sends a query
message. Upon receiving a query, an uncolored node
adopts the color in the query, responds with that color,
and initiates its own query, whereas a colored node simply
responds with its current color. If k responses are not
received within a time bound, the node picks an additional
sample from the remaining nodes uniformly at random
and queries them until it collects all responses. Once the
querying node collects k responses, it checks if a fraction
> ak are for the same color, where o > 0.5 is a protocol
parameter. If the ok threshold is met and the sampled
color differs from the node’s own color, the node flips
to that color. It then goes back to the query step, and
initiates a subsequent round of query, for a total of m
rounds. Finally, the node decides the color it ended up
with at time m.

This simple protocol has some curious properties.
First, it is almost memoryless: a node retains no state
between rounds other than its current color, and in par-
ticular maintains no history of interactions with other
peers. Second, unlike traditional consensus protocols that
query every participant, every round involves sampling
just a small, constant-sized slice of the network at ran-
dom. Second, even if the network starts in the metastable
state of a 50/50 red-blue split, random perturbations in
sampling will cause one color to gain a slight edge and
repeated samplings afterwards will build upon and am-
plify that imbalance. Finally, if m is chosen high enough,

1: procedure sNowrLAKELoOP(u, coly € {R,B, L})
2 col := colp, cnt := 0

3 while undecided do

4 if col = L then continue
5: K = sampLE(N\u, k)

6 P := [Query(v,col) forv € K]
7 for col’ € {R,B} do

8 if P.count(col’) > « - k then
9 if col’ # col then

10: col :==col’,cnt := 0
11: else
12: if ++cnt > (3 then accepr(col)

Figure 2: Snowflake.

Slush ensures that all nodes will be colored identically
whp. Each node has a constant, predictable communica-
tion overhead per round, and we will show that m grows
logarithmically with n.

If Slush is deployed in a network with Byzantine nodes,
the adversary can interfere with decisions. In particular,
if the correct nodes develop a preference for one color,
the adversary can attempt to flip nodes to the opposite so
as to keep the network in balance. The Slush protocol
lends itself to analysis but does not, by itself, provide
a strong safety guarantee in the presence of Byzantine
nodes, because the nodes lack state. We address this in
our first BFT protocol.

2.3 Snowflake: BFT

Snowflake augments Slush with a single counter that cap-
tures the strength of a node’s conviction in its current
color. This per-node counter stores how many consec-
utive samples of the network have all yielded the same
color. A node accepts the current color when its counter
exceeds (3, another security parameter. Figure 2 shows
the amended protocol, which includes the following mod-
ifications:

1. Each node maintains a counter cnt;

2. Upon every color change, the node resets cnt to 0;

3. Upon every successful query that yields > ak re-
sponses for the same color as the node, the node incre-
ments cnt.

When the protocol is correctly parameterized for a
given threshold of Byzantine nodes and a desired e-
guarantee, it can ensure both safety (P1) and liveness
(P2). As we later show, there exists a phase-shift point
after which correct nodes are more likely to tend towards
a decision than a bivalent state. Further, there exists a
point-of-no-return after which a decision is inevitable.
The Byzantine nodes lose control past the phase shift,
and the correct nodes begin to commit past the point-of-
no-return, to adopt the same color, whp.

2.4 Snowball: Adding Confidence

Snowflake’s notion of state is ephemeral: the counter gets
reset with every color flip. While, theoretically, the proto-



1: procedure snowBaLLLoor(u, coly € {R,B, L})
2 col := colp, lastcol := colp, cnt := 0
3 dR]:=0,dB] =0

4: while undecided do

5: if col = L then continue
6: K := sampLE(M\u, k)
7 P = [Query(v,col) forv € K]
8 for col’ € {R,B} do
9: if P.count(col’) > a - k then

10: d[col’]++

11: if d[col’] > d[col] then

12: col := col’

13: if col’ # lastcol then

14: lastcol := col’, cnt := 0

15: else

16: if ++cnt > (3 then accepr(col)

Figure 3: Snowball.

1: procedure aAvaALANCHELoOOP

2 while true do

3 find T that satisfies T € T AT ¢ Q

4 K := sampLE(M\u, k)

5: P =3 cx QuEry(v,T)

6: if P > « - k then

7 cr =1

8 // update the preference for ancestors
9: for 7' € 7:T' < Tdo
10: if d(T") > d(Pr .pref) then
11: Py .pref .= T’
12: if T" # Pr. last then
13: Py last :=T', Ppr.cnt := 0
14: else
15: ++Prs.cnt
16: // otherwise, ¢ remains O forever
17: Q:=0QU{T} // mark T as queried

Figure 4: Avalanche: the main loop.

col is able to make strong guarantees with minimal state,
we will now improve the protocol to make it harder to at-
tack by incorporating a more permanent notion of belief.
Snowball augments Snowflake with confidence counters
that capture the number of queries that have yielded a
threshold result for their corresponding color (Figure 3).
A node decides a color if, during a certain number of
consecutive queries, its confidence for that color exceeds
that of other colors. The differences between Snowflake
and Snowball are as follows:
1. Upon every successful query, the node increments its
confidence counter for that color.
2. A node switches colors when the confidence in its
current color becomes lower than the confidence value of
the new color.

Snowball is not only harder to attack than Snowflake,
but is more easily generalized to multi-decree protocols.

2.5 Avalanche: Adding a DAG

Avalanche, our final protocol, generalizes Snowball
and maintains a dynamic append-only Directed Acyclic
Graph (DAG) of all known transactions. The DAG has a
single sink that is the genesis vertex. Maintaining a DAG
provides two significant benefits. First, it improves effi-
ciency, because a single vote on a DAG vertex implicitly
votes for all transactions on the path to the genesis ver-
tex. Second, it also improves security, because the DAG
intertwines the fate of transactions, similar to the Bitcoin
blockchain. This renders past decisions difficult to undo
without the approval of correct nodes.

When a client creates a transaction, it names one or
more parents, which are included inseparably in the trans-
action and form the edges of the DAG. The parent-child
relationships encoded in the DAG may, but do not need
to, correspond to application-specific dependencies; for
instance, a child transaction need not spend or have any
relationship with the funds received in the parent trans-
action. We use the term ancestor set to refer to all trans-
actions reachable via parent edges back in history, and
progeny to refer to all children transactions and their off-
spring.

The central challenge in the maintenance of the DAG is
to choose among conflicting transactions. The notion of
conflict is application-defined and transitive, forming an
equivalence relation. In our cryptocurrency application,
transactions that spend the same funds (double-spends)
conflict, and form a conflict set, out of which only a
single one can be accepted. Note that the conflict set
of a virtuous transaction is always a singleton. Shaded
regions in Figure 7 indicate conflict sets.

Avalanche embodies a Snowball instance for each con-
flict set. Whereas Snowball uses repeated queries and
multiple counters to capture the amount of confidence
built in conflicting transactions (colors), Avalanche takes
advantage of the DAG structure and uses a transaction’s
progeny. Specifically, when a transaction 7" is queried,
all transactions reachable from 7" by following the DAG
edges are implicitly part of the query. A node will only
respond positively to the query if 7" and its entire ances-
try are currently the preferred option in their respective
conflict sets. If more than a threshold of responders
vote positively, the transaction is said to collect a chit,
cur = 1, otherwise, ¢, = 0. Nodes then compute their
confidence as the sum of chit values in the progeny of
that transaction. Nodes query a transaction just once and
rely on new vertices and chits, added to the progeny, to
build up their confidence. Ties are broken by an initial
preference for first-seen transactions.

2.6 Avalanche: Specification

Each correct node u keeps track of all transactions it
has learned about in set 7, partitioned into mutually



1: procedure INIT

2 T := @ /I the set of known transactions

3 Q = @ [/ the set of queried transactions

4: procedure oNGENERATETx(data)

5: edges := {T" <~ T : T’ € parReNTSELECTION(T )}
6 T := Tx(data, edges)

7

8

9

ONRECEIVETX(T')
: procedure oNRECEIVETx(T)
if T ¢ T then
10: if Pr = o then
11: Pr :={T}, Pr.pref =T
12: Pr.last =T, Pr.cnt .= 0
13: else Pr == Pr U {T}
14: T:=TU{T},er =0.

Figure 5: Avalanche: transaction generation.

1: function 1SPREFERRED(T")
2: return T = Pr .pref
3: function 1SSTRONGLYPREFERRED(T")
4: return VT’ € 7,7’ < T : 1sPrerFErRED(T")
5: function 1sAccepTep(T)
6: return
((VT' € T,T' < T : 1sAccepten(T"))
AN|Pr|=1Ad(T) > p1) // safe early commitment
VPr.cnt > B2 // consecutive counter

7: procedure oNQUERY(j,T")
8: ONRECEIVETX(T')
9: RESPOND(j, ISSTRONGLYPREFERRED(T"))

Figure 6: Avalanche: voting and decision primitives.

exclusive conflict sets Pr,T € T,. Since conflicts are
transitive, if 7; and T are conflicting, then Py, = Pr,.
We write 77 < T if T has a parent edge to transaction
T’, The “&-relation is its reflexive transitive closure,
indicating a path from T to 7”. Each node u can compute
a confidence value, d,, (T, from the progeny as follows:

dy (T) = Z

T/ €T, TET!

CuT’-

In addition, it maintains its own local list of known nodes
N, C N that comprise the system. For simplicity, we
assume for now N,, = N, and elide subscript v in con-
texts without ambiguity. DAGs built by different nodes
are guaranteed to be compatible. Specifically, if 7" < T,
then every node in the system that has 7" will also have T”
and the same relation 7" < T'; and conversely, if T =T,
then no nodes will end up with 7" «+ T.

Each node implements an event-driven state machine,
centered around a query that serves both to solicit votes
on each transaction and, simultaneously, to notify other
nodes of the existence of newly discovered transactions.
In particular, when node u discovers a transaction 7'
through a query, it starts a one-time query process by
sampling k£ random peers. A query starts by adding 7" to

T, initializing c7 to 0, and then sending a message to the
selected peers.

Node u answers a query by checking whether each T’
such that 77 < T is currently preferred among compet-
ing transactions VI € Pr.. If every single ancestor T’
fulfills this criterion, the transaction is said to be strongly
preferred, and receives a yes-vote (1). A failure of this
criterion at any 7" yields a no-vote (0). When u ac-
cumulates k responses, it checks whether there are ak
yes-votes for T', and if so grants the chit ¢ = 1 for T
The above process will yield a labeling of the DAG with
chit value ¢ and associated confidence for each trans-
action 7. The chits are the result of one-time samples
and are immutable, while d(7") can increase as the DAG
grows. Because cr values range from O to 1, confidence
values are monotonic.

{eT,,d(T1)) = (1,5) Pr,
Pr, = Pry
Pry = Prs = Pry

11

1,1)
Figure 7: Example of chit and confidence values, labeled as

tuples in that order. Darker boxes indicate transactions with
higher confidence values.

Figure 7 illustrates a sample DAG built by Avalanche.
Similar to Snowball, sampling in Avalanche will create a
positive feedback for the preference of a single transaction
in its conflict set. For example, because 75 has larger
confidence than T3, its descendants are more likely collect
chits in the future compared to 75.

Similar to Bitcoin, Avalanche leaves determining the
acceptance point of a transaction to the application. An
application supplies an 1SAccepTED predicate that can
take into account the value at risk in the transaction and
the chances of a decision being reverted to determine
when to decide.

Committing a transaction can be performed through
a safe early commitment. For virtuous transactions, T’
is accepted when it is the only transaction in its conflict
set and has a confidence greater than threshold 3;. As
in Snowball, T" can also be accepted after a S number
of consecutive successful queries. If a virtuous transac-
tion fails to get accepted due to a liveness problem with
parents, it could be accepted if reissued with different
parents.

Figure 5 shows how Avalanche performs parent se-
lection and entangles transactions. Because transactions



1: initialize u.col € {R,B} forallu € N
2: fort =1to ¢ do
3:  w:=sampLE(N,1)
K := sampLE(M\u, k)
P = [v.col forv e K]
for col’ € {R,B} do

if P.count(col’) > « - k then

u.col := col’

Figure 8: Slush run by a global scheduler.

A

that consume and generate the same UTXO do not con-
flict with each other, any transaction can be reissued with
different parents.

Figure 4 illustrates the protocol main loop executed
by each node. In each iteration, the node attempts to
select a transaction 7' that has not yet been queried. If
no such transaction exists, the loop will stall until a new
transaction is added to 7. It then selects k peers and
queries those peers. If more than ak of those peers return
a positive response, the chit value is set to 1. After that,
it updates the preferred transaction of each conflict set of
the transactions in its ancestry. Next, T is added to the
set Q so it will never be queried again by the node. The
code that selects additional peers if some of the k peers
are unresponsive is omitted for simplicity.

Figure 6 shows what happens when a node receives
a query for transaction 7" from peer j. First it adds T'
to T, unless it already has it. Then it determines if T’
is currently strongly preferred. If so, the node returns a
positive response to peer j. Otherwise, it returns a nega-
tive response. Notice that in the pseudocode, we assume
when a node knows 7, it also recursively knows the en-
tire ancestry of 7". This can be achieved by postponing
the delivery of 7" until its entire ancestry is recursively
fetched. In practice, an additional gossip process that
disseminates transactions is used in parallel, but is not
shown in pseudocode for simplicity.

3 Analysis

In this section, we analyze Slush, Snowflake, Snowball,
and Avalanche.

Network Model We assume a synchronous communi-
cation network, where at each time step ¢, a global sched-
uler chooses a single correct node uniformly at random.

Preliminaries Letc = |C|and b = |B|; let u € C be
any correct node; let k € Ny;andlet € R = (1/2,1].
We let R (“red”) and B (“blue”) represent two generic
conflicting choices. Without loss of generality, we focus
our attention on counts of R, i.e. the total number of nodes
that prefer R.

Each network query of k peers corresponds to a sample
without replacement out of a network of n nodes, also re-
ferred to as a hypergeometric sample. We let the random
variable ’vaJ — [0, k] denote the resulting counts of R

(ranging from O to k), where z is the total count of R in
the population. The probability that the query achieves
the required threshold of ak or more votes is given by:

o o (62
(Hiro > ak) = Y ~2=ds e
j=ak (k)

Tail Bound We can reduce some of the complexity in
Equation 1 by introducing a bound on the hypergeometric
distribution induced by H% .. Let p = z/c be the ratio
of support for R in the population. The expectation of
HE . is exactly kp. Then, the probability that Hg , will
deviate from the mean by more than some small constant
1) is given by the Hoeffding tail bound [29], as follows,

P(Hlé,w < (p—1)k) < e FP=¥:p) )

where D(p — 1, p) is the Kullback-Leibler divergence,
measured as

1—
D(a,b) = alog% +(1—a)log a

-

3.1 Analysis of Slush

Slush operates in a non-Byzantine setting; thatis, B = @
and thus C = A and ¢ = n. In this section, we will show
that (R1) Slush converges to a state where all nodes agree
on the same color in finite time almost surely (i.e. with
probability 1); (R2) provide a closed-form expression for
speed towards convergence; and (R3) characterize the
minimum number of steps per node required to reach
agreement with probability > 1 — e.

The procedural version of Slush in Figure 1 made use of
a parameter m, the number of rounds that a node executes
Slush queries. To derive this parameter, we transform the
protocol execution from a procedural and concurrent ver-
sion to one carried out by a scheduler, shown in Figure 8.
What we ultimately want to extract is the total number of
rounds ¢ that the scheduler will need to execute in order
to guarantee that the entire network is the same color,
whp.

We analyze the system mainly using standard Markov
chain techniques. Let X = {X;,X,,... X4} be a
discrete-time Markov chain. Let s;, i € [0, ], represent
a state in this Markov chain, where the count of R is 7 and
the count of Bis ¢ — . Let M be the transition probability
matrix for the Markov chain. Let ¢(s;) = M (s;,5i-1),
p(si) = M(si, 8i+1), and 7(s;) = M(s;,s;), where
p(s0) = q(s0) = p(sc) = q(sc) = 0. This is a birth-
death process where the number of states is ¢ and the
two endpoints, sg and s., are absorbing states, where all
nodes are red and blue, respectively.

To extract concrete values, we apply the following
probabilities to ¢(s;) and p(s;), which capture the prob-
ability of picking a red node and successfully sampling



for blue, and vice versa.

c—

p(si) = —P(HE, > ak)

a(si) = “P(HE ;> k)
Lemma 1 (R1). Slush reaches an absorbing state in finite
time almost surely.

Proof. Let s; be a starting state where i < ¢ — ak. All
such states s; then have a non-zero probability of reaching
absorbing state s( for all time-steps ¢ > ¢. States where
1 > ¢ — a have no possible threshold majority for B, and
all timesteps ¢ < ¢ do not allow enough transitions to
ever reach sg. Under these conditions, the probability of
absorption is strictly > 0, and therefore Slush converges
in finite steps. O

Lemma 2 (R2). Expected Rounds to Deciding B. Let
Us, be a random variable that expresses the number of
steps to reach sq from state s;. Let

Se—1

NI @

l=sp j=s1 ]
Then,
Si—1 1 .
E[U,,] = E[UL,] Z _H (—j
L )
- Z H g
l=sg j= Sl
where
Se—1 1

Proof. The expected time to absorption in sy can be mod-
eled using the following recurrence equation:

E[Usl] = Q(Si)E[USFl] +p(8i)E[USi+1]
+7(s:)E[Us,] @)

for i € [1,c¢ — 1], with boundary condition E[Uj,] = 0.
Solving for the recurrence relation yields the result. [

C Size 600 1200 2400 4800 9600

Exp. Conv. 12.66 1439 1530 1643 18.61

Table 1: Expected number of per-node-iterations to con-
vergence starting at worst-case (equal) C network split, in
the case of £k = 10, o« = 0.8. Standard deviation for all
samples is < 2.5.

Table 1 shows the latency (i.e. number of timesteps
per-node) to reach the B deciding state starting from the
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Figure 9: Necessary parameter ¢ /c required in order to achieve
e-convergence in the Slush protocol, i.e. every node has reached
the same color whp. We fix £k = 10, o = 0.8.
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Figure 10: Probability of successful samples vs. network splits.

1000

metastable 50/50 split, in other words, value E[U;_,]/c.
As the network size ¢ doubles, expected convergence
grows only linearly.

Finally, to demonstrate R3, we need to compute the first
timestep of the Markov chain M that yields a probability
of < e for all transient states. This computation has
no simple closed-form approximation, therefore we must
iteratively raise the transition probability matrix ) until
the first timestep ¢ that achieves probability < e for all
states s; where s, < S; < Sc—qk. Figure 9 shows the
expected time to reach s._,; whp, over various network
sizes, with fixed k = 10, « = 0.8.

The next two additional results provide some useful
intuition to the underlying stochastic processes of Slush
and subsequent protocols. The probability of a single
successful query as a function of the total number of R-
supporting nodes in the network is shown in Figure 11.
This probability decreases rapidly as the value of k in-
creases. The network topples over faster if the value of
k is smaller due to the larger amount of random query
perturbance. Indeed, for Slush, £ = 1 is optimal. Later
we will see that for the Byzantine case, we will need a
larger value for k.

Figure 10 shows the divergence of the probabilities of
successful samples over various network splits. When
the network is evenly split, the probabilities are equal
for either color, but very rapidly diverge as the network
becomes less balanced.
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Figure 11: Probability of a single successful majority-red sam-
ple with varying k, a = 0.8, and successes ranging from half
the network to full-support.

3.2 Safety Analysis of Snowflake

Snowflake, whose pseudocode is shown in Figure 12, is
similar to Slush, but has three key differences. First, the
sampled set of nodes includes Byzantine nodes. Second,
each node also keeps track of the total number of consec-
utive times it has sampled a majority of the same color.
We also introduce a function called A, the adversarial
strategy, that takes as parameters the entire space of cor-
rect nodes as well as the chosen node « at time ¢, and as a
side-effect, modifies the set of nodes B to some arbitrary
configuration of colors.

The birth-death chain that models Snowflake, shown
below, is nearly identical to that of Slush, with the added
presence of Byzantine nodes.

c—1

p(si) = ——P(He; > ak),

1
alsi) = P(HE oy = o)

In Slush, the metastable state of the network was a 50/50
split at Markov state s./5. In Snowflake, Byzantine nodes
have the ability to compensate for deviations from s/,
up to a threshold proportional to their size in the network.
Let the Markov chain state s,s > s./2 be the state after
which the probability of entering the R-absorbing state
becomes greater than the probability of entering the B-
absorbing state given the entire weight of the Byzantine
nodes. Symmetrically, there exists a phase shift point
for B as well. All states between these two phase-shift
points are Byzantine controlled, whereas all other states
are metastable.

In this section, we analyze the two conditions that en-
sure the safety of Snowflake. The first condition (C1)
requires demonstrating that that there exists a point of no
return sy A after which the maximum probability under
full Byzantine activity of bringing the system back to the
phase-shift point is less than e.

The second condition (C2) requires the construction of
a mechanism to ensure that a process can only commit
to a color if the system is beyond the minimal point of
no return, whp. As we show later, satisfying these two

1: initialize Yu, u.col,

2: initialize Yu, u.cnt := 0

3: fort =1to ¢ do

4: u = sampLE(C, 1)

5 A(u, C)

6 K = sampLE(N \u, k)

7 P = [v.col forv e K]

8 for col’ € {R,B} do

9 if P.count(col’) > « - k then

10: if col’ # w.col then

11: u.col := col’, u.cnt := 0
12: else

13: ++y.cnt

Figure 12: Snowflake run by a global scheduler.

conditions is necessary and sufficient to guarantee safety
of Snowflake whp.

Properties of Sampling Parameter k. Before con-
structing and analyzing the two conditions that satisfy
the safety of Snowflake, we introduce some important
observations of the sample size k. The first observation
of interest is that the hypergeometric distribution approxi-
mates the binomial distribution for large-enough network
sizes. If x is a constant fraction of network size n, then:

k

lim P(Hjr. > ak)= <I;> (¢/n)*(1 = (x/n))*~

n—o0o ok

(®)
This dictates that for large enough network sizes, the
probability of success for any single sample becomes
a function dependent only on the values of k£ and «,
unaffected by further increases of network size. The
result has consequences for the scalability of Snowflake
and subsequent protocols. For sufficiently large and fixed
k, the security of the system will be approximately equal
for all network sizes n > k.

We now examine how the phase shift point behaves
with increasing k. Whereas k = 1 is optimal for Slush
(i.e. the network topples the fastest when £ = 1), we
see that Snowflake’s safety is maximally displaced from
its ideal position for k¥ = 1, reducing the number of
feasible solutions. Luckily, small increases in k have an
exponential effect on s,,, creating a larger set of feasible
solutions. More formally:

Lemma 3. s, approaches s.;5y/2 exponentially fast
as k approaches n.

Proof. At s,s, the ratio p(s;)/q(s;) is equal to 1, by
definition. Substituting the solution ¢ = ¢/2 + b/2 into
this equation yields the result at & = n. Computing the
differential in s,,; between any chosen k and k 4 1 yields
the exponential trend. O



Figure 13 shows the exponential relationship between
decreasing k and s,s. The graph shows that small-but-
not-tiny values of k lead to large feasible regions.

350 —— Snowball
300 Snowflake
£
200
100
T T T T T T
0 20 40 60 80 100

Figure 13: Phase shift state of Snowflake/Snowball vs. k values
(x-axis), with n = 2000, o = 0.8 and b = 20% of n. The
phase-shift is indexed starting from c/2.

Satisfiability of Safety Criteria Let ¢ be a system se-
curity parameter of value < 2732, typically referred to as
negligible probability.

We now formalize and analyze the safety condition C1.
We refer to all states s; that satisfy condition C1 as states
of feasible solutions. For the system to guarantee safety,
there must exist some state Sc/2+A > Sc/2+4b > Sps
that implies e-irreversibility in the birth-death chain. In
other words, once the system reaches this state, then it
reverts back with only negligible probability, under any
Byzantine strategy. Figure 14 summarizes the region
of interest. Our goal is to determine values for tunable
system parameters to achieve this condition, given target
network size n, maximum Byzantine component b, and
security parameter ¢, fixed by the system designer.

p P b

/_/H

T T T = :
Sc/2 Sps Sc/24+A Se Sn

A\L/
Figure 14: Representation of the space of feasible solutions.

Outside the phase-shift point, the network builds a bias towards
one end. At the A point, this bias is e-irreversible.

Sps—1 Sps+1
+

1 + I I

To ensure C1, we must find A such that the following
condition holds:

JA, where s./24A > Sps, 8.1Vt < ¢ ©)

€ 2 (Vc[sc/2+A7 SpSDt

where V.. is the (¢ + 1)? probability transition matrix
for the system. In probability theory terminology, the
statement above computes the ¢-step hitting probability,
where the starting state is s./2, A and the hitting state is
Sps. Satisfying this first constraint, that is, moving the

ensemble of nodes to a decision, is not sufficient. The
nodes have to be able to assure themselves that they can
safely decide, which means they must ensure condition
C2. While there are multiple ways of constructing the
predicate that ensures this condition, the one we adopt
in Snowflake involves 8 consecutive successful queries,
such that P(1sAcCePTED | 5; < 5./94) < €. To achieve
this threshold probability of failure for C2, we solve for the
smallest 3 that meets inequality P(G(p,¢/c) > B) < e
where p = P(Hﬂc\ai > ak) and G(p, ¢/c) is a random
variable which counts the largest number of consecutive
same-color successes for a run over ¢/c trials. Solving
for the minimum ¢ yields 3.

The task of the system designer, finally, is to derive
values for « and 3, given desired n, b, k, . Choice of «
immediately follows from b and is (n — b)/n, the max-
imum allowable size to tolerate < b Byzantine nodes.
Solving for A with a closed form expression would be
ideal but unfortunately is difficult, hence we employ a
numerical, iterative search. Since k and § are mutually
dependent, a system designer will typically fix one and
search for the other. Because /3 is a tunable parameter
whose consideration is primarily latency vs. security, a
designer can fix it at a desired value and search for a cor-
responding k. Since low k are desirable, we perform this
by starting at k = 1, and successively evaluating larger
values of k until a feasible solution is found. Depending
on b and the chosen ¢, such a solution may not exist. If
so, this will be apparent during system design.

We finalize our analysis by formally composing C1 and
C2:

Theorem 4. If CI and C2 are satisfied under appro-
priately chosen system parameters, then the probability
that two nodes u and v decide on R and B respectively is
strictly < € over all timesteps 0 < t < ¢.

Proof. The proof follows in a straightforward manner
from the core guarantees that C1 and C2 provide. With-
out loss of generality, suppose a single node u decides R
at time ¢ < ¢, and suppose that the network is at state
s; at the time of decision. By construction, 1ISACCEPTED
will return true with probability no greater than ¢ for all
network states s; < s./24a. Therefore, since u decided,
it must be the case that s; > s./24 A, with high proba-
bility. Lastly, since the system will only revert back to a
state with a majority of B nodes with negligible probabil-
ity once it is past s./24 A, the probability that a node v
decides on B is strictly < e. O

For illustration purposes, we examine a network with
n = 2000, o = 0.8, ¢ < 2732, and throughput of
10000tps. If we allow this system to run for ~4,000
years (which corresponds to ¢ = 10'®), we choose /3
such that the probability of a node committing at state



Sc/2+a—1 is < €. A safety failure then occurs when both
a node commits R and the system reverts to B. Figure 15
shows the probability of failure and the corresponding 3
for different choices of k.
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150 - B L 10735
140 —— Py
. L 107100 &T
120 - 10137
100 - T T — 10—211
10 20 30 40

Figure 15: B and failure probability py vs. k values (x-axis),
with n = 2000, a = 0.8.

Note that a larger choice of the o parameter dictates a
larger space of feasible solutions, which implies a larger
tolerance of Byzantine presence. If the system designer
chooses to allow a larger presence of Byzantine nodes,
she may achieve this goal at the cost of liveness.

3.3 Safety Analysis of Snowball

In this section, we will demonstrate that Snowball pro-
vides strictly better safety than Snowflake. The key dif-
ference in protocol mechanics between Snowflake and
Snowball is that correct nodes now monotonically in-
crease their confidence in R and B. This limits the effect
of random perturbations, as well as the impact of the
Byzantine adversary.

To intuitively understand the behavioral differences be-
tween Snowball and its predecessor, we illustrate with an
example, accompanied by some concrete numerical val-
ues. Suppose a network of size n where b = (1/5)n,
a = (4/5)k (i.e. the maximum allowable threshold to
tolerate the (1/5)n presence of Byzantine nodes), and
where k is chosen large enough to admit a feasible solu-
tion. Suppose that the network swings to state s. /o4 A,
such that correct nodes have a non-negligible probability
of deciding on R, and suppose, for the sake of simplicity,
that A is chosen as the highest possible value, specifically
¢/2+ A+b= an = (4/5)n, the upper-threshold set up
by the system designer.

In this configuration, at least (4/5)n — b = (3/5)n
(correct) nodes prefer R. These nodes perceive network
support for R of at most (4/5)n if the Byzantine nodes
choose to also vote for R, and at least (3/5)n if the Byzan-
tine nodes choose to withhold support for R. Conversely,
the rest of the (1/5)n (correct) nodes that may prefer B
perceive network support for B of at least (1/5)n and at
most (2/5)n, depending on the Byzantine strategy. Re-
gardless of Byzantine strategy, however, all correct nodes
that prefer R will have an expected growth of the R confi-
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dence to be strictly greater than the B confidence for the
nodes that prefer B. This is because network support for
R is at least (3/5)n, which is greater than the maximum
network support for B of (2/5)n. Therefore, once the net-
work swings to the minimum required state, the expected
growth of the R-confidence will be greater than that of
B-confidence, for all correct nodes and for all Byzantine
strategies.

In the previous section, we provided the two conditions
necessary for guaranteeing the safety of Snowflake. The
second condition, C2, remains identical in Snowball, and
therefore does not need to be modified and re-analyzed.
Conversely, condition C1 (i.e. showing that the network is
irreversible whp) needs to be re-analyzed. In this section,
using the same intuition provided in the example above,
we formally show how Snowball achieves irreversibility
under strictly higher probability than in Snowflake.

Security of Snowball. Figure 16 illustrates the
scheduler-based version of Snowball. In Snowball, a
node u prefers R if u.d[R] > wu.d[B], and vice versa. At
the start of the protocol, these preferences are initialized
to (0,0). This is in contrast to Snowflake, where nodes
prefer a color based only on the latest successful sample.
We can model the protocol with a Markov chain simi-
lar to that of Snowflake, and derive the parameters and
feasibility for the protocol.

1: initialize Vu, u.col

2: initialize Vu, u.lastcol

3: initialize Yu, u.cnt := 0

4: initialize Vu, Veol’ € {R,B}, u.d[col’] := 0
5. fort = 1to ¢ do

6: u = saMPLE(C, 1)

7 A(%C)

8: K = sampLE(N\u, k)

9: P = [v.col forv e K]

10: for ¢ € {R,B} do

11: if P.count(col’) > o - k then

12: u.d[col’|++

13: if u.d[col’] > w.d[col] then

14: u.col := col’

15: if col’ # w.lastcol then

16: u.lastcol := col’, u.cnt := 0
17: else

18: ++u.cnt

Figure 16: Snowball run by a global scheduler.

We fix a A such that, under the Markovian construction
of Snowflake, if the system reaches s./24 A, then whp it
does not revert. We show that this choice of A provides
an even stronger guarantee once the network switches
protocol to Snowball. Without loss of generality, we
cluster the correct nodes into two groups, and represent
each group through two nodes w and v, where u represents



the set of correct nodes that prefer red and v those that
prefer blue. Lastly, let the state of the system be initialized
at s¢c/a4A-

The best possible confidence-configuration that the
Byzantine nodes can attempt to force correct nodes into is
where all R-preferring nodes, represented by u, are forced
to maintain nearly equal confidence between the two col-
ors, and where all of the B-preferring nodes, represented
by v, gain as much confidence as possible for B.

Let u.d[R] = u.d[B] + 1, corresponding to the minimal
viable color difference for the red-preferring nodes, and
let v.d[B] — v.d[R] = k be the difference for the blue-
preferring nodes. While x > 0, then the expectation of
preference growths at time ¢ are:

Blud' /) = Bl W+ (5 + 5 ) PO csapan 2 ab)
Blud'Bl) = Elwd B+ (54 T ) POcnare 2 ab)
Blo.d | = Blod R/ + (5 - ) POL.c/zpa 2 o)

E[v.d"[B]] = E[v.d" " '[B]] + (7 - %) P(HYr oja_nyp > k)

10
Note that we are implicitly using an indicator function
when adding up the probability of success to the ex-
pected confidence growth, where the expected value of
the indicator value is exactly the probability of success of
a sample. Substituting for Hoeffding’s tail bound, we get
the rate at which  decreases per time-step to be

r = ((1 _ A>e—kalog(a/c/zc+%+b)
2 c
”iﬁ“)))

o k(1—a) log((1-a)/(1-
o—k(1-a) 1og((1_a)/(1_wi++§+b))>

((1 o A)ekalog(a/c/2+A+b)
2 c

an

Upon reaching x = —1, the blue-preferring nodes will
have flipped to red. From then on, all correct nodes are
red, and the confidence of red grows significantly faster
than that of blue. We now show that the rate of growth of
R will always be larger than the rate of growth of B, over
all correct nodes.

Letting X (u.d'[R]) be a random variable that out-
puts the confidence of red for w at timestep ¢, and let-
ting X (u.d'[R]) = X (u.d'[R]) + --- 4+ X (u.d'[R]), we
apply Hoeffding’s concentration inequality to get that
P(X (u.d'[R]) — E[X (w.d'[R])] > 1) < e~ 2", At time
t, the expected confidence of red for u is

0 1 A\ (gt+Aa+b
u.d[R]+t(2+c)( = ) (12)
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And conversely the expected confidence of blue for v is

f) (W)) (13)

c+b
Then, the probability that the expected value of red confi-
dence is close to the expected value of the blue confidence
is

u.d’[B] +t (; +

672t3(1/2+A/C)2(2A/(C+b))2 (14)
Solving for ¢ that leads to such probability being negligi-
ble leads to:

-

Therefore, at only a small number of timesteps ¢, v has
a red-confidence centered around its mean, with prob-
ability € close to the mean of the blue-confidence. An
identical analysis follows for v. In other words, after
a small number of time-steps, the red-confidence of u
grows large enough such that the probability of this value
being close to that of the blue-confidence is negligible.
Further timesteps amplify this distance and further de-
crease the probability of the two confidences being close.
We conclude our result with the following Theorem:

1/3
log(e)
—2-(1/2+ AJc)2(2A/(c + b))?

(15)

Theorem 5. Over all viable network parameters n, b,
and for all appropriately chosen system parameters k
and o, the probability of violating safety in Snowball
is strictly less than the probability of violating safety in
Snowflake.

Proof. Under the construction of Snowball in compari-
son to Snowflake, we see that safety criterion C2 remains
the same. In other words, the consecutive-successes de-
cision predicate has the same guarantees. On the other
hand, the probabilistic guarantees of C1 change, meaning
that the reversibility probabilities of the system are dif-
ferent. However, as we determined in Equation 15, over
a few timesteps u’s confidence difference between R and
B grows large enough to guarantee that this confidence
difference will revert back with only negligible probabil-
ity. As time progresses, the probability of being close
decreases poly-exponentially, as shown in Equation 14.
The same results follow for v, but inversely, meaning that
the means get closer to each other rather than deviate.
This continues until v flips color. O

Snowball has strictly stronger security guarantees than
Snowflake, which implies that appropriately chosen pa-
rameters chosen for Snowflake automatically apply for
Snowball. Using the same techniques as before, the sys-
tem designer chooses appropriate k and (3 values that
ensure the desired e safety guarantees.



3.4 Safety Analysis of Avalanche

The key difference between Avalanche and Snowball is
that in Avalanche, queries on the DAG on transaction
T; are used to implicitly query the entire ancestry of T;.
In particular, a transaction 7; is preferred by w if and
only if all ancestors are also preferred. Suppose that 7T;
and T are in the same conflict set. We can now infer
two things. First, we can consider the entire ancestry
of T; and T as a single decision instance of Snowball,
where the ancestry of 7; can be considered to be the R
decision, and the ancestry of T); can be considered to be
the B decision. Second, since 7; must be preferred if a
child of T; is to be preferred, then we can collapse the
progeny of T} into a single urn which repeatedly adds
an R color to the confidence whenever a child of T} gets
a chit. Consequently, Avalanche maps to an instance of
Snowball, with the previously shown safety properties.

We note, however, since a decision on a virtuous trans-
action is dependent on its parents, Avalanche’s liveness
guarantees do not mirror that of Snowball. We address
this in the next two sub-sections.

3.5 Safe Early Commitment

As we reasoned previously, each conflict set in Avalanche
can be viewed as an instance of Snowball, where each
progeny instance iteratively votes for the entire path of
the ancestry. This feature provides various benefits; how-
ever, it also can lead to some virtuous transactions that de-
pend on a rogue transaction to suffer the fate of the latter.
In particular, rogue transactions can interject in-between
virtuous transactions and reduce the ability of the virtu-
ous transactions to ever reach the required 1SACCEPTED
predicate.  As a thought experiment, suppose that a
transaction 7; names a set of parent transactions that are
all decided, as per local view. If T; is sampled over a large
enough set of successful queries without discovering any
conflicts, then, since by assumption the entire ancestry of
T; is decided, it must imply that at least ¢/2 + A correct
nodes also vote for 7}, achieving irreversibility.

To then statistically measure the assuredness that 7}
has been accepted by a large percentage of correct nodes
without any conflicts, we make use of a one-way birth
process, where a birth occurs when a new correct node
discovers the conflict of 7;. Necessarily, deaths cannot
exist in this model, because a conflicting transaction can-
not be unseen once a correct node discovers it. Let ¢ = 0
be the time when T}, which conflicts with T3, is intro-
duced to a single correct node u. Let s,, for z = 1 to c,
be the state where the number of correct nodes that know
about 7; is z, and let p(s;) be the probability of birth at
state s,. Then, we have:

_ <";“”>

(16)
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Solving for the expected time to reach the final birth
state provides a lower bound to the 81 parameter in the
1SAccePTED fast-decision branch. The table below shows
an example of the analysis for n = 2000, o = 0.8, and
various k, where ¢ < 10~Y, and where [ is the minimum
required size of d(7;). Overall, a very small number

k10
B 10.87625

20
10.50125

30
10.37625

40
10.25125

of iterations are sufficient for the safe early commitment
predicate.

3.6 Liveness

Slush. Slush is a non-BFT protocol, and we have demon-
strated that it terminates within a finite number of rounds
almost surely.

Snowflake & Snowball. Both protocols make use of
a counter to keep track of consecutive majority support.
Since the adversary is unable to forge a conflict for a virtu-
ous transaction, initially, all correct nodes will have color
red or L. A Byzantine node cannot respond to any query
with any answer other than red since it is unable to forge
conflicts and | is not allowed by protocol. Therefore,
the only misbehavior for the Byzantine node is refusing
to answer. Since the correct node will re-sample if the
query times out, by expected convergence equation in [2],
all correct nodes will terminate with the unanimous red
value within a finite number of rounds almost surely.
Avalanche. Avalanche introduces a DAG structure that
entangles the fate of unrelated conflict sets, each of which
is a single-decree instance. This entanglement embod-
ies a tension: attaching a virtuous transaction to unde-
cided parents helps propel transactions towards a deci-
sion, while it puts transactions at risk of suffering live-
ness failures when parents turn out to be rogue. We can
resolve this tension and provide a liveness guarantee with
the aid of the following mechanisms:

Eventually good ancestry. Virtuous transactions can
be retried by picking new parents, selected from a set that
is more likely to be preferred. Ultimately, one can always
attach a transaction to decided parents to completely mit-
igate this risk. A simple technique for parent selection
is to select new parents for a virtuous transaction at suc-
cessively lower heights in the DAG, proceeding towards
the genesis vertex. This procedure is guaranteed to ter-
minate with uncontested, decided parents, ensuring that
the transaction cannot suffer liveness failure due to rogue
transactions.

Sufficient chits. A secondary mechanism is necessary
to ensure that virtuous transactions with decided ancestry
will receive sufficient chits. To ensure this, correct nodes
examine the DAG for virtuous non-nop transactions that
lack sufficient progeny and emit nop transactions to help



increase their confidence. A nop transaction has just one
parent and no application side-effects, and can be issued
by any node. They cannot be abused by Byzantine nodes
because, even though nops trigger new queries, they do
not automatically grant chits.

With these two mechanisms in place, it is easy to see
that, at worst, Avalanche will degenerate into separate
instances of Snowball, and thus provide the same liveness
guarantee for virtuous transactions.

3.7 Churn and View Updates

Any realistic system needs to accommodate the departure
and arrival of nodes. Up to now, we simplified our anal-
ysis by assuming a precise knowledge of network mem-
bership. We now demonstrate that Avalanche nodes can
admit a well-characterized amount of churn, by showing
how to pick parameters such that Avalanche nodes can
differ in their view of the network and still safely make
decisions.

Consider a network whose operation is divided into
epochs of length 7, and a view update from epoch ¢ to
t + 1 during which 7 nodes join the network and ¥ nodes
depart. Under our static construction, the state space s
of the network had a key parameter A? at time ¢, induced
by ¢!, bt,nt and the chosen security parameters. This
can, at worst, impact the network by adding v nodes of
color B, and remove 7 nodes of color R. At time ¢ + 1,
n'tl = n! +—7, while b'*! and c'*! will be modified
by an amount < v — 4, and thus induce a new AL for
the chosen security parameters. This new A**! has to
be chosen such that P(s.t+1 /24 at+1—y = Sps) < €, tO
ensure that the system will converge under the previous
pessimal assumptions. The system designer can easily do
this by picking an upper bound on 7, 5.

The final step in assuring the correctness of a view
change is to account for a mix of nodes that straddle the 7
boundary. We would like the network to avoid an unsafe
state no matter which nodes are using the old and the
new views. The easiest way to do this is to determine
At and A**! for desired bounds on +, 7, and then to use
the conservative value A**! during epoch ¢. In essence,
this ensures that no commitments are made in state space
s! unless they conservatively fulfill the safety criteria in
state space s'*!. As a result, there is no possibility of a
node deciding red at time ¢, the network going through
an epoch change and finding itself to the left of the new
point of no return A‘*1,

This approach trades off some of the feasibility space,
to add the ability to accommodate ~y, ¥ node churn per
epoch. Overall, if 7 is in excess of the time required
for a decision (on the order of minutes to hours), and
nodes are loosely synchronized, they can add or drop up
to v, 7 nodes in each epoch using the conservative pro-
cess described above. We leave the precise method of
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determining the next view to a subsequent paper, and in-
stead rely on a membership oracle that acts as a sequencer
and ~y-rate-limiter, using technologies like Fireflies [31].

3.8 Communication Complexity

Since liveness is not guaranteed for rogue transactions,
we focus our message complexity analysis solely for the
case of virtuous transactions. For the case of virtuous
transactions, Snowflake and Snowball are both guaran-
teed to terminate after O(knlogn) messages. This fol-
lows from the well-known results related to epidemic
algorithms [21], and is confirmed by Table 1.
Communication complexity for Avalanche is more sub-
tle. Let the DAG induced by Avalanche have an expected
branching factor of p, corresponding to the width of the
DAG, and determined by the parent selection algorithm.
Given the [ decision threshold, a transaction that has
just reached the point of decision will have an associ-
ated progeny ). Let m be the expected depth of ).
If we were to let the Avalanche network make progress
and then freeze the DAG at a depth y, then it will have
roughly py vertices/transactions, of which p(y — m) are
decided in expectation. Only pm recent transactions
would lack the progeny required for a decision. For
each node, each query requires k samples, and therefore
the total message cost per transaction is in expectation
(pky)/(p(y —m)) = ky/(y —m). Since m is a constant
determined by the undecided region of the DAG as the
system constantly makes progress, message complexity
per node is O(k), while the total complexity is O(kn).

4 Implementation

We have fully ported Bitcoin transactions to Avalanche,
to yield a bare-bones payment system. Deploying a full
cryptocurrency involves bootstrapping, minting, staking,
unstaking, and inflation control. While we have solutions
for these issues, their full discussion is beyond the scope
of this paper. In this section, we focus on how Avalanche
can support the value transfer primitive at the center of
cryptocurrencies.

UTXO Transactions. In addition to the DAG structure in
Avalanche, a UTXO graph that captures spending depen-
dency is used to realize the ledger for the payment system.
To avoid ambiguity, we denote the transactions that en-
code the data for money transfer transactions, while we
call the transactions (T" € T) in Avalanche’s DAG ver-
tices.

Each transaction represents a money transfer that takes
several inputs from source accounts and generates several
outputs to destinations. As a UTXO-based system that
keeps a decentralized ledger, balances are kept by the
unspent outputs of transactions.

More specifically, a transaction TX, maintains a list of
inputs: Ingq, Ingo, ---. Each input has two fields: the



reference to an unspent transaction output and a spend
script. The unspent transaction output uniquely refers to
an output of a previously made transaction. The script
snippet will be prepended to the script from the referred
output forming a complete computation. It could typ-
ically be a cryptographic proof of validity, but could
also be any Turing-complete computation in general.
Each output Out,, Out,s, - -+, contains some amount
of money and a script which typically contains crypto-
graphic verification that takes the proof from the future
input and verifies validity.

In our payment system, there are addresses represent-
ing different accounts by cryptographic keys. The public
key is used as the identity for recipients in the output
scripts, while the private key is for creating signatures in
the input scripts, spending the available funds. Only the
key owner is able spend the unspent output by creating
an input with the signature in a new transaction.

Due to the possibility of double spending by the pri-
vate key owner, cryptocurrencies such as Bitcoin use a
blockchain as the linear log to reject the transaction that
comes later in the log and tries to spend some output
twice. Instead, in our payment system, we use Avalanche
to resolve the double-spend conflicts in each conflict set,
without maintaining a linear log.

If we could assume each transaction can only have
one single input, the initialization of Avalanche would
be straightforward. We let each vertex on the underlying
DAG be one transaction. The conflict set in Avalanche is
the set of transactions that try to spend the same unspent
output. The conflict sets are disjoint because each trans-
action only has one input spending one unspent output,
and thus belongs to exactly one set.

Multi-input transactions consume multiple UTXOs,
and in Avalanche, may appear in multiple conflict sets.
To account for these correctly, we represent transaction-
input pairs (e.g. In,1) as an Avalanche vertex, and use
the conjunction of 1sAccepTEeD for all inputs of a transac-
tion to ensure that no transaction will be accepted unless
all its inputs are accepted. Since the acceptance for each
pair is meaningful for the payment system only if all pairs
from the same transaction are accepted, we can tie the
fate of these pairs from the same transaction together by a
single, bundled query: the queried node will only answer
“yes” if all of the pairs are strongly preferred according to
the DAG. This more conservative predicate will not un-
dermine safety because merely introducing transactions
that gather no chits will not increase confidence value in
the protocol.

Figure 17 demonstrates the actual implementation
where the DAG is built at transaction granularity, whereas
Figure 18 shows the equivalent logic of the underlying
protocol, where vertices are at transaction-input granu-
larity.
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Figure 17: The actual DAG implementation at transition gran-
ularity.

Figure 18: The underlying logical DAG structure used by
Avalanche. The tiny squares with shades are dummy vertices
which just help form the DAG topology for the purpose of clar-
ity, and can be replaced by direct edges. The rounded gray
regions are the conflict sets.

Following this idea, we finally implement the DAG of

transaction-input pairs such that multiple transactions can
be batched together per query.
Parent Selection. The goal of the parent selection algo-
rithm is to yield a well-structured DAG that maximizes
the likelihood that virtuous transactions will be quickly
accepted by the network. While this algorithm does not
affect the safety of the protocol, it affects liveness and
plays a crucial role in determining the shape of the DAG.
A good parent selection algorithm grows the DAG in
depth with a roughly steady “width.” The DAG should
not diverge like a tree or converge to a chain, but in-
stead should provide concurrency so nodes can work on
multiple fronts.

There are inherent trade-offs in the parent selection al-
gorithm: selecting well-accepted parents makes it more
likely for a transaction to find support, but can lead to
vote dilution. Further, selecting more recent parents at
the frontier of the DAG can lead to stuck transactions,
as the parents may turn out to be rogue and remain un-
supported. In the following discussion, we illustrate this
dilemma. We assume that every transaction will select a
small number, p, of parents. We focus on the selection of
eligible parent set, from which a subset of size p can be
chosen at random.

Perhaps the simplest idea is to mint a fresh transaction
with parents picked uniformly at random among those
transactions that are currently strongly preferred. Specif-



ically, we can adopt the predicate used in the voting rule
to determine eligible parents on which a node would vote
positively, as follows:

E ={T :VT € T,1sSTRONGLYPREFERRED(T') }.

But this strategy will yield large sets of eligible parents,
consisting mostly of historical, old transactions. When
a node samples the transactions uniformly from &, the
resulting DAG will have large, ever-increasing fan-out.
Because new transactions will have scarce progenies, the
voting process will take a long time to build the required
confidence on any given new transaction.

In contrast, efforts to reduce fan-out and control the
shape of the DAG by selecting the recent transactions at
the decision frontier suffer from another problem. Most
recent transactions will have very low confidence, simply
because they do not have enough descendants. Further,
their conflict sets may not be well-distributed and well-
known across the network, leading to a parent attachment
under a transaction that will never be supported. This
means the best transactions to choose lie somewhere near
the frontier, but not too far deep in history.

The adaptive parent selection algorithm chooses par-
ents by starting at the DAG frontier and retreating towards
the genesis vertex until finding an eligible parent.

Otherwise, the algorithm tries the parents of the trans-
actions in &, thus increasing the chance of finding more
stabilized transactions as it retreats. The retreating search
is guaranteed to terminate when it reaches the genesis
vertex. Formally, the selected parents in this adaptive
selection algorithm is:

function PARENTSELECTION(T)
E ={T:|Pr|=1vd(T) > 0,VT € &}.
return {T: T € E'AVT € T, T« T',T' ¢ &'}.
Figure 19: Adaptive parent selection.

1:
2:
3.

Optimizations We implement some optimizations to
help the system scale. First, we use lazy updates to the
DAG, because the recursive definition for confidence may
otherwise require a costly DAG traversal. We maintain
the current d(7T') value for each active vertex on the DAG,
and update it only when a descendant vertex gets a chit.
Since the search path can be pruned at accepted vertices,
the cost for an update is constant if the rejected vertices
have limited number of descendants and the undecided
region of the DAG stays at constant size. Second, the
conflict set could be very large in practice, because a
rogue client can generate a large volume of conflicting
transactions. Instead of keeping a container data struc-
ture for each conflict set, we create a mapping from each
UTXO to the preferred transaction that stands as the rep-
resentative for the entire conflict set. This enables a node
to quickly determine future conflicts, and the appropriate
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response to queries. Finally, we speed up the query pro-
cess by terminating early as soon as the ak threshold is
met, without waiting for £ responses.

5 Evaluation

We have fully implemented the proposed payment system
in around 5K lines of C++ code. In this section, we
examine its throughput, scalability, and latency through
a large scale deployment on Amazon AWS, and provide
a comparison to known results from other systems.

5.1 Setup

We conduct our experiments on Amazon EC2 by running
from hundreds to thousands of virtual machine instances.
We use c5.large instances, which provide two virtual
CPU cores per instance that accommodate two processes,
each of which simulates an individual node. AWS pro-
vides bandwidth of up to 2 Gbps, though the Avalanche
protocol utilizes at most 36 Mbps.

Our implementation uses the transaction data format,
contract interpretation, and secp256k1 signature code di-
rectly from Bitcoin 0.16. We simulate a constant flow of
new transactions from users by creating separate client
processes, each of which maintains separated wallets,
generates transactions with new recipient addresses and
sends the requests to Avalanche nodes. We use several
such client processes to max out the capacity of our sys-
tem. The number of recipients for each transaction is
tuned to achieve average transaction sizes of around 600
bytes (2—-3 inputs/outputs per transaction on average and a
stable UTXO size), the current average transaction size of
Bitcoin. To utilize the network efficiently, we batch up to
10 transactions during a query, but maintain confidence
values at individual transaction granularity.

All reported metrics reflect end-to-end measurements
taken from the perspective of all clients. That is, clients
examine the total number of confirmed transactions per
second for throughput, and, for each transaction, subtract
the initiation timestamp from the confirmation timestamp
for latency. Each throughput experiment is repeated for
5 times and standard deviation is indicated in each fig-
ure. Because we saturate the capacity of the system in
all runs, some transactions will have much higher la-
tency than most, we use the 1.5xIQR rule commonly
used to filter out outliers. Take the geo-replicated exper-
iment as an example, 2.5% data are the outliers having
13 second latency on average. They fall out of 1.5xIQR
(approximately 3o0) range and are filtered out. There are
very few outliers when the system is not saturated. All
reported latencies (including maximum) are those not fil-
tered.  As for security parameters, we pick £ = 10,
a = 0.8, f; = 11, B2 = 150, which yields an MTTF of
~1024 years.
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Figure 20: Throughput vs. network size. The x-axis contains
the number of nodes and is logarithmic, while the y-axis is
confirmed transactions per second.

5.2 Throughput

We first measure the throughput of the system by saturat-
ing it with transactions and examining the rate at which
transactions are confirmed in the steady state. For this ex-
periment, we first run Avalanche on 125 nodes (63 VMs)
with 10 client processes, each of which maintains 300
outstanding transactions at any given time.

As shown in the first bar of Figure 20, the system
achieves above 1800 transactions per second (tps). As a
comparison, the crypto and transaction code we use from
Bitcoin 0.16 can only generate 2.4K tps, and verify 12.3K
tps, on a single core.

5.3 Scalability

To test whether the system is scalable in terms of the
number of nodes participating in Avalanche consensus,
we run the system with identical settings and vary the
number of nodes from 125 up to 2000.

Figure 20 shows that overall throughput degrades about
10% to 1626 tps when the network grows by a factor
of 16 to n = 2000. The degradation is caused by the
increased time to gossip transactions. Note that the x-
axis is logarithmic, and thus throughput degradation is
sublinear.

Maintaining a partial order that just captures the spend-
ing relations allows for more concurrency in processing
than a classic BFT log replication system where all trans-
actions have to be linearized. Also, the lack of a leader
naturally avoids bottlenecks.

5.4 Latency

The latency of a transaction is the time spent from the
moment of its submission until it is confirmed as ac-
cepted. Figure 21 demonstrates the latency distribution
histogram using the same setup as for the throughput
measurements with 2000 nodes. The x-axis is the time in
seconds while the y-axis is the percentage of transactions
that are finalized within the corresponding time period.
This experiment shows that all transactions are con-
firmed within approximately 1 second. Figure 21 also
outlines the cumulative distribution function by accumu-
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Figure 21: Transaction latency histogram for n = 2000. The
x-axis is the transaction latency in log-scaled seconds, while
the y-axis is the percentage of transactions that fall into the
confirmation time. The solid histogram bars show the distribu-
tion of all transactions, along with a curve showing the CDF of
transaction latency.
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Figure 22: Transaction latency vs. network size.

lating the number of finalized transaction over time. The
most common latencies are around 620 ms and variance
is low, indicating that nodes converge on the final value
as a group around the same time. The vertical line shows
the maximum latency we have observed, which is around
1.1 seconds.

Figure 22 shows transaction latencies for different
numbers of nodes. The horizontal edges of boxes rep-
resent minimum, first quartile, median, third quartile and
maximum latency respectively, from bottom to top. Cru-
cially, the experimental data show that median latency is
more-or-less independent of network size.

5.5 Misbehaving Clients

We next examine how rogue transactions issued by misbe-
having clients that double spend unspent outputs can af-
fect the latency for virtuous transactions created by other

10

> =) o
1 1

Time (sec.)

|

o

T T
0% 5% 10% 15% 20% 25%
Rogue transactions in percentage
Figure 23: Latency vs. ratio of rogue transactions.
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Figure 25: Latency histogram for n = 2000 in 20 cities.

honest clients. We adopt a strategy to simulate misbe-
having clients where a fraction (from 0% to 25%) of the
pending transactions conflict with some existing ones.
The client processes achieve this by designating some
double spending transaction flows among all simulated
pending transactions and sending the conflicting trans-
actions to different nodes. We use the same setup with
n = 1000 as in the previous experiments, and only mea-
sure throughput and latency of confirmed transactions.

Avalanche’s latency is only slightly affected by mis-
behaving clients, as shown in Figure 23. Surprisingly,
latencies drop a bit when the percentage of rogue trans-
actions increases. This behavior occurs because, with
the introduction of rogue transactions, the overall effec-
tive throughput is reduced and thus alleviates system load.
This is confirmed by Figure 24, which shows that through-
put (of virtuous transactions) decreases with the ratio of
rogue transactions. Further, the reduction in through-
put appears proportional to the number of misbehaving
clients, that is, there is no leverage provided to the attack-
ers.

5.6 Geo-replication

We also evaluated the payment system in an emulated
geo-replicated scenario with significantly higher latencies
than in prior measurements. We selected 20 major cities
that appear to be near substantial numbers of reachable
Bitcoin nodes, according to [10]. The cities cover North
America, Europe, West Asia, East Asia, Oceania, and
also cover the top 10 countries with the highest number of
reachable nodes. We use the latency and jittering matrix
crawled from [53] and emulate network packet latency in
the Linux kernel using tc and netem. 2000 nodes are

17

distributed evenly to each city, with no additional network
latency emulated between nodes within the same city.
We assign a client process to each city, maintaining 300
outstanding transactions per city at any moment.

Our measurements show an average throughput of
1312 tps, with a standard deviation of 5 tps. As shown in
Figure 25, the median transaction latency is 4.2 seconds,
with a maximum latency of 5.8 seconds.

5.7 Batching

Batching is a critical optimization that can improve
throughput by amortizing consensus overhead over
greater numbers of useful transactions. Avalanche uses
batching by default, to carry out 10 transactions per query
event, that is, per vertex on the DAG.

To test the performance gain of batching, we performed
an experiment where batching is disabled. Surprisingly,
the batched throughput is only 2x as large as the un-
batched case, and increasing the batch size further does
not increase throughput.

The reason for this is that the implementation is bot-
tlenecked by transaction verification. Our current imple-
mentation uses an event-driven model to handle a large
number of concurrent messages from the network. Af-
ter commenting out the verify () function in our code,
the throughput rises to 8K tps, showing that either con-
tract interpretation or cryptographic operations involved
in the verification pose the main bottleneck to the sys-
tem. Removing this bottleneck by offloading transaction
verification to a GPU is possible. Event without GPU op-
timization, 1312 tps is far in excess of extant blockchains.

5.8 Comparison to Other Systems

The parameters for our experiments were chosen to be
comparable to Algorand [26], and we use Bitcoin [40] as
a baseline.

Algorand uses a verifiable random function to elect
committees, and maintains a totally-ordered log while
Avalanche establishes only a partial order. Algorand
is leader-based and performs consensus by committee,
while Avalanche is leader-less. Both evaluations use a
decision network of size 2000 on EC2. Our evaluation
uses c5.large with 2 vCPU, 2 Gbps network per VM,
while Algorand uses m4.2xlarge with 8 vCPU, 1 Gbps
network per VM. The CPUs are approximately the same
speed, and our system is not bottlenecked by the network,
making comparison possible. The security parameters
chosen in our experiments guarantee a safety violation
probability below 10~? in the presence of 20% Byzan-
tine nodes, while Algorand’s evaluation guarantees a vi-
olation probability below 5 x 10~9 with 20% Byzantine
nodes.

The throughput is 3-7 tps for Bitcoin, 364 tps for Algo-
rand (with 10 Mbyte blocks), and 159 tps (with 2 Mbyte



blocks). In contrast, Avalanche achieves over 1300 tps
consistently on up to 2000 nodes. As for latency, final-
ity is 1060 minutes for Bitcoin, around 50 seconds for
Algorand with 10 Mbyte blocks and 22 seconds with 2
Mbyte blocks, and 4.2 seconds for Avalanche.

6 Related Work

Bitcoin [40] is a cryptocurrency that uses a blockchain
based on proof-of-work (PoW) to maintain a ledger of
UTXO transactions. While techniques based on proof-
of-work [6,23], and even cryptocurrencies with minting
based on proof-of-work [45,52], have been explored be-
fore, Bitcoin was the first to incorporate PoW into its con-
sensus process. Unlike more traditional BFT protocols,
Bitcoin has a probabilistic safety guarantee and assumes
honest majority computational power rather than a known
membership, which in turn has enabled an internet-scale
permissionless protocol. While permissionless and re-
silient to adversaries, Bitcoin suffers from low throughput
(~3 tps) and high latency (~5.6 hours for a network with
20% Byzantine presence and 2732 security guarantee).
Furthermore, PoW requires a substantial amount of com-
putational power that is consumed only for the purpose
of maintaining safety.

Countless cryptocurrencies use PoW [6, 23] to main-
tain a distributed ledger. Like Bitcoin, they suffer from
inherent scalability bottlenecks. Several proposals for
protocols exist that try to better utilize the effort made
by PoW. Bitcoin-NG [24] and the permissionless ver-
sion of Thunderella [43] use Nakamoto-like consensus to
elect a leader that dictates writing of the replicated log
for a relatively long time so as to provide higher through-
put. Moreover, Thunderella provides an optimistic bound
that, with 3/4 honest computational power and an hon-
est elected leader, allows transactions to be confirmed
rapidly. ByzCoin [34] periodically selects a small set of
participants and then runs a PBFT-like protocol within
the selected nodes. It achieves a throughput of 393 tps
with about 35 second latency.

Another category of blockchain protocols proposes to
get rid of PoW and replace it with Proof-of-Stake (PoS).
PoS eliminates the computational cost of PoW by re-
quiring a node to put its money on hold in exchange for
participation in consensus. Consensus protocols based
on PoS replace the honest majority computational power
by honest majority stake values. Snow White [19] and
Ouroboros [33] are some of the earliest provably secure
PoS protocols. Ouroboros uses a secure multiparty coin-
flipping protocol to produce randomness for leader elec-
tion. The follow-up protocol, Ouroboros Praos [20] pro-
vides safety in the presence of fully adaptive adversaries.

Protocols based on Byzantine agreement [36,44] typi-
cally make use of quorums and require precise knowledge
of membership. PBFT [14], a well-known representative,
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requires a quadratic number of message exchanges in or-
der to reach agreement. The Q/U protocol [3] and HQ
replication [17] use a quorum-based approach to optimize
for contention-free cases of operation to achieve consen-
sus in only a single round of communication. How-
ever, although these protocols improve on performance,
they degrade very poorly under contention. Zyzzyva [35]
couples BFT with speculative execution to improve the
failure-free operation case. Aliph [28] introduces a proto-
col with optimized performance under several, rather than
justone, cases of execution. In contrast, Ardvark [16] sac-
rifices some performance to tolerate worst-case degrada-
tion, providing a more uniform execution profile. This
work, in particular, sacrifices failure-free optimizations
to provide consistent throughput even at high number of
failures. Past work in permissioned BFT systems typi-
cally requires at least 2b 4 1 replicas tolerance. However,
CheapBFT [32] showed how to leverage trusted hard-
ware components to construct a protocol that uses b + 1
replicas.

Other work attempts to introduce new protocols under
redefinitions and relaxations of the BFT model. Large-
scale BFT [46] modifies PBFT to allow for arbitrary
choice of number of replicas and failure threshold, provid-
ing a probabilistic guarantee of liveness for some failure
ratio but protecting safety with high probability. In an-
other form of relaxation. Zeno [48] introduces a BFT state
machine replication protocol that trades consistency for
high availability. More specifically, this paper guarantees
eventual consistency rather than linearizability, meaning
that participants can be inconsistent but eventually agree
once the network stabilizes. By providing an even weaker
consistency guarantee, namely fork-join-causal consis-
tency, Depot [37] describes a protocol that guarantees
safety under b + 1 replicas.

NOW [27] is, to our best knowledge, the first to use the
idea of sub-quorums to drive smaller instances of consen-
sus. The insight of this paper is that small, logarithmic-
sized quorums can be extracted from a potentially large
set of nodes in the network, allowing smaller instances of
consensus protocols to be run in parallel.

HoneyBadger [39] provides good liveness in a network
with heterogeneous latencies and achieves over 341 tps
with 5 minute latency on 104 nodes. Tendermint [11] ro-
tates the leader for each block and has been demonstrated
with as many as 64 nodes. Ripple [47] has low latency
by utilizing collectively-trusted sub-networks in a large
network. The Ripple company provides a slow-changing
default list of trusted nodes, which renders the system
essentially centralized. In the synchronous and authen-
ticated setting, the protocol in [4] achieves constant-3-
round commit in expectation, at the cost of quadratic
message complexity.

Stellar [38] uses Federated Byzantine Agreement in



which quorum slices enable heterogeneous trust for dif-
ferent nodes. Safety is guaranteed when transactions can
be transitively connected by trusted quorum slices.

Algorand [26] uses a verifiable random function to
select a committee of nodes that participate in a novel
Byzantine consensus protocol. It achieves over 360 tps
with 50 second latency on an emulated network of 2000
committee nodes (500K users in total) distributed among
20 cities. To prevent Sybil attacks, it uses a mechanism
like proof-of-stake that assigns weights to participants in
committee selection based on the money in their accounts.

Some protocols use a Directed Acyclic Graph (DAG)
structure instead of a linear chain to achieve consen-
sus. Instead of choosing the longest chain as in Bitcoin,
GHOST [50] uses a more efficient chain selection rule that
allows transactions not on the main chain to be taken into
consideration, increasing efficiency. SPECTRE [49] uses
transactions on the DAG to vote recursively with PoW to
achieve consensus, followed up by PHANTOM [51] that
achieves a linear order among all blocks. Avalanche is
different in that the voting result is a one-time chit that
is determined by a query, while the votes in PHANTOM
are purely determined by transaction structure. Similar to
Thunderella, Meshcash [9] combines a slow PoW-based
protocol with a fast consensus protocol that allows a high
block rate regardless of network latency, offering fast con-
firmation time. Hashgraph [7] is a leader-less protocol
that builds a DAG via randomized gossip. It requires full
membership knowledge at all times, and, similar to the
Ben-Or [8], it suffers from at least exponential message
complexity [5, 13].

7 Conclusion

This paper introduced a new family of leaderless,
metastable, and PoW-free BFT protocols. These pro-
tocols do not incur quadratic message cost and can
work without precise membership knowledge. They are
lightweight, quiescent, and provide a strong safety guar-
antee, though they achieve these properties by not guaran-
teeing liveness for conflicting transactions. We have illus-
trated how they can be used to implement a Bitcoin-like
payment system, that achieves 1300tps in a geo-replicated
setting.
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