
Convergence
Finance -

Convergence
Protocol

Smart Contract Security
Assessment

Prepared by: Halborn

Date of Engagement: April 24th, 2023 - June 9th, 2023

Visit: Halborn.com

https://halborn.com

DOCUMENT REVISION HISTORY 5

CONTACTS 6

1 EXECUTIVE OVERVIEW 7

1.1 INTRODUCTION 8

1.2 ASSESSMENT SUMMARY 8

1.3 TEST APPROACH & METHODOLOGY 9

2 RISK METHODOLOGY 10

2.1 EXPLOITABILITY 11

2.2 IMPACT 12

2.3 SEVERITY COEFFICIENT 14

2.4 SCOPE 16

3 ASSESSMENT SUMMARY & FINDINGS OVERVIEW 18

4 FINDINGS & TECH DETAILS 19

4.1 (HAL-01) MERKLE TREE INVESTMENT LIMIT CAN BE BYPASSED - CRITI-

CAL(10) 21

Description 21

Code Location 22

BVSS 22

Proof of Concept 23

Recommendation 23

Remediation Plan 23

4.2 (HAL-02) REVOKED SCHEDULES CAN BE USED TO RELEASE CVG - CRITI-

CAL(10) 24

Description 24

Code Location 25

1

BVSS 25

Proof of Concept 26

Recommendation 26

Remediation Plan 26

4.3 (HAL-03) ORACLE RESPONSE NOT CHECKED FOR STALE PRICES -

MEDIUM(5.0) 27

Description 27

Code Location 27

BVSS 27

Recommendation 27

Remediation Plan 28

4.4 (HAL-04) PRICE FEED AGGREGATOR NOT RETURNING ADDITIONAL PARAM-

ETERS - MEDIUM(5.0) 29

Description 29

Code Location 29

BVSS 29

Recommendation 29

Remediation Plan 30

4.5 (HAL-05) CENTRALIZATION RISK - MEDIUM(5.0) 31

Description 31

BVSS 31

Recommendation 31

Remediation Plan 31

4.6 (HAL-06) NFT TIME LOCKING MECHANISM CAN BE BYPASSED - LOW(3.3)

32

Description 32

Code Location 32

2

BVSS 33

Recommendation 33

Remediation Plan 33

4.7 (HAL-07) ROUNDING ERROR WHEN COMPUTING RELEASABLE AMOUNT -

LOW(2.5) 34

Description 34

Code Location 34

BVSS 35

Recommendation 35

Remediation Plan 36

4.8 (HAL-08) VESTING SCHEDULES WITH AN AMOUNT LOWER THAN MAXIMUM

SUPPLY REVERT - LOW(2.0) 37

Description 37

Code Location 37

BVSS 38

Recommendation 38

Remediation Plan 38

5 RETESTING 39

5.1 CONVERGENCE01 - USER CAN SEND ALLOWANCE EXCESS TO THE CVGUTIL-

ITIES CONTRACT 40

Description 40

Code Location 40

BVSS: 42

Recommendation 42

Remediation Plan 42

6 AUTOMATED TESTING 43

6.1 STATIC ANALYSIS REPORT 44

Description 44

3

Results 44

6.2 AUTOMATED SECURITY SCAN 56

Description 56

4

DOCUMENT REVISION HISTORY

VERSION MODIFICATION DATE AUTHOR

0.1 Document Creation 02/09/2023 Manuel Garcia

0.2 Document Updates 06/09/2023 Manuel Garcia

0.3 Draft Version 06/09/2023 Manuel Garcia

0.4 Draft Review 06/12/2023 Grzegorz Trawinski

0.5 Draft Review 06/12/2023 Piotr Cielas

0.6 Draft Review 06/12/2023 Gabi Urrutia

1.0 Remediation Plan 07/06/2023 Manuel Garcia Diaz

1.1 Remediation Plan 07/28/2023 Manuel Garcia Diaz

1.2 Remediation Plan Review 07/28/2023 Piotr Cielas

1.3 Remediation Plan Review 07/30/2023 Gabi Urrutia

5

CONTACTS

CONTACT COMPANY EMAIL

Rob Behnke Halborn Rob.Behnke@halborn.com

Steven Walbroehl Halborn Steven.Walbroehl@halborn.com

Gabi Urrutia Halborn Gabi.Urrutia@halborn.com

Piotr Cielas Halborn Piotr.Cielas@halborn.com

Grzegorz
Trawinski

Halborn Grzegorz.Trawinski@halborn.com

Manuel Garcia Halborn Manuel.Diaz@halborn.com

6

mailto:Rob.Behnke@halborn.com
mailto:Steven.Walbroehl@halborn.com
mailto:Gabi.Urrutia@halborn.com
mailto:Piotr.Cielas@halborn.com
mailto:Grzegorz.Trawinski@halborn.com
mailto:Manuel.Diaz@halborn.com

7

EXECUTIVE OVERVIEW

1.1 INTRODUCTION

The Convergence protocol is a protocol aggregator that intends to allow

users to stake their tokens from other protocols to generate yield.

Convergence Finance engaged Halborn to conduct a security assessment on

their smart contracts beginning on April 24th, 2023 and ending on June 9th,

2023. The security assessment was scoped to the smart contracts provided

in the Convergence-fi/contracts-audit GitHub repository. Commit hashes

and further details can be found in the Scope section of this report.

1.2 ASSESSMENT SUMMARY

The team at Halborn was provided 7 weeks for the engagement and assigned 1

full-time security engineer to audit the security of the smart contracts

in scope. The security engineer is a blockchain and smart contract

security expert with advanced penetration testing and smart contract

hacking skills, and deep knowledge of multiple blockchain protocols.

The purpose of the assessments is to:

• Ensure that smart contract functions operate as intended

• Identify potential security issues within the smart contracts

In summary, Halborn identified some improvements to reduce the likeli-

hood and impact of multiple risks, which have been mostly addressed by

Convergence Finance . The main ones are the following:

• Increasing the invested stable variable value to prevent bypassing

the merkle tree limit.

• Prevent revoked schedules from being used to release CVG.

8

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Convergence-fi/contracts-audit

1.3 TEST APPROACH & METHODOLOGY

Halborn performed a combination of manual and automated security testing

to balance efficiency, timeliness, practicality, and accuracy in regard

to the scope of this assessment. While manual testing is recommended to

uncover flaws in logic, process, and implementation; automated testing

techniques help enhance coverage of the code and can quickly identify

items that do not follow the security best practices. The following

phases and associated tools were used during the assessment:

• Research into architecture and purpose

• Smart contract manual code review and walkthrough

• Graphing out functionality and contract logic/connectivity/functions

(solgraph)

• Manual assessment of use and safety for the critical Solidity vari-

ables and functions in scope to identify any arithmetic related

vulnerability classes

• Manual testing by custom scripts

• Scanning of solidity files for vulnerabilities, security hot-spots

or bugs. (MythX)

• Static Analysis of security for scoped contract, and imported func-

tions. (Slither)

• Testnet deployment (Brownie, Remix IDE, Foundry)

9

EX
EC

UT
IV

E
OV

ER
VI

EW

2. RISK METHODOLOGY

Every vulnerability and issue observed by Halborn is ranked based on two

sets of Metrics and a Severity Coefficient. This system is inspired by

the industry standard Common Vulnerability Scoring System.

The two Metric sets are: Exploitability and Impact. Exploitability

captures the ease and technical means by which vulnerabilities can be

exploited and Impact describes the consequences of a successful exploit.

The Severity Coefficients is designed to further refine the accuracy of

the ranking with two factors: Reversibility and Scope. These capture the

impact of the vulnerability on the environment as well as the number of

users and smart contracts affected.

The final score is a value between 0-10 rounded up to 1 decimal place and

10 corresponding to the highest security risk. This provides an objective

and accurate rating of the severity of security vulnerabilities in smart

contracts.

The system is designed to assist in identifying and prioritizing vul-

nerabilities based on their level of risk to address the most critical

issues in a timely manner.

10

EX
EC

UT
IV

E
OV

ER
VI

EW

2.1 EXPLOITABILITY

Attack Origin (AO):

Captures whether the attack requires compromising a specific account.

Attack Cost (AC):

Captures the cost of exploiting the vulnerability incurred by the attacker

relative to sending a single transaction on the relevant blockchain.

Includes but is not limited to financial and computational cost.

Attack Complexity (AX):

Describes the conditions beyond the attacker’s control that must exist in

order to exploit the vulnerability. Includes but is not limited to macro

situation, available third-party liquidity and regulatory challenges.

Metrics:

Exploitability Metric

(mE)
Metric Value Numerical Value

Attack Origin (AO)
Arbitrary (AO:A) 1

Specific (AO:S) 0.2

Attack Cost (AC)

Low (AC:L) 1

Medium (AC:M) 0.67

High (AC:H) 0.33

Attack Complexity (AX)

Low (AX:L) 1

Medium (AX:M) 0.67

High (AX:H) 0.33

Exploitability E is calculated using the following formula:

E “
ź

me

11

EX
EC

UT
IV

E
OV

ER
VI

EW

2.2 IMPACT

Confidentiality (C):

Measures the impact to the confidentiality of the information resources

managed by the contract due to a successfully exploited vulnerability.

Confidentiality refers to limiting access to authorized users only.

Integrity (I):

Measures the impact to integrity of a successfully exploited vulnerabil-

ity. Integrity refers to the trustworthiness and veracity of data stored

and/or processed on-chain. Integrity impact directly affecting Deposit

or Yield records is excluded.

Availability (A):

Measures the impact to the availability of the impacted component re-

sulting from a successfully exploited vulnerability. This metric refers

to smart contract features and functionality, not state. Availability

impact directly affecting Deposit or Yield is excluded.

Deposit (D):

Measures the impact to the deposits made to the contract by either users

or owners.

Yield (Y):

Measures the impact to the yield generated by the contract for either

users or owners.

12

EX
EC

UT
IV

E
OV

ER
VI

EW

Metrics:

Impact Metric

(mI)
Metric Value Numerical Value

Confidentiality (C)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Integrity (I)

None (I:N) 0

Low (I:L) 0.25

Medium (I:M) 0.5

High (I:H) 0.75

Critical (I:C) 1

Availability (A)

None (A:N) 0

Low (A:L) 0.25

Medium (A:M) 0.5

High (A:H) 0.75

Critical 1

Deposit (D)

None (D:N) 0

Low (D:L) 0.25

Medium (D:M) 0.5

High (D:H) 0.75

Critical (D:C) 1

Yield (Y)

None (Y:N) 0

Low (Y:L) 0.25

Medium: (Y:M) 0.5

High: (Y:H) 0.75

Critical (Y:H) 1

Impact I is calculated using the following formula:

I “ maxpmIq `

ř

mI ´ maxpmIq

4

13

EX
EC

UT
IV

E
OV

ER
VI

EW

2.3 SEVERITY COEFFICIENT

Reversibility (R):

Describes the share of the exploited vulnerability effects that can be

reversed. For upgradeable contracts, assume the contract private key is

available.

Scope (S):

Captures whether a vulnerability in one vulnerable contract impacts re-

sources in other contracts.

Coefficient

(C)
Coefficient Value Numerical Value

Reversibility (r)

None (R:N) 1

Partial (R:P) 0.5

Full (R:F) 0.25

Scope (s)
Changed (S:C) 1.25

Unchanged (S:U) 1

Severity Coefficient C is obtained by the following product:

C “ rs

14

EX
EC

UT
IV

E
OV

ER
VI

EW

The Vulnerability Severity Score S is obtained by:

S “ minp10, EIC ˚ 10q

The score is rounded up to 1 decimal places.

Severity Score Value Range

Critical 9 - 10

High 7 - 8.9

Medium 4.5 - 6.9

Low 2 - 4.4

Informational 0 - 1.9

15

EX
EC

UT
IV

E
OV

ER
VI

EW

2.4 SCOPE

Code repositories:

1. Convergence Protocol

• Repository: Convergence-fi/contracts-audit

• Commit ID: e1a661dc699393ec879bbf98ffb31d02753033ef - Remmediation

Plan: 225258abc90206315302ade5c2d8701cb792cbf3

• Smart contracts in scope:

1. BondCalculator.sol (contracts/Bond/BondCalculator.sol)

2. BondDepository.sol (contracts/Bond/BondDepository.sol)

3. BondLogo.sol (contracts/Bond/BondLogo.sol)

4. BondPositionManager.sol (contracts/Bond/BondPositionManager.

sol)

5. GaugeController.vy (contracts/Locking/GaugeController.vy)

6. LockingLogo.sol (contracts/Locking/LockingLogo.sol)

7. LockingPositionDelegate.sol (contracts/Locking/LockingPositionDelegate

.sol)

8. LockingPositionManager.sol (contracts/Locking/LockingPositionManager

.sol)

9. veCVG.vy (contracts/Locking/veCVG.vy)

10. VveCVGCalculator.sol (contracts/Locking/VveCVGCalculator.sol)

11. CvgOracle.sol (contracts/Oracles/CvgOracle.sol)

12. CvgV3Aggregator.sol (contracts/Oracles/CvgV3Aggregator.sol)

13. SeedPresaleCvg.sol (contracts/PresaleVesting/SeedPresaleCvg.

sol)

14. VestingCvg.sol (contracts/PresaleVesting/VestingCvg.sol)

15. WlPresaleCvg.sol (contracts/PresaleVesting/WlPresaleCvg.sol)

16. CvgRewards.sol (contracts/Rewards/CvgRewards.sol)

17. TAssetBlackHole.sol (contracts/Rewards/TAssetBlackHole.sol)

18. YsDistributor.sol (contracts/Rewards/YsDistributor.sol)

19. CvgTokeStaking.sol (contracts/Staking/CvgTokeStaking.sol)

20. StakingLogo.sol (contracts/Staking/StakingLogo.sol)

21. StakingViewer.sol (contracts/Staking/StakingViewer.sol)

22. TAssetStaking.sol (contracts/Staking/TAssetStaking.sol)

16

EX
EC

UT
IV

E
OV

ER
VI

EW

https://github.com/Convergence-fi/contracts-audit
https://github.com/Convergence-fi/contracts-audit/tree/e1a661dc699393ec879bbf98ffb31d02753033ef
https://github.com/Convergence-fi/contracts-audit/tree/225258abc90206315302ade5c2d8701cb792cbf3

23. TokeStaker.sol (contracts/Staking/TokeStaker.sol)

24. TokeStakingCommon.sol (contracts/Staking/TokeStakingCommon.sol

)

25. Cvg.sol (contracts/Token/Cvg.sol)

26. CvgERC721TimeLocking.sol (contracts/Token/CvgERC721TimeLocking

.sol)

27. CvgToke.sol (contracts/Token/CvgToke.sol)

28. CvgUtilities.sol (contracts/Token/CvgUtilities.sol)

29. SwapperFactory.sol (contracts/Token/SwapperFactory.sol)

30. CloneFactory.sol (contracts/CloneFactory.sol)

31. CvgControlTower.sol (contracts/CvgControlTower.sol)

Out-of-scope:

- third-party libraries and dependencies

- economic attacks

- manual interactions with other protocols

- attacks resulting from centralization risk

17

EX
EC

UT
IV

E
OV

ER
VI

EW

3. ASSESSMENT SUMMARY & FINDINGS
OVERVIEW

CRITICAL HIGH MEDIUM LOW INFORMATIONAL

2 0 3 3 0

18

EX
EC

UT
IV

E
OV

ER
VI

EW

SECURITY ANALYSIS RISK LEVEL REMEDIATION DATE

(HAL-01) MERKLE TREE INVESTMENT
LIMIT CAN BE BYPASSED

Critical (10) SOLVED - 07/06/2023

(HAL-02) REVOKED SCHEDULES CAN BE
USED TO RELEASE CVG

Critical (10) SOLVED - 07/06/2023

(HAL-03) ORACLE RESPONSE NOT
CHECKED FOR STALE PRICES

Medium (5.0) SOLVED - 07/06/2023

(HAL-04) PRICE FEED AGGREGATOR NOT
RETURNING ADDITIONAL PARAMETERS

Medium (5.0) RISK ACCEPTED

(HAL-05) CENTRALIZATION RISK Medium (5.0) RISK ACCEPTED

(HAL-06) NFT TIME LOCKING MECHANISM
CAN BE BYPASSED

Low (3.3) SOLVED - 07/06/2023

(HAL-07) ROUNDING ERROR WHEN
COMPUTING RELEASABLE AMOUNT

Low (2.5) SOLVED - 07/28/2023

(HAL-08) VESTING SCHEDULES WITH AN
AMOUNT LOWER THAN MAXIMUM SUPPLY

REVERT
Low (2.0) SOLVED - 07/06/2023

19

EX
EC

UT
IV

E
OV

ER
VI

EW

20

FINDINGS & TECH
DETAILS

4.1 (HAL-01) MERKLE TREE INVESTMENT
LIMIT CAN BE BYPASSED - CRITICAL(10)

Description:

The WlPresaleCvg contract allows users to buy CVG tokens if they are

whitelisted in a Merkle tree. Currently, there are 3 Merkle trees, each

one with a different investment limit:

• Small with a maximum of 800 * 10e18 CVG tokens.

• Medium with a maximum of 4,000 * 10e18 CVG tokens.

• Large with a maximum of 8,000 * 10e18 CVG tokens.

Users invest by sending the amount to invest, Merkle proof and the type

of Merkle tree to the investMint function. This function checks that the

amount is below the list type limit and mints a position NFT to the user.

Moreover, the refillToken function allows users to refill a position NFT

as long as the new total amount does not exceed the Merkle type limit.

However, although this function properly increases the cvgRedeemable

variable, it does not properly increase the stableInvested amount used

to determine whether an investment has exceeded the limit.

This allows a malicious user to invest the minimum amount required in

order to create a position NFT and later call refillToken multiple times,

allowing them to retrieve the whole CVG Tokens, not only bypassing their

Merkle tree limits but also leaving other users in the Merkle trees

without any tokens.

21

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 1: contracts/PresaleVesting/WlPresaleCvg.sol

232 function refillToken(

233 uint256 _tokenId ,

234 uint256 _amount ,

235 bool _isDai

236) external {

237 require(ownerOf(_tokenId) == msg.sender , "NOT_OWNED");

238

239 IERC20 token = _isDai ? Dai : Frax;

240

241 uint256 _vestingType = presaleInfos[_tokenId]. vestingType;

242 uint256 cvgAmount = (_amount * NUMERATOR) / PRICE_WL;

243

244 wlParams[_vestingType]. cvgRedeemable += cvgAmount;

245

246 require(

247 _amount + presaleInfos[_tokenId]. stableInvested <=

248 wlParams[_vestingType].maxInvest ,

249 "TOO_MUCH_Q_WL"

250);

251

252 /// @dev update the presales info for this address , only

ë change cvgAmount

253 presaleInfos[_tokenId]. cvgAmount += cvgAmount;

254

255 /// @dev Update available supply

256 supply -= cvgAmount;

257

258 /// @dev Transfer

259 token.transferFrom(msg.sender , address(this), _amount);

260 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:C/A:C/D:N/Y:C/R:N/S:U (10)

22

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

1. A malicious user calls investMint() to create a new position.

2. Malicious users call refillToken() multiple times, bypassing the

Merkle tree limit and ending with all CVG Token supply.

3. Now, legitimate users can no longer receive their CVG tokens.

Recommendation:

It is recommended to increase the stableInvested variable in the

refillToken function.

Remediation Plan:

SOLVED: The Convergence Finance team fixed the issue by increasing the

stableInvested amount when calling refillToken() in commit 20414f9.

23

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/commit/20414f914c334342daa97292d203843021aa30a5

4.2 (HAL-02) REVOKED SCHEDULES CAN
BE USED TO RELEASE CVG -
CRITICAL(10)

Description:

In the VestingCvg contract, the revokeVestingSchedule function allows

revoking an existing vesting schedule. This function reduces the

vestingSchedulesTotalAmount by the amount of CVG pending release.

However, when releasing the CVG with any of the available functions

(releaseSeed, releaseWl or releaseTeamOrDao) the last vesting sched-

ule is retrieved without checking the revoked variable. Even if a new

schedule is introduced, if a user calls any of the release functions

while the current schedule is revoked, the user can release CVG tokens

with the revoked schedule and the released amount is deducted from the

vestingSchedulesTotalAmount, causing an underflow for other legitimate

user when they are trying to release their tokens.

24

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Code Location:

Listing 2: contracts/PresaleVesting/VestingCvg.sol

238 function releaseSeed(uint256 _tokenId) external onlyOwnerOfSeed(

ë _tokenId) {

239 (

240 uint256 amountToRelease ,

241 ,

242 ,

243 uint256 vestingScheduleId

244) = _computeReleaseAmount(_tokenId , true);

245 require(amountToRelease > 0, "NOT_RELEASABLE"); // @audit Not

ë checking if revoked.

246

247 // update totalReleased & amountReleasedId &

ë vestingSchedulesTotalAmount

248 vestingSchedules[vestingScheduleId]. totalReleased +=

ë amountToRelease;

249

250 amountReleasedIdSeed[_tokenId] += amountToRelease;

251

252 vestingSchedulesTotalAmount -= amountToRelease;

253

254 // transfer Cvg amount to release

255 cvg.transfer(msg.sender , amountToRelease);

256 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:C/R:N/S:U (10)

25

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Proof of Concept:

1. An existing vesting schedule is revoked by the administrator.

2. A user with that vesting schedule assigned releases his vested CVG.

3. Vesting schedule gets executed even if it is revoked.

4. When the total released amount approaches the limit, the release

functions will underflow for other legitimate users.

Recommendation:

It is recommended to implement a check to prevent users from releasing

CVG if their assigned schedule has been revoked.

Remediation Plan:

SOLVED: The Convergence Finance team solved this issue by preventing the

release functions from being called with a revoked schedule in commit

20414f9.

26

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/commit/20414f914c334342daa97292d203843021aa30a5

4.3 (HAL-03) ORACLE RESPONSE NOT
CHECKED FOR STALE PRICES - MEDIUM
(5.0)

Description:

In the CvgOracle contract, the getPriceAggregator function allows the

oracle to retrieve the price from a Chainlink aggregator. However, this

function is not retrieving the answeredInRound and timestamp parameters

to check if the prices are stale. This could lead to the oracle using

stale prices in the event that the Chainlink oracle is not being updated.

Code Location:

Listing 3: contracts/Oracles/CvgOracle.sol

163 function getPriceAggregator(AggregatorV3Interface aggregator)

ë public view returns (uint256) {

164 (, int256 chainlinkPrice , , ,) = aggregator.latestRoundData ()

ë ;

165 return uint256(chainlinkPrice) * 10 ** (18 - aggregator.

ë decimals ());

166 }

BVSS:

AO:A/AC:L/AX:H/C:N/I:C/A:N/D:C/Y:C/R:N/S:U (5.0)

Recommendation:

Make sure the prices returned by the Chainlink aggregator are not stale.

27

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Listing 4: contracts/Oracles/CvgOracle.sol

193 function getPriceAggregator(

194 AggregatorV3Interface aggregator

195) public view returns (uint256) {

196 (

197 uint80 chain ,

198 int256 chainlinkPrice ,

199 ,

200 uint256 updatedAt ,

201 uint80 answeredInRound

202) = aggregator.latestRoundData ();

203

204 require(answeredInRound >= roundID , "Stale price");

205 require(chainlinkPrice > 0, " Error.NEGATIVE_PRICE");

206 require(

207 block.timestamp <= updatedAt + stalePriceDelay ,

208 Error.STALE_PRICE

209);

210

211 return uint256(chainlinkPrice) * 10 ** (18 - aggregator.

ë decimals ());

212 }

Remediation Plan:

SOLVED: The Convergence Finance team fixed the issue by checking for

stale prices in the getAndVerifyPrice() function in commit 20414f9.

28

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/commit/20414f914c334342daa97292d203843021aa30a5

4.4 (HAL-04) PRICE FEED AGGREGATOR
NOT RETURNING ADDITIONAL
PARAMETERS - MEDIUM (5.0)

Description:

In the CvgV3Aggregator contract, the latestRoundData function returns 0

for the roundId, startedAt, updatedAt, answeredInRound parameters.

This does not only disallow to check for stale prices, but it also prevents

the aggregator from working with standard contracts that check for stale

prices.

Code Location:

Listing 5: contracts/Oracles/CvgV3Aggregator.sol

52 function latestRoundData ()

53 external

54 view

55 returns (uint80 roundId , int256 answer , uint256 startedAt ,

ë uint256 updatedAt , uint80 answeredInRound)

56 {

57 return (0, latestPrice , 0, 0, 0);

58 }

BVSS:

AO:A/AC:L/AX:H/C:N/I:C/A:N/D:C/Y:C/R:N/S:U (5.0)

Recommendation:

Return the proper values for each of the described parameters.

29

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

Remediation Plan:

RISK ACCEPTED: The Convergence Finance team accepted the risk of this

issue.

30

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.5 (HAL-05) CENTRALIZATION RISK -
MEDIUM (5.0)

Description:

In the current protocol model, the interactions with the aggregated

protocol are performed manually through a multi-signature wallet. This

means that all the funds received from users using the protocol are

transferred to this wallet. This poses a concerning centralization risk

as the user’s funds are sent to a private wallet.

Moreover, if the private keys for the multi-signature wallets are ever

compromised, all protocol funds could be stolen by a malicious actor.

BVSS:

AO:S/AC:L/AX:L/C:C/I:C/A:C/D:C/Y:C/R:N/S:C (5.0)

Recommendation:

Include as many interactions as possible into the smart contract’s logic

in order to decentralize the protocol.

Remediation Plan:

RISK ACCEPTED: The Convergence Finance team accepted the risk of this

issue.

31

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

4.6 (HAL-06) NFT TIME LOCKING
MECHANISM CAN BE BYPASSED - LOW
(3.3)

Description:

The CvgERC721TimeLocking contract used to mint position NFTS implements a

time-locking mechanism which allows users to lock the NFT, so no rewards

can be claimed in order to place it for sale. This prevents a malicious

user from front-running a sale transaction and claiming all rewards just

before selling it.

However, the user can change the lock time frame at any time as long as the

new timestamp is greater than the block timestamp. This prevents users

from front-running with a new timestamp equal to the block timestamp,

which would allow claiming rewards before selling.

However, it is possible for a malicious user to determine whether the

sell transaction is going to execute in a different block and perform a

double front-run, unlocking the NFT in the first block and immediately

claiming the rewards in the next one.

Code Location:

Listing 6: contracts/Token/CvgERC721TimeLocking.sol (Line 63)

62 function setLock(uint256 tokenId , uint256 timestamp) external

ë onlyNftOwner(tokenId) {

63 require(timestamp > block.timestamp && timestamp - block.

ë timestamp < maxLockingTime , "WRONG_TIME_LOCK");

64 unlockingTimestampPerToken[tokenId] = timestamp;

65 }

32

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

BVSS:

AO:A/AC:L/AX:H/C:N/I:N/A:N/D:N/Y:C/R:N/S:U (3.3)

Recommendation:

Implement a buffer where the new timestamp cannot be earlier than a few

minutes from the block timestamp.

Remediation Plan:

SOLVED: The Convergence Finance team fixed this issue by adding a buffer

when changing the lock timestamp in commit 20414f9.

33

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/commit/20414f914c334342daa97292d203843021aa30a5

4.7 (HAL-07) ROUNDING ERROR WHEN
COMPUTING RELEASABLE AMOUNT - LOW
(2.5)

Description:

The calculateRelease function in the VestingCVG contract is in charge of

computing the releasable amount on each slice of the vesting schedule.

However, there is a small rounding error in the calculation of the release

amount for each slice.

This results in slices releasing fewer tokens than what they should.

Code Location:

Listing 7: contracts/PresaleVesting/VestingCvg.sol (Lines 392-405)

378 function calculateRelease(

379 uint256 vestingSchedulesId ,

380 uint256 totalAmount ,

381 uint256 totalAmountReleased

382) private view returns (uint256 amountToRelease) {

383 uint256 amountReleasable;

384 uint256 slices = vestingSchedules[vestingSchedulesId]. slices;

385 uint256 slicePeriod = vestingSchedules[vestingSchedulesId].

ë slicePeriods;

386 uint256 releaseTimestamp = vestingSchedules[vestingSchedulesId

ë]. cliff;

387 uint256 dropCliff = vestingSchedules[vestingSchedulesId].

ë dropCliff;

388

389 uint256 amountDropCliff = (totalAmount * dropCliff) / 1000;

390 uint256 endRelease = releaseTimestamp + slices * slicePeriod;

391

392 if (block.timestamp >= releaseTimestamp) {

393 uint256 actualSlice = (block.timestamp - releaseTimestamp)

ë / (slicePeriod);

394

395 if (slices <= actualSlice) {

34

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

396 amountReleasable = totalAmount;

397 } else {

398 uint256 a = (totalAmount - amountDropCliff) / (

ë endRelease - releaseTimestamp);

399 int256 b = int256(amountDropCliff) - int256(a *

ë releaseTimestamp);

400 uint256 x = releaseTimestamp + actualSlice *

ë slicePeriod;

401

402 amountReleasable = uint256(int256(a) * int256(x) + b);

403 }

404 amountToRelease = amountReleasable - totalAmountReleased;

405 }

406 }

BVSS:

AO:A/AC:L/AX:L/C:N/I:N/A:N/D:N/Y:L/R:N/S:U (2.5)

Recommendation:

Please see below for an optimized formula that simplifies the calcula-

tions, achieving the same result without rounding errors:

Listing 8: contracts/PresaleVesting/VestingCvg.sol (Lines 392-402)

378 function calculateRelease(

379 uint256 vestingSchedulesId ,

380 uint256 totalAmount ,

381 uint256 totalAmountReleased

382) private view returns (uint256 amountToRelease) {

383 uint256 amountReleasable;

384 uint256 slices = vestingSchedules[vestingSchedulesId]. slices;

385 uint256 slicePeriod = vestingSchedules[vestingSchedulesId].

ë slicePeriods;

386 uint256 releaseTimestamp = vestingSchedules[vestingSchedulesId

ë]. cliff;

387 uint256 dropCliff = vestingSchedules[vestingSchedulesId].

ë dropCliff;

388

389 uint256 amountDropCliff = (totalAmount * dropCliff) / 1000;

35

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

390 uint256 endRelease = releaseTimestamp + slices * slicePeriod;

391

392 if (block.timestamp >= releaseTimestamp) {

393 uint256 actualSlice = (block.timestamp - releaseTimestamp)

ë /

394 (slicePeriod);

395

396 if (slices <= actualSlice) {

397 amountReleasable = totalAmount;

398 } else {

399 amountReleasable = amountDropCliff + ((totalAmount -

ë amountDropCliff) * actualSlice) / slices;

400 }

401 amountToRelease = amountReleasable - totalAmountReleased;

402 }

403 }

Remediation Plan:

SOLVED: The Convergence Finance team fixed the issue by switching to a

different non-slice based model in commit 46799c7.

36

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/blob/46799c7f026d5f9e44e6db015161c4ae57bd16ad

4.8 (HAL-08) VESTING SCHEDULES WITH
AN AMOUNT LOWER THAN MAXIMUM SUPPLY
REVERT - LOW (2.0)

Description:

When releasing CVG for the team or DAO schedule, the CVG is computed based

on the max supply instead of the total amount specified in the schedule.

Therefore, specifying any amount below the max supply when creating the

schedule results in users unable to release due to underflow. The vesting

schedules are set by the contract’s owner.

Code Location:

Listing 9: contracts/PresaleVesting/VestingCvg.sol (Lines 325,329)

311 function _computeReleaseAmountTeamDao(

312 bool _isTeam

313)

314 internal

315 view

316 returns (uint256 amountToRelease , uint256 _vestingScheduleId)

317 {

318 uint256 vestingType;

319 uint256 totalAmount;

320 uint256 totalAmountReleased;

321

322 if (_isTeam) {

323 totalAmountReleased = amountReleasedTeam;

324 vestingType = TYPE_TEAM;

325 totalAmount = MAX_SUPPLY_TEAM;

326 } else {

327 totalAmountReleased = amountReleasedDao;

328 vestingType = TYPE_DAO;

329 totalAmount = MAX_SUPPLY_DAO;

330 }

331

332 _vestingScheduleId = vestingIdForType[vestingType];

333 amountToRelease = calculateRelease(

37

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

334 _vestingScheduleId ,

335 totalAmount ,

336 totalAmountReleased

337);

338 }

BVSS:

AO:S/AC:L/AX:L/C:N/I:N/A:C/D:N/Y:N/R:N/S:U (2.0)

Recommendation:

Use the total amount specified when creating the vesting schedule, or

implement a check to prevent a vesting schedule for the team or the DAO

with a total amount below max supply from being created.

Remediation Plan:

SOLVED: The Convergence Finance team fixed the issue by allowing to create

vesting schedules for the team or DAO with the max amount only in commit

20414f9.

38

FI
ND

IN
GS

&
TE

CH
DE

TA
IL

S

https://github.com/Convergence-fi/contracts-audit/commit/20414f914c334342daa97292d203843021aa30a5

39

RETESTING

The issue described in this section was brought to Halborn’s attention

by the Convergence Finance team during the engagement.

5.1 CONVERGENCE01 - USER CAN SEND
ALLOWANCE EXCESS TO THE
CVGUTILITIES CONTRACT

Description:

The SwapperFactory contract is a utility contract that is meant for the

CvgUtilities contract to swap tokens to TOKE through the 1inch proto-

col with the executeSwapForCvgToke() and executeSwapForTAsset() func-

tion. However, this function doesn’t check that the msg.sender is the

CvgUtilities contract address.

This allows a malicious user to call executeSwapForCvgToke() with the

address of a user that has non-utilized allowance for the SwapperFactory

and perform a griefing attack by sending the funds from the user to the

SwapperFactory.

Code Location:

Listing 10: contracts/utils/SwapperFactory.sol (Line 106)

79 /**

80 * @notice Swap source tokens to TOKE through 1inch protocol

81 * @param _user address of the staking user

82 * @param _swapTransaction aggregation data used for the swap to

ë occur through 1inch protocol

83 */

84 function executeSwapForCvgToke(

85 address _user ,

86 IAggregationRouterV5.SwapTransaction calldata _swapTransaction

87) external returns (uint256 totalTokeAmount) {

88 ICvgControlTower _cvgControlTower = cvgControlTower;

89

90 require(_swapTransaction.description.amount > 0, "

40

RE
TE

ST
IN

G

ë INVALID_AMOUNT");

91 require(

92 srcTokenAllowed[_swapTransaction.description.srcToken],

93 "SRC_TOKEN_NOT_ALLOWED"

94);

95 require(

96 _swapTransaction.description.dstToken == _cvgControlTower.

ë toke(),

97 "NOT_SWAPPING_TO_TOKE"

98);

99 require(

100 _swapTransaction.description.dstReceiver ==

101 _cvgControlTower.cvgUtilities (),

102 "INVALID_RECEIVER"

103);

104

105 /// @dev transfer user's tokens to this contract before

ë swapping

106 _swapTransaction.description.srcToken.transferFrom(

107 _user ,

108 address(this),

109 _swapTransaction.description.amount

110);

111

112 /// @dev set allowance value to swapped amount

113 IAggregationRouterV5 _aggregationRouter = aggregationRouter;

114 _swapTransaction.description.srcToken.approve(

115 address(_aggregationRouter),

116 _swapTransaction.description.amount

117);

118

119 /// @dev swap source token to TOKE

120 (totalTokeAmount ,) = _aggregationRouter.swap(

121 _swapTransaction.executor ,

122 _swapTransaction.description ,

123 _swapTransaction.permit ,

124 _swapTransaction.data

125);

126 }

41

RE
TE

ST
IN

G

BVSS::

AO:A/AC:L/AX:M/C:N/I:N/A:N/D:C/Y:N/R:N/S:U - (6.7 - Medium)

Recommendation:

Restrict the msg.sender so the executeSwapForCvgToke() and

executeSwapForTAsset() functions can only be called by the CvgUtilities

contract.

Remediation Plan:

SOLVED: The Convergence Finance team identified this issue and solved it by

preventing calling the executeSwapForCvgToke() and executeSwapForTAsset

() functions from any other address that is not the CvgUtilities contract.

225258abc90206315302ade5c2d8701cb792cbf3.

42

RE
TE

ST
IN

G

https://github.com/Convergence-fi/contracts-audit/pull/2/files#diff-332930283583689d3f2d73551cd9997b7ae0918d4e9d1d4529a2c8523257b95a

43

AUTOMATED TESTING

6.1 STATIC ANALYSIS REPORT

Description:

Halborn used automated testing techniques to enhance the coverage of

certain areas of the smart contracts in scope. Among the tools used was

Slither, a Solidity static analysis framework. After Halborn verified

the smart contracts in the repository and was able to compile them

correctly into their ABIs and binary format, Slither was run against the

contracts. This tool can statically verify mathematical relationships

between Solidity variables to detect invalid or inconsistent usage of the

contracts’ APIs across the entire code-base.

Results:

BondCalculator.sol

BondDepository.sol

BondLogo.sol

44

AU
TO

MA
TE

D
TE

ST
IN

G

BondPositionManager.sol

LockingPositionDelegate.sol

45

AU
TO

MA
TE

D
TE

ST
IN

G

LockingPositionManager.sol

46

AU
TO

MA
TE

D
TE

ST
IN

G

VveCVGCalculator.sol

CvgOracle.sol

47

AU
TO

MA
TE

D
TE

ST
IN

G

CvgV3Aggregator.sol

SeedPresaleCvg.sol

WlPresaleCvg.sol

48

AU
TO

MA
TE

D
TE

ST
IN

G

CvgRewards.sol

TAssetBlackHole.sol

49

AU
TO

MA
TE

D
TE

ST
IN

G

YsDistributor.sol

50

AU
TO

MA
TE

D
TE

ST
IN

G

CvgTokeStaking.sol

51

AU
TO

MA
TE

D
TE

ST
IN

G

StakingLogo.sol

StakingViewer.sol

TAssetStaking.sol

52

AU
TO

MA
TE

D
TE

ST
IN

G

TokeStaker.sol

Cvg.sol

CvgToke.sol

CvgUtilities.sol

53

AU
TO

MA
TE

D
TE

ST
IN

G

SwapperFactory.sol

CloneFactory.sol

CvgControlTower.sol

54

AU
TO

MA
TE

D
TE

ST
IN

G

The above output was reviewed, and all vulnerabilities were determined

to be false positives and were not included in the report.

55

AU
TO

MA
TE

D
TE

ST
IN

G

6.2 AUTOMATED SECURITY SCAN

Description:

Halborn used automated security scanners to assist with detection of

well-known security issues and to identify low-hanging fruits on the

targets for this engagement. Among the tools used was MythX, a security

analysis service for Ethereum smart contracts. MythX performed a scan

on the smart contracts and sent the compiled results to the analyzers in

order to locate any vulnerabilities.

Please see the following pages for the results.

56

AU
TO

MA
TE

D
TE

ST
IN

G

57

AU
TO

MA
TE

D
TE

ST
IN

G

58

AU
TO

MA
TE

D
TE

ST
IN

G

59

AU
TO

MA
TE

D
TE

ST
IN

G

60

AU
TO

MA
TE

D
TE

ST
IN

G

61

AU
TO

MA
TE

D
TE

ST
IN

G

62

AU
TO

MA
TE

D
TE

ST
IN

G

63

AU
TO

MA
TE

D
TE

ST
IN

G

64

AU
TO

MA
TE

D
TE

ST
IN

G

65

AU
TO

MA
TE

D
TE

ST
IN

G

66

AU
TO

MA
TE

D
TE

ST
IN

G

67

AU
TO

MA
TE

D
TE

ST
IN

G

68

AU
TO

MA
TE

D
TE

ST
IN

G

69

AU
TO

MA
TE

D
TE

ST
IN

G

70

AU
TO

MA
TE

D
TE

ST
IN

G

71

AU
TO

MA
TE

D
TE

ST
IN

G

72

AU
TO

MA
TE

D
TE

ST
IN

G

The above output was reviewed, and all vulnerabilities were determined

to be false positives and were not included in the report.

73

AU
TO

MA
TE

D
TE

ST
IN

G

THANK YOU FOR CHOOSING

	DOCUMENT REVISION HISTORY
	CONTACTS
	EXECUTIVE OVERVIEW
	INTRODUCTION
	ASSESSMENT SUMMARY
	TEST APPROACH & METHODOLOGY

	RISK METHODOLOGY
	EXPLOITABILITY
	IMPACT
	SEVERITY COEFFICIENT
	SCOPE

	ASSESSMENT SUMMARY & FINDINGS OVERVIEW
	FINDINGS & TECH DETAILS
	
	Description
	Code Location
	BVSS
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Proof of Concept
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	
	Description
	Code Location
	BVSS
	Recommendation
	Remediation Plan

	RETESTING
	CONVERGENCE01 - USER CAN SEND ALLOWANCE EXCESS TO THE CVGUTILITIES CONTRACT
	Description
	Code Location
	BVSS:
	Recommendation
	Remediation Plan

	AUTOMATED TESTING
	STATIC ANALYSIS REPORT
	Description
	Results

	AUTOMATED SECURITY SCAN
	Description

