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ARTICLE INFO ABSTRACT

Keywords: Prebiotics are substrates selectively metabolized by hindgut microorganisms conferring health benefits. Recent
Gut microbiota studies suggest polyphenols as candidate to prebiotics. Thus, this systematic review aimed to investigate the
Health

prebiotic effect of dietary polyphenols in preclinical and clinical studies. Animal studies demonstrated that the
consumption of polyphenols, especially catechins, anthocyanins and proanthocyanidins, increases the abun-
dance of Lactobacillus, Bifidobacterium, Akkermansia, Roseburia, and Faecalibacterium spp. Moreover, polyphenols
supplementation increased the production of short-chain fatty acids (SCFA), including butyrate. The included
clinical trials showed an increased abundance of Lactobacillus acidophilus, Bifidobacterium and Faecalibacterium
spp., and a reduction in plasma lipopolysaccharide-binding protein after the consumption of anthocyanins and
ellagic acid. In conclusion, there is strong evidence in preclinical studies that dietary polyphenols can stimulate
both the growth of microorganisms identified as prebiotic targets and an increase in the production of SCFA.
Therefore, clinical trials are warranted to investigate the prebiotic effect of dietary polyphenols on humans.

Beneficial bacteria
Butyric acid
Phenolic compounds
Metabolites

1. Introduction

Prebiotics are defined as substrates selectively utilized by the host's
microorganisms resulting in benefits for metabolic health, gastro-
intestinal system, bone health and mental health. Some dietary fibers,
especially resistant oligosaccharides (inulin, fructo-oligosaccharides
and galacto-oligosaccharides), are well-recognized in literature as pre-
biotics (Gibson et al., 2017). Besides dietary fibers, recent studies have
shown the interaction between polyphenols and the gut microbiota,
suggesting them as candidate compounds to prebiotics (Sanders,
Merenstein, Reid, Gibson, & Rastall, 2019; Shortt et al., 2018; Singh,
Cabral, Kumar, Ganguly, & Pandey, 2019).

Polyphenols are secondary metabolites of plants, characterized by
aromatic rings bearing one or more hydroxyl groups in their chemical
structure, ranging from that of a simple phenolic molecule to that of a
complex high-molecular mass polymer (Mojzer et al., 2016). These
compounds have low bioavailability and extensive metabolism in the
large intestine, favoring interactions with intestinal microorganisms
(Bian, Wei, Zhao, & Li, 2020). Actually, there is a bidirectional inter-
action, in which polyphenols modulate the gut microbiota and, con-
versely, microorganisms can modulate the activity of the phenolic
compounds. This interaction can regulate the metabolism and the
bioavailability of polyphenols, converting them into metabolites, which
may have different effects on the host health (Singh et al., 2019).

Dietary polyphenols are associated with a reduced risk of cardio-
metabolic diseases when regularly consumed (Noad et al., 2016). Stu-
dies show that polyphenols have antioxidant, anti-inflammatory (Chai,
Davis, Zhang, Zha, & Kirschner, 2019), anti-obesogenic, antilipidemic
(Fang et al., 2019) and anti-diabetic (Paquette et al., 2017) activities.
However, the role of dietary polyphenols in health largely depends on
their metabolism, absorption and bioavailability processes which are, in
turn, related to the gut microbiota modulation, in terms of composition
and functionality. Although polyphenols are currently recognized as
modulators of the gut microbiota composition, there is still no con-
clusive evidence of their prebiotic effect (Cueva, Silva, Pinillos,
Bartolomé, & Moreno-Arribas, 2020). The prebiotic effect of each
polyphenol can be influenced by the food source and the chemical
structure of the compound, along with the individual differences in the
gut microbiota composition (Serreli & Deiana, 2019). Therefore, es-
tablishing a relationship among the polyphenols consumption, the
growth of microorganisms recognized as prebiotic targets, the meta-
bolites generated and the effect on health is somewhat of a challenge.
This systematic review aimed to investigate the available evidence of
the prebiotic effect of dietary polyphenols.
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Table 1
Detailed search terms in the databases (August 2, 2019).
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Database Search term N° of items found (total = 4025)
PubMed (polyphenols[MeSH Terms] or flavonoids [MeSH Terms] or tannins [MeSH Terms] or lignans [MeSH Terms] or stilbenes 796

[MeSH Terms] or curcumin [MeSH Terms] or “phenolic acids” [Title/Abstract]) AND (microbiota [MeSH Terms] or

“human microbiome” [MeSH Terms] or “gut microbiota” [Title/Abstract] or “gut microbiome” [Title/Abstract] or prebiotic

[MeSH Terms] or firmicutes [Title/Abstract] or bacteroidetes [MeSH Terms])
Scopus (TITLE-ABS-KEY ((polyphenols OR flavonoids OR tannins OR lignans OR stilbenes OR curcumin OR “phenolic acids”)) AND 1633

TITLE-ABS-KEY ((microbiota OR “human microbiome” OR “gut microbiota” OR “gut microbiome” OR prebiotic OR

firmicutes OR bacteroidetes)))
Web of Science

#1 TS=(polyphenols OR flavonoids OR tannins OR lignans OR stilbenes OR curcumin OR “phenolic acids”) 1596

AND #2 TS = (microbiota OR “human microbiome” OR “gut microbiota” OR “gut microbiome” OR prebiotic OR firmicutes

OR bacteroidetes)

2. Material and methods
2.1. Search strategy and study selection

In accordance with the Preferred Reporting Items for Systematic
Reviews and Meta-Analyses (PRISMA) guidelines (Moher et al., 2015),
a systematic literature search was carried out through the PubMed,
Scopus and Web of Science databases up to August 02, 2019, using
terms related to prebiotic, gut microbiota and polyphenols (Table 1).
After the removal of duplicates using a bibliographic reference man-
ager, two authors independently reviewed the titles and abstracts of
each paper identified in the search. This procedure was performed
using a systematic review software. The selected studies were retrieved
for full-text analysis and eligible articles were identified. Afterwards,
they were reanalyzed for details of the study design and their outcome
to select the papers included in this review. Any disagreements in this
regard were solved by the means of discussion with a third author.

2.2. Inclusion and exclusion criteria

The following criteria were applied for inclusion: (1) a randomized
controlled study design using animals and/or humans; (2) intervention
with either isolated polyphenol or food extract; (3) phenolic com-
pounds profile of the food extract available; (4) outcomes related to
changes in the gut microbiota composition, with stimulation of mi-
croorganisms recognized as prebiotic targets (Lactobacillus,
Bifidobacterium, Roseburia, Eubacterium, and Faecalibacterium spp.)
(Gibson et al., 2017), including the Akkermansia spp. (Sanders et al.,
2019), and/or an increase in the production of short-chain fatty acids
(SCFA), including butyrate; and (5) publishing in English. Studies with
a lower than eight number of animals per group, acute studies, drug-
induced pathologies, gut microbiota composition assessment by culture
plate methods, and without the microorganism genera identification
were excluded.

2.3. Data extraction

The included studies were reviewed and the following data were
abstracted: sample source, exposure dosage, animal model or study
population (subjects and sample size), intervention period, diet type,
outcomes related to gut microbiota and host health, paper’s first author
and date of publication.

2.4. Quality assessment

The quality assessment of animal studies was conducted using the
SYRCLE’s risk of bias tool (Hooijmans et al., 2014). Cochrane Colla-
boration's tool (Higgins et al., 2011) was used for the quality assessment
of clinical trials.

3. Results
3.1. Description of studies

The initial search strategy yielded 4025 articles, out of which 1685
were excluded as duplicates. After analysis of titles and abstracts, 2044
records were excluded, including in vitro studies, review articles, con-
ference abstracts, letters, protocols, editorials, and unavailable full-
texts, and 296 were selected for full-text review. Among these, 242
studies were excluded according to the exclusion criteria. Thus, full-text
review of 54 eligible studies were made, excluding 30 articles for dif-
ferent reasons: there was no growth of microorganisms recognized as
prebiotic targets (Casanova-Marti et al., 2018; Cheng, Chen, Zhang,
et al., 2019; Cires et al., 2019; Collins et al., 2016; Cowan et al., 2014;
Gonzalez-Sarrias et al., 2017; Griffin et al., 2017; Guo, Tang, et al.,
2018; Li, Liu, Liu, Liao, & Zou, 2019; Most, Penders, Lucchesi,
Goossens, & Blaak, 2017; Porras et al., 2017; Remely et al., 2017; Shen,
Wan, Wang, & Jiang, 2019; Sung et al., 2017; Tan et al., 2018; Unno &
Osakabe, 2018; Wang et al., 2019; Yu et al., 2019; Yuan et al., 2018;
Zhang, Dong, et al., Zhang, Zhang, et al., 2018; Zhang, Wu, Li, Xin, &
Liu, 2019; Zhou, Zhang, Arikawa, & Chen, 2019); there was no increase
in the production of butyrate (Ginés et al., 2019; Grzelak-Blaszczyk
et al., 2018; Zhou, Tang, Shen, & Wang, 2018); and extracts contained
other compounds such as oligosaccharides, polysaccharides or dietary
fiber (Chiu et al., 2017; Gao et al., 2018; Garcia-Mazcorro et al., 2018;
Romo-Vaquero et al., 2014). Finally, 24 articles (22 animal studies and
2 clinical trials) fulfilled the eligibility criteria and were included in this
systematic review (Fig. 1). The animal studies were organized into two
sections, according to polyphenol classes and considering the majority
compound of the polyphenols profile available in the studies: flavo-
noids and other polyphenols (lignans, phenolic acids, stilbenes and
vanillin) (Table 2). Data on the polyphenol class and subclass were
extracted from the Phenol-Explorer database (www.phenol-explorer.
eu).

3.2. Prebiotic effect of dietary polyphenols

3.2.1. Animal studies

3.2.1.1. Flavonoids. The flavonoids were the most investigated
phenolic compounds in relation to the effects on the gut microbiota
composition and the benefits to the host health. Prebiotic effect of
anthocyanins, a subclass of the flavonoids, was evaluated in three
animal studies (Anhé et al., 2018; Li, Wu, et al., 2019; Van Hul et al.,
2018). In a study with Arctic berry extracts (Anhé et al., 2018), and
another with cinnamon bark and grape pomace extracts (Van Hul et al.,
2018), the most abundant polyphenols present in the extracts were
anthocyanins and proanthocyanidins. However, the authors associated
the main outcomes with the presence of the proanthocyanidins. The
proanthocyanidins or procyanidins effects on the gut microbiota were
investigated in other three studies. A marked increase in the abundance
of Akkermansia was observed after the consumption of polymeric
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Fig. 1. Flowchart of the

procyanidins from apple (Masumoto et al., 2016), and cranberry extract
rich in proanthocyanidins (Anhé et al., 2015, 2017). Moreover, body
weight gain reduction, insulin sensitivity improvement, upregulation of
genes involved in lipid catabolism, and downregulation of pro-
inflammatory genes in the liver were the health benefits associated
with the consumption of proanthocyanidins (Anhé et al., 2015, 2017;
Masumoto et al., 2016).

The prebiotic effect of the flavanols (epigallocatechin gallate, epi-
gallocatechin, epicatechin gallate, epicatechin), a flavonoid subclass,
was characterized in seven animal studies. The main food sources in-
vestigated were green tea, black tea, oolong tea, and Pu-erh tea. The
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intervention doses were very different among studies, and intervention
periods ranged from 28 to 196 days (Dey et al., 2019; Henning et al.,
2018; Liu et al., 2019; Lu et al., 2019; Ma et al., 2019; Wang et al.,
2018; Xia et al., 2019). An increase in the abundance of Akkermansia
and Bifidobacterium was observed in mice fed a high-fat diet after the
consumption of green tea polyphenols (Dey et al., 2019; Ma et al., 2019;
Wang et al., 2018). Supplementation of the oolong tea extract and
decaffeinated black tea extract increased the butyrate production (Liu
et al.,, 2019; Henning et al., 2018), while the Pu-erh tea extract con-
sumption stimulated the Akkermansia and Roseburia growth (Lu et al.,
2019; Xia et al., 2019).
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The intervention with soy isoflavone extract containing 51%
daidzin, 30% glycitin and 9% genistein increased the abundance of
Faecalibacterium and the fecal butyrate content in obese rats, and im-
proved intestinal barrier function through increasing the expressions of
zonula occludens 1 (Z0O-1), occludin and mucin 2 (Muc-2) genes (Luo
et al., 2019). An increase of the Faecalibacterium genus was also ob-
served after the consumption of genistein (Lopez et al., 2018).

The effects of other flavonoid subclasses were investigated in two
studies, in which the intervention samples were hydroxysafflor yellow
A (HSYA) (Liu et al., 2018) and Schisandra chinensis pollen extract
(Cheng et al., 2019). The HSYA supplementation, a compound with a
mono-chalcone glycoside structure, increased the abundance of Akker-
mansia, and the production of acetate, propionate, and butyrate.
Moreover, the number of goblet cells and the expression of tight junc-
tion proteins ZO-1 were increased after intragastric supplementation
with HSYA (Liu et al., 2018). Regarding the S. chinensis pollen extract,
the most abundant phenolic compound was naringenin (1.89 mg/g), a
flavanone. Treatment with pollen extract increased Lactobacillus in
obese mice with a dose-effect relationship (Cheng, Chen, Liu, et al.,
2019).

3.2.1.2. Other polyphenols. Prebiotic effect of other phenolic
compounds, like lignans, phenolic acids, stilbenes and vanillin, was
evaluated in five animal studies (Cho et al., 2016; Etxeberria et al.,
2017; Guo et al., 2018; Qiao et al., 2014; Xie et al., 2019). In summary,
there was an increase in the abundance of Lactobacillus, Bifidobacterium
and Akkermansia, and a reduction in serum concentrations of pro-
inflammatory cytokines and expression of lipid synthesis related genes.

The consumption of syringaresinol, a lignan present in oilseeds,
cereal brans and berry seeds, enhanced the population of Lactobacillus
and Bifidobacterium, and reduced serum lipopolysaccharide-binding
protein (LBP) concentration (Cho et al., 2016). Supplementation with
aqueous kudingcha extract, composed by 3,4-di-O-caffeoylquinic acids
(3,4-diCQAs — 26.9%), 3,5-diCQAs (42.3%) and 4,5-diCQAs (30.8%),
increased the abundance of Bifidobacterium and Akkermansia, and de-
creased the concentrations of serum interleukin 6 (IL-6), tumor necrosis
factor-alpha (TNF-a) and lipopolysaccharides (LPS) and the hepatic
expression of lipid synthesis related genes (Xie et al., 2019). The sup-
plementation with resveratrol, the largest representative of the stil-
benes class, increased the abundance of Lactobacillus and Bifido-
bacterium, and decreased the genes expression related to fatty acids
synthesis, adipogenesis and lipogenesis in mice fed a high-fat diet (Qiao
et al., 2014). Animals treated with a standard diet supplemented with
pterostilbene, a dimethoxy resveratrol derivative, showed an increase
in the abundance of Akkermansia muciniphila, and an improvement in
insulin sensitivity (Etxeberria et al., 2017). An increase in the produc-
tion of acetate, propionate and butyrate and a decrease in the high
concentrations of inflammatory factors (LPS, IL-6, and TNF-a) were
observed in mice fed a high-fat diet after the supplementation with
vanillin (Guo, Han, et al., 2018).

3.2.2. Clinical trials

The effect of anthocyanins was also evaluated in a crossover clinical
trial, in which the consumption of a wild blueberry drink (375 mg of
anthocyanins) by healthy adults increased Bifidobacterium spp. and
Lactobacillus acidophilus (Vendrame et al., 2011). In another clinical
trial with overweight-obese individuals, the consumption of pome-
granate extract (1.8 g/day, 656 mg of phenolics) rich in hydro-
xybenzoic acids (punicalagins and free ellagic acid) increased Faecali-
bacterium and decreased the concentration of plasma LBP (Gonzalez-
Sarrias et al., 2018).

3.3. Methodological quality assessment of studies

The animal studies were generally classified as low or unclear re-
garding the risk of bias (Table S1). None of the included studies
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satisfied all areas established by the SYRCLE’s tool for methodological
quality assessment of animal studies. Data on selection bias (baseline
characteristics and allocation concealment), performance bias (random
housing and blinding), and detection bias (random outcome assessment
and blinding) were unavailable in all studies. The clinical trials
(Gonzalez-Sarrias et al., 2018; Vendrame et al., 2011), evaluated by
Cochrane Collaboration's tool, were at low-risk for selection bias
(random sequence generation), performance bias (blinding of partici-
pants and personnel), reporting bias (selective reporting), and other
bias. In addition, these studies were unclear for selection bias (alloca-
tion concealment) and detection bias (blinding of outcome assessment)
and showed high-risk for attrition bias (incomplete outcome data).

4. Discussion

To our knowledge, this is the first systematic review aiming to ex-
plore the prebiotic effect of dietary polyphenols investigated in pre-
clinical and clinical studies. We found 24 studies of which: 8 showed an
increased abundance of Lactobacillus spp. and/or Bifidobacterium spp.
(Cheng, Chen, Liu, et al., 2019; Cho et al., 2016; Dey et al., 2019; Li,
Wu, et al., 2019; Ma et al., 2019; Qiao et al., 2014; Vendrame et al.,
2011; Xie et al., 2019); 10 showed an increased abundance of Akker-
mansia spp. (Anhé et al., 2015, 2017; Dey et al., 2019; Etxeberria et al.,
2017; Liu et al., 2018; Lu et al., 2019; Ma et al., 2019; Masumoto et al.,
2016; Xia et al., 2019; Xie et al., 2019); 3 showed an increased abun-
dance of Faecalibacterium spp. (Gonzalez-Sarrias et al., 2018; Lopez
et al., 2018; Luo et al., 2019); and 3 showed an increased abundance of
Roseburia spp. (Lu et al., 2019; Ma et al., 2019; Van Hul et al., 2018).
Seven studies reported an increase in the production of SCFA, including
butyrate (Guo, Han, et al., 2018; Henning et al., 2018; Li, Wu, et al.,
2019; Liu et al., 2018, 2019; Luo et al., 2019; Wang et al., 2018).

The current definition of prebiotic recognizes that prebiotic targets
extend beyond the stimulation of Bifidobacterium and Lactobacillus, and
include other microorganisms such as Roseburia, Eubacterium and
Faecalibacterium spp., but are not limited to these (Gibson et al., 2017).
Thereby, the inclusion criteria applied in this systematic review is in
accordance with the current concept of prebiotics. The health benefits
associated with prebiotics are immune modulation, increased mineral
absorption, improved bowel function, and a positive effect on glucose
homeostasis, inflammation, blood lipid profile, satiety and defense
against pathogens (Sanders et al., 2019). Although these effects cannot
be easily extrapolated to the human gut microbiota, many of them seem
to be mediated by SCFA, especially acetate, propionate, and butyrate.

The pathway that explains how polyphenols increase the production
of SCFA is not yet fully understood. It is believed that the increase of
anaerobic microorganisms, such as Lactobacillus, Lachnospiraceae and
Ruminococcaceae can promote the increase of SCFA, especially of bu-
tyrate (Li, Wu, et al., 2019; Liu et al., 2018, 2019). Another possible
explanation is associated with decafeinated green tea and black tea
polyphenols that have been shown to inhibit a-amylase and a-gluco-
sidase in saliva and small intestine, which may lead to residual carbo-
hydrate in the large intestine providing substrate for the SCFA pro-
duction (Henning et al., 2018). It is worth mentioning that SCFA are the
major mediators among nutrition, gut microbiota, physiology, and pa-
thology (Rios-Covian et al., 2016). The butyrate has been investigated
most extensively, and it is recognized that butyrate-producing bacteria
and butyrate per se may be beneficial for human health (Koh, De
Vadder, Kovatcheva-Datchary, & Backhed, 2016), suggesting it as a
biomarker of prebiotic effect.

The studies reviewed here reported that the health benefits asso-
ciated with the consumption of catechins were reduced concentrations
of serum low-density lipoprotein cholesterol (LDL-c) (Ma et al., 2019),
glucose and insulin (Wang et al., 2018). Studies also found that ca-
techins could prevent an increase in toll-like receptor 4 (TLR4)/ nuclear
factor kappa B (NFxB)-dependent inflammatory genes (Dey et al.,
2019), and increase the hepatic adenosine monophosphate-activated
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protein kinase (AMPK) phosphorylation (Henning et al., 2018). Besides,
the consumption of green tea extract containing 48% epigallocatechin
gallate prevented from a decrease in the expression of intestinal tight
junction proteins induced by a high-fat diet (Dey et al., 2019). The
treatment with soy isoflavone and HSYA improved intestinal barrier
function through increasing the number of goblet cells and the ex-
pression of tight junction proteins ZO-1, occludin and Muc-2 (Liu et al.,
2018; Luo et al., 2019). Digestive enzymes activities (B-glucosidase, -
galactosidase and B-glucuronidase) in the cecal environment were in-
creased by the supplementation with anthocyanins (Li, Wu, et al.,
2019). The health effects of proanthocyanidins consumption were im-
proved glucose tolerance and insulin sensitivity, upregulation of lipid
catabolism genes (PPARa), and downregulation of pro-inflammatory
genes (COX2, TNFa) in the liver (Anhé et al., 2015, 2017; Masumoto
et al., 2016).

Dietary flavonoids are consumed predominantly as glycosides
(conjugated to sugar), which hinders the absorption of these com-
pounds by the small intestine (Kawabata, Yoshioka, & Terao, 2019).
Glycosylated flavonoids can serve as the sole source of carbon and
energy for some microorganisms in the gut microbiota, which pre-
ferentially ferment the sugars linked to flavonoids. Thus, it could ex-
plain the prebiotic effect observed for these compounds (Braune &
Blaut, 2016). For instance, aqueous extract of jaboticaba, a Brazilian
native fruit rich in cyanidin-3-O-glucoside and delphinidin-3-O-gluco-
side, modulated the abundance of Lactobacillus and Bifidobacterium in
rats with induced-colitis (Silva-Maia et al., 2019). Cyanidin-3-O-glu-
coside ameliorated gut microbial dysbiosis caused by 3-chloro-1,2-
propanediol (chemical food contaminant) in rats (Chen et al., 2019). In
other study, the Quzhou Fructus Aurantii extract, rich in naringin, a
natural flavanone glycoside, increased the genus Akkermansia and the
expression of tight junction proteins, and reduced metabolic en-
dotoxemia in mice fed high-fat diet (Bai et al., 2019).

Most dietary polyphenols arrive intact in the colon, where they
become substrates for the gut microbiota, producing better-absorbing
metabolites (Mojzer et al., 2016; Kawabata et al., 2019). The flavo-
noids, such as epicatechin, catechin, procyanidin and quercetin, when
metabolized by gut microbiota, generate hydroxy phenylacetic and
hydroxyphenyl propionic acids (Shortt et al., 2018). Equol and O-des-
methylangolensin (ODMA) are active metabolites produced by the ac-
tion of colonic bacteria on soy isoflavones (Mayo, Vazquez, & Florez,
2019). The urolithins, in turn, are metabolites produced from ellagi-
tannins and ellagic acid by the human gut microbiota (Tomas-Barberan
et al., 2017). These metabolites also have beneficial health effects, such
as estrogenic and antioxidant activity (Mayo et al., 2019), anti-in-
flammatory and antioxidant effects (Lee, Park, Lee, Ahn, & Kim, 2019),
and hepatoprotective effect (Zhao et al., 2018). Thus, further studies
are warranted to investigate the potential of these metabolites as pre-
biotic effect markers, such as the SCFA modulation.

Studies with syringaresinol in male C57BL/6 mice (Cho et al., 2016)
and pomegranate extract in overweight-obese individuals (Gonzélez-
Sarrias et al., 2018) demonstrated a decrease in serum LBP, indicating
that polyphenols could modulate metabolic endotoxemia (Fuke,
Nagata, Suganuma, & Ota, 2019). LBP is a glycoprotein mainly syn-
thesized in the hepatocytes with long half-life in the blood and can bind
to LPS promoting an LPS-induced immune response via toll-like re-
ceptors in macrophages (Jamar, Ribeiro, & Pisani, 2020). LPS, known as
endotoxin, is a breakdown product present in the outer membrane of
gram-negative bacteria, composed by an O-antigen portion in its outer
part and by a lipid-A portion in its inner part. The lipid-A portion exerts
most of the immunogenic effects, such as the activation of TLR4,
through the formation of the complex containing LBP and the CD14 co-
receptor, which signals the NFkB activation to upregulate pro-in-
flammatory mediators causing low-grade inflammation. The O-antigen
portion activates components of the adaptive immunity, intending to
induce the production of antibodies. Therefore, plasma LBP may be an
inflammation marker caused by endotoxins (Jamar et al., 2020).
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The dysbiosis of the gut microbiota caused by a high-fat diet has
been considered as a possible cause for metabolic endotoxemia (Fuke
et al., 2019). Thus, it is expected that the consumption of polyphenols
may also improve the metabolic endotoxemia associated to dysbiosis,
since the consumption of catechins (Liu et al., 2019; Lu et al., 2019),
isoflavones (Lopez et al., 2018; Luo et al., 2019), proanthocyanidins
(Anhé et al., 2015; Masumoto et al., 2016), and dicaffeoylquinic acids
(Xie et al., 2019) decreased plasma or serum LPS in animals fed a high-
fat diet. Circulating LPS is released by lysis of a fraction of the bacterial
cell wall and flows into the blood by increasing intestinal permeability.
The excess intestinal LPS itself, caused by dysbiosis, destroys the
narrow junction of intestinal epithelial cells via TLR4 and inhibits
mRNA expression of factors related to the restricted junction, such as
Z0-1 and occludin, in the intestinal epithelial cell. Therefore, LPS is
considered an inflammation marker for dysbiosis (Fuke et al., 2019).

The improvement of the intestinal barrier function through in-
creasing the expressions of ZO-1, occludin and Muc-2 genes, and of the
mucin-producing goblet cells number is one of the possible mechanisms
associated with the prebiotic effects of catechins (Dey et al., 2019), soy
isoflavones (Luo et al., 2019) and HSYA (Liu et al., 2019). Kruppel-like
factor 4 (KLF4), a marker of goblet cells, and Muc2 mRNA expression in
the proximal colon were also associated with the administration of
proanthocyanidins rich-cranberry extract, supporting that these poly-
phenols could be able to stimulate mucus production (Fig. 2), and
therefore create an ecological niche for the Akkermansia spp., a mucus-
degrading bacterium (Anhé et al., 2015). Xia et al. (2019) reported an
increased abundance of Akkermansia spp. through an increase in other
markers, such as type II and III secretion system proteins, the elongation
factor thermo unstable, and a glyceraldehyde-3-phosphate dehy-
drogenase. This methodology was not observed in other studies. In this
review, Akkermansia spp. was included as prebiotic target along with
the bacteria recognized as probiotics by the Consensus Statement on the
Definition and Scope of Prebiotics (Gibson et al., 2017), considering the
recent evidences in literature about the relationship among Akker-
mansia spp., gut microbiota and human health (Cani & de Vos, 2017;
Jayachandran, Chung, & Xu, 2019; Sanders et al., 2019). Akkermansia
spp. and Propionibacterium spp. are promising candidates among the
next generation of microorganisms to be recognized as prebiotic targets
(Sanders et al., 2019).

There is also evidence of an additional mechanism by which poly-
phenols protect the intestinal barrier against oxidative stress. A decrease in
the oxidative stress in the liver and ileum was observed in specific pa-
thogen-free mice after a lower-dose consumption of green tea polyphenols
(100 mg/kg body weight/day). The improvement of intestinal oxidative
stress is supposed to be a potential mechanism for the modulation of tea
polyphenols in the gut microbiota (Ma et al., 2019), since excess reactive
oxygen species will damage the cell membrane and disrupt the tight
junctions leading to an increased intestinal permeability and the develop-
ment of metabolic disorders (Qiao, Sun, Ding, Le, & Shi, 2013). The tight
junctions are multiprotein complexes that maintain barrier function be-
tween the enterocytes, creating paracellular barrier properties, which are
composed by transmembrane proteins which control the transport across
the intercellular space between adjacent cells and cytoplasmic plaque
(Costea et al., 2019). The main components of the cytoplasmic plaque are
claudin and zonula occludens proteins. In oxidative stress, the interactions
of occludin with claudins or proteins of the zonula family are affected di-
rectly influencing the formation and function of the tight junctions. Oxi-
dative stress downregulates occludin, reduces its specific membrane loca-
lization and regulatory contribution to barrier tightness via multiple
signaling pathways (Costea et al., 2019). Nonetheless, most of the evidence
is based in vitro and animal studies, and then further studies in humans are
needed to clarify these mechanisms.

Regarding the methodological quality of the included papers, none
of the studies satisfied all criteria established by the SYRCLE and
Cochrane Collaboration's tool. No preclinical studies provide detailed
descriptions of the methods used for allocation concealment, random
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Fig. 2. Mechanism of mucin synthesis modulation by proanthocyanidins in the hindgut. KLF4: kruppel-like factor 4, Muc-2: mucin 2, ZO-1: zonula occludens 1. The
consumption of polyphenols, represented in the figure by proanthocyanidins, may increase the number of goblet cells, according to the Kruppel-like factor 4 (KLF4)
marker, and consequently, the mucin production; so the enhanced mucin provides a favorable environment for the proliferation of Akkermansia spp., a mucus-
degrading bacterium (Anhé et al., 2015; Xia et al., 2019). In addition, increased expression of ZO-1 and occludin can be observed after the consumption of
polyphenols, decreasing the intestinal permeability through the junction of epithelial cells (tight junctions) (Dey et al., 2019; Luo et al., 2019; Liu et al., 2019).

housing and random outcome assessment, or blinding researchers and
outcome assessors. The clinical trials did not provide details on allo-
cation concealment and blinding of outcome assessment. The absence
of descriptions regarding sample losses in the preclinical and clinical
studies also was noted. Therefore, we suggest the use of these tools in
experimental planning, as a reference for well-designed studies aiming
to reduce the risk of bias and allow more consistent conclusions.

It is noteworthy that the included studies had quite heterogeneous
designs, including differences in the intervention period, the metho-
dology for gut microbiome analysis, and the supplementation with
polyphenol (food sample and dosage), as well as the polyphenols profile
of the samples. Additional studies with isolated polyphenols are needed
to eliminate the effects of other compounds in the extract, especially in
clinical trials. Moreover, we suggest that further studies aiming to
evaluate the prebiotic effect of dietary polyphenols should be carried
out according to the internationally accepted prebiotics definition, with
complete assessment of the gut microbiota, including the microorgan-
ism’s genera. The low number of studies on humans is also a limitation
in this systematic review.

5. Conclusion

The prebiotic effect of dietary polyphenols, especially catechins,
anthocyanins, and proanthocyanidins, has strong evidence based on
preclinical studies. Despite the limitations of these studies, it is evident
that polyphenols can stimulate the growth of microorganisms re-
cognized as prebiotic targets (Lactobacillus spp., Bifidobacterium spp.,
Akkermansia spp., Roseburia spp., and Faecalibacterium spp.), and in-
crease the production of SCFA, including butyrate. Nevertheless, well-
designed clinical trials are warranted to prove the prebiotic effect of

polyphenols on humans.
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